STUDENT NAME:	
STUDENT NUMBER:	
TEACHER:	

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 11 EXTENSION 1 MATHEMATICS 2009

YEARLY EXAMINATION

EXAMINERS ~ S. HACKETT, S.GEE, S.FAULDS, G.RAWSON, P.BICZO

GENERAL INSTRUCTIONS

- Reading time 5 minutes.
- Working time 1.5 hours.
- Attempt all 5 questions.
- Each question is worth 15 marks.
- Total marks 75 marks
- All necessary working should be shown in every question.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- Each question is to be started in a new examination booklet.
- This assessment task must NOT be removed from the examination room.

a) Solve |2x-3| = 4.

2

b) Factorise $2m^3 - 54$.

2

c) Solve $3x - 7 \ge 8x + 18$

2

1

d) In an attempt to lower their increasing road toll, the Fijian government plans to widen some roads. In order to widen one particular road, they must first chop down a coconut tree. Before this, they must calculate the height of the tree.

Points P, A and B are in order on the straight road that is inclined at 10° to the horizontal. The base of the tree is at point P and the angle of elevation of the top of the tree is 30° from the horizontal at point A and 5° from the horizontal at point A is 100 metres from point B.

(i) Copy or trace this diagram into your answer booklet and show all information given.

(ii) Calculate the height of the coconut tree to the nearest centimetre.

3

- e) Consider the function $f(x) = 1 + \frac{3}{(x-2)}$.
 - (i) Give the equations of the horizontal and vertical asymptotes for y = f(x).
- 2

(ii) Without using calculus, sketch the graph of y = f(x).

2

(iii) Hence solve $\frac{3}{(x-2)} > -1$

1

a)

- Using long division, prove that 2x-3 is a factor of $P(x) = 2x^3 5x^2 21x + 36$ (i)
- 2

Hence, factorise $2x^3 - 5x^2 - 21x + 36$ (ii)

1

Sketch the curve $y = x(1-x)(x+2)^2$ b) (i)

2

Hence, solve the inequality $x(1-x)(x+2)^2 \le 0$ (ii)

- 1
- Show that the equation $2^{2x} 2^{x+2} = 32$ can be expressed in the form $u^2 4u 32 = 0$, c) and hence solve for x.
- 3

- If α and β are the roots of the equation $2x^2 + 4x + 7 = 0$, find the value of: d)
 - $\alpha + \beta$ (i)

1

 $\alpha^2 + \beta^2$ (ii)

f)

- 1
- Form the quadratic equation whose roots are $p-\sqrt{q}$ and $p+\sqrt{q}$. Write your answer in 2 e) the form $Ax^2 + Bx + C = 0$
- When the polynomial P(x) is divided by $x^2 + x 2$, the remainder is 3x 1. What is the remainder when P(x) is divided by x-1?
- 2

QUESTION THREE (15 MARKS) Use a SEPARATE Booklet

- (a) Evaluate
- (i) $\lim_{x\to 2} \frac{x^2-x-2}{x-2}$

1

(ii)
$$\lim_{x \to \infty} \frac{x^2 + 5x - 3}{2x^2 - 3x + 11}$$

- 1
- (b) Given the formula for differentiation from first principles is $\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$,
 - show from first principles that $\frac{d}{dx}(3x^2 + 2x) = 6x + 2$.

3

(c) (i) Differentiate $y = x^3 - 2x^2$.

1

(ii) Show that the point A(-1,-3) lies on the curve $y = x^3 - 2x^2$.

1

(iii) Find the equation of the tangent to the curve $y = x^3 - 2x^2$ at the point A.

2

- (d) Differentiate
 - (i) $\frac{1}{x} + \sqrt{x}$

2

(ii) $\left(2x^3+1\right)^4$

2

(iii) $\frac{3x}{2x+1}$

2

QUESTION FOUR (15 MARKS) Use a SEPARATE Booklet.

The points A(0,3), B(-1,0) and C(2,0) are the vertices of a triangle.

(a) Find the gradient of the line AC.

1

(b) Show that the equation of AC is 3x + 2y - 6 = 0

2

- (c) BE is the altitude from B to AC. Show that BE has equation 2x 3y + 2 = 0.
- 2

(d) Calculate the length of the line segment BE.

2

(e) Given that the altitude CF has equation x + 3y - 2 = 0, show that CF and BE intersect on the y axis.

