HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 11

EXTENSION 1 MATHEMATICS

2009

YEARLY EXAMINATION

Examiners ~S. Hackett, S.Gee, S.Faulds, G.Rawson, P.Biczo

General Instructions

- Reading time - 5 minutes.
- Working time -1.5 hours.
- Attempt all 5 questions.
- Each question is worth 15 marks.
- Total marks-75 marks
- All necessary working should be shown in every question.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- Each question is to be started in a new examination booklet.
- This assessment task must NOT be removed from the examination room.
a) \quad Solve $|2 x-3|=4$
b) Factorise $2 m^{3}-54$.
c) Solve $3 x-7 \geq 8 x+18$
d) In an attempt to lower their increasing road toll, the Fijian government plans to widen some roads. In order to widen one particular road, they must first chop down a coconut tree. Before this, they must calculate the height of the tree.
Points P, A and B are in order on the straight road that is inclined at 10° to the horizontal.
The base of the tree is at point P and the angle of elevation of the top of the tree is 30° from the horizontal at point A and 5° from the horizontal at point B. Point A is 100 metres from point B.
(i) Copy or trace this diagram into your answer booklet and show all information given. 1

(ii) Calculate the height of the coconut tree to the nearest centimetre.
e) Consider the function $f(x)=1+\frac{3}{(x-2)}$.
(i) Give the equations of the borizontal and vertical asymptotes for $y=f(x)$.
(ii) Without using calculus, sketch the graph of $y=f(x)$.
(iii) Hence solve $\frac{3}{(x-2)}>-1$
a) (i) Using long division, prove that $2 x-3$ is a factor of $\mathrm{P}(x)=2 x^{3}-5 x^{2}-21 x+36$
(ii) Hence, factorise $2 x^{3}-5 x^{2}-21 x+36$
b) (i) Sketch the curve $y=x(1-x)(x+2)^{2} \quad 2$
(ii) Hence, solve the inequality $x(1-x)(x+2)^{2} \leq 0 \quad 1$
c) Show that the equation $2^{2 x}-2^{x+2}=32$ can be expressed in the form $u^{2}-4 u-32=0$, and hence solve for x.
d) If α and β are the roots of the equation $2 x^{2}+4 x+7=0$, find the value of:
(i) $\alpha+\beta$ 1
(ii) $\alpha^{2}+\beta^{2}$
e) Form the quadratic equation whose roots are $p-\sqrt{q}$ and $p+\sqrt{q}$. Write your answer in the form $A x^{2}+B x+C=0$
f) When the polynomial $P(x)$ is divided by $x^{2}+x-2$, the remainder is $3 x-1$. What is the remainder when $P(x)$ is divided by $x-1$?

QUESTION THREE (15 mARKS) Use a SEPARATE Booklet
(a) Evaluate \quad (i) $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2} \quad 1$
(ii) $\lim _{x \rightarrow \infty} \frac{x^{2}+5 x-3}{2 x^{2}-3 x+11}$
(b) Given the formula for differentiation from first principles is $\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, show from first principles that $\frac{d}{d x}\left(3 x^{2}+2 x\right)=6 x+2$.
(c) (i) Differentiate $y=x^{3}-2 x^{2}$. 1
(ii) Show that the point $A(-1,-3)$ lies on the curve $y=x^{3}-2 x^{2}$. 1
(iii) Find the equation of the tangent to the curve $y=x^{3}-2 x^{2}$ at the point A.
(d) Differentiate
(i) $\frac{1}{x}+\sqrt{x}$
(ii) $\left(2 x^{3}+1\right)^{4}$
(iii) $\frac{3 x}{2 x+1}$

Question Four ($\mathbf{1 5}$ marks) Use a SEPARATE Booklet.
The points $A(0,3), B(-1,0)$ and $C(2,0)$ are the vertices of a triangle.

(a) Find the gradient of the line $A C$.
(b) Show that the equation of $A C$ is $3 x+2 y-6=0$
(c) $B E$ is the altitude from B to $A C$. Show that $B E$ has equation $2 x-3 y+2=0$.
(d) Calculate the length of the line segment $B E$.
(e) Given that the altitude $C F$ has equation $x+3 y-2=0$, show that $C F$ and $B E$ intersect on the y axis.
(f) Find the midpoint M of $A C$.
(g) Find the coordinates of the point R which divides $B M$ internally in the ratio 2:1.
(h) Find the acute angle between the lines $A B$ and $A C$. (Answer to the nearest degree)
(a)

In the above figure $\triangle A B C$ and $\triangle A P O$ are equilateral triangles. Copy the diagram into your answer booklet, including all given information.
(i) Explain why $\angle B A O=\angle P A C$
(ii) Prove $\triangle A O B \equiv \triangle A P C$. 3
(iii) Hence, prove $O B=C P$.
(b) Prove the identity: $\frac{\cos A+\sin A}{\cos A-\sin A} \equiv \sec 2 A+\tan 2 A$
(c) Express as a single ratio: $\frac{\tan \frac{\alpha}{2}+\tan \frac{3 \alpha}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{3 \alpha}{2}}$
(d) (i) Write down the expansion for: $\cos (\alpha+\beta) \quad 1$
(ii) Use the expansion in (i) above and your knowledge of identities and exact trigonometric ratios to write the expression:

$$
\frac{7 \sqrt{3}}{2} \cos \alpha-\frac{7}{2} \sin \alpha
$$

in the form: $A \cos (\alpha+\beta) \quad$ clearly stating the values of A and β.
(iii) Hence, find the minimum value of $\frac{7 \sqrt{3}}{2} \cos \alpha-\frac{7}{2} \sin \alpha$ and the smallest positive value of α for which this occurs.

Year 11	Extension 1 Mathematics	Yearly Examination 2009
Question No. 4	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques

Outcome	Solutions	Marking Guidelines

(e) $\quad x+3 y-2=0 \quad \ldots$ (1) $2 x-3 y+2=0$
(1) $+(2)$ gives $\quad 3 x=0$
which is the y-axis
(f) Midpoint of $A C$
$M:\left(\frac{2+0}{2}, \frac{0+3}{2}\right)$
ie $\left(1, \frac{3}{2}\right)$

$R:\left(\frac{l x_{1}+k x_{2}}{k+l}, \frac{b y_{1}+k y_{2}}{k+!}\right)$
$=\left(\frac{1(-1)+2(1)}{2+1}, \frac{1(0)+2\left(\frac{3}{2}\right)}{2+1}\right)$
$=\left(\frac{1}{3}, 1\right)$
(h)
$A B$ has $m_{1}=3$
$A C$ has $m_{2}=-\frac{3}{2} \quad($ from (a) $)$

$$
\begin{aligned}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{3-\left(-\frac{3}{2}\right)}{1+3\left(-\frac{3}{2}\right)}\right| \\
& =\left|\frac{\frac{9}{2}}{-\frac{7}{2}}\right|=\frac{9}{7}
\end{aligned}
$$

$\theta=52^{\circ}$

2 marks - correct solution
1 mark-substantially correct solution

1 mark - correct answe

2 marks - correct solution
1 mark - substantially correct solution

3 marks - correct solution
2 marks-substantially correct solution

1 mark-partially correct solution

Outcomes Addressed in this Question

PE2	uses multi-step deductive reasoning in a variety of contexts
P3	Performs routine arithmetic and algebraic manipulation involving trigonometric identities
P4	chooses and applies appropriate trigonometric and geometric tec

Outcome
P4, PE2

(a) (i) Let $\angle \mathrm{OAC}=x^{\circ}$

$$
\angle \mathrm{BAC}=60^{\circ} \text { (angle in equilateral } \triangle \mathrm{BAC} \text {) }
$$

$$
\therefore \angle \mathrm{BAO}=60^{\circ}-x^{\circ}
$$

Also, $\angle \mathrm{OAP}=60^{\circ}$ (angle in equilateral $\triangle \mathrm{OAP}$)

$$
\therefore \angle P A C=60^{\circ}-x^{\circ}
$$

$$
=\angle \mathrm{BAO}
$$

PE2, P4
(ii) In \triangle 's $A O B$ and $A P C$
$A O=A P$ (equal sides in equilateral $\triangle O A P$)
$\angle \mathrm{BAO}=\angle \mathrm{PAC}$ (shown above)
$A B=A C$ (equal sides in equilateral $\triangle B A C$)
$\therefore \triangle A O B \equiv{ }^{A} A P C$

PE2, P4
(iii) Now, $\mathrm{OB}=\mathrm{CP}$ (corresponding sides in congruent Δ 's)
(c)

$$
\begin{aligned}
\text { L.E.S } & =\frac{\cos A+\sin A}{\cos A-\sin A} \\
& =\frac{\cos A+\sin A}{\cos A-\sin A} \times \frac{\cos A+\sin A}{\cos A+\sin A} \\
& =\frac{\cos ^{2} A+2 \sin A \cos A+\sin ^{2} A}{\cos ^{2} A-\sin ^{2} A} \\
& =\frac{1+\sin 2 A}{\cos 2 A} \\
& =\frac{1}{\cos 2 A}+\frac{\sin 2 A}{\cos 2 A} \\
& =\sec 2 A+\tan 2 A \\
& =\text { R.H.S }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\tan \frac{\alpha}{2}+\tan \frac{3 \alpha}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{3 \alpha}{2}} & =\tan \left(\frac{\alpha}{2}+\frac{3 \alpha}{2}\right) \\
& =\tan \left(\frac{4 \alpha}{2}\right) \\
& =\tan 2 \alpha
\end{aligned}
$$

(d) (i)

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

(ii)

$$
\begin{aligned}
\frac{7 \sqrt{3}}{2} \cos \alpha-\frac{7}{2} \sin \alpha & =7\left(\frac{\sqrt{3}}{2} \cos \alpha-\frac{1}{2} \sin \alpha\right) \\
& =7\left(\cos \alpha \cos 30^{\circ}-\sin \alpha \sin 30^{\circ}\right) \\
& =7 \cos \left(\alpha+30^{\circ}\right)
\end{aligned}
$$

which is in the form $\mathrm{A} \cos (\alpha+\beta)$ where $\mathrm{A}=7$ and $\beta=30^{\circ}$.

P3, P4

(iii)

The minimum value of $\cos \theta$ is -1 when $\theta=180^{\circ}$.
\therefore The minimum value of $\mathrm{A} \cos (\alpha+\beta)$ is -A when $\alpha+\beta=180^{\circ}$.
Since $\frac{7 \sqrt{3}}{2} \cos \alpha-\frac{7}{2} \sin \alpha=7 \cos \left(\alpha+30^{\circ}\right)$, the nuinimum value of the expression is -7 when $\alpha+30^{\circ}=180^{\circ}$ ie. when $\alpha+30^{\circ}=180^{\circ}$.
\therefore The expression $\frac{7 \sqrt{3}}{2} \cos \alpha-\frac{7}{2} \sin \alpha$ has a minimum value of -7 when $\alpha=150^{\circ}$.

1 mark

Correct answer

1 mark
Conect answer

2 marks

Correct solution, demonstrating lonowledge of both trig. identities and exact trig. ratios.
1 mark
Partially correct solution OR correct answer without reference to exact trig, ratios.

2 marks

Correct solution.
1 mark
Partially correct solution.