2

(f) Find the midpoint M of AC.

- 1
- (g) Find the coordinates of the point R which divides BM internally in the ratio 2:1.
- 2
- (h) Find the acute angle between the lines AB and AC. (Answer to the nearest degree)
- 3

(a)

In the above figure $\triangle ABC$ and $\triangle APO$ are equilateral triangles. Copy the diagram into your answer booklet, including all given information.

(i) Explain why
$$\angle BAO = \angle PAC$$

(ii) Prove
$$\triangle AOB \equiv \triangle APC$$
.

(iii) Hence, prove
$$OB = CP$$
.

(b) Prove the identity:
$$\frac{\cos A + \sin A}{\cos A - \sin A} = \sec 2A + \tan 2A$$

(c) Express as a single ratio:
$$\frac{\tan \frac{\alpha}{2} + \tan \frac{3\alpha}{2}}{1 - \tan \frac{\alpha}{2} \tan \frac{3\alpha}{2}}$$

(d) (i) Write down the expansion for:
$$cos(\alpha + \beta)$$

(ii) Use the expansion in (i) above and your knowledge of identities and exact trigonometric ratios to write the expression:

$$\frac{7\sqrt{3}}{2}\cos\alpha - \frac{7}{2}\sin\alpha$$

in the form:
$$A\cos(\alpha + \beta)$$
 clearly stating the values of A and β .

(iii) **Hence**, find the minimum value of
$$\frac{7\sqrt{3}}{2}\cos\alpha - \frac{7}{2}\sin\alpha$$
 and the smallest positive value of α for which this occurs.

Year 11 Yearly 2009 - Extension 1 Mathe	matics
tion No: 1 Solutions and Marking Guidelines Smes Addressed in this Question: P4	
Sample Solution	Marking Guidelines
(a) $2x-3=4$ $2x-3=-4$ $2x=7$ $2x=-1$	2 marks — both correct solutions from a correct method
$\therefore x = \frac{7}{2}, -\frac{1}{2}$	1 mark - one correct solution from a correct method.
(b) $2m^{2} - 54 = 2(m^{2} - 27)$ $= 2(m - 3)(m^{2} + 3m + 9)$	2 marks - expression completely factorised 1 mark - some progress towards correct factorisation
(c) $3x - 7 \ge 8x + 18$	2 marks -
3x - 7 ≥ 6x + 18 - 25 ≥ 5x ∴ x ≤ -5	1 mark -
(d)(i)	
36° 150m 8	1 mark-diagram correctly showing ALL given information
(ii) T 40 157 A 100a B	
In $\triangle ABT$, $\frac{AT}{\sin 15^\circ} = \frac{100}{\sin 25^\circ}$ In $\triangle APT$ $\frac{PT}{\sin 40^\circ} = \frac{AT}{\sin 80^\circ}$ $AT = \frac{100 \sin 15^\circ}{\sin 25^\circ}$ $PT = \frac{AT \sin 40^\circ}{\sin 80^\circ}$ $PT = 39.97$ Tree is 39.97 metres high.	3 marks - correct solution 2 marks - substantial progress towards correct solution 1 mark - some progress towards correct solution

Year 11Ye Question N		Examination 2009
Question	Outcomes Addressed in this Question	
P3 perfo	rms routine srithmetic and algebraic manipulation	
iovai	ring surds, simple rational expressions and trigonometric	
identi		
LED ZOLVEZ	problems involving inequalities and polynomials	
Outcome	Solutions	Marking Guidelines
PE3	a)(i)	
	$x^2 - x - 12$	2 marks: correct solution
	$\begin{array}{r} x^2 - x - 12 \\ 2x - 3 \overline{\smash{\big)}\ 2x^3 - 5x^2 - 21x + 36} - \end{array}$	
	$2x^3 - 3x^2$	1 mark : significant progres
	$-2x^{2}-21x$	towards correct solution
	$-2x^2 + 3x$	1
-	-24x+36 -	
	-24x+36	
	<u>-24x+30</u>	
	Since remainder = 0, $2x-3$ is a factor	
	(ii) $P(x) = 2x^3 - 5x^2 - 21x + 36$	
Р3	$\therefore P(x) = (2x-3)(x^2-x-12)$	1 mark : correct answer or
		equivalent -
-	b) (i) $y = x(1-x)(x+2)^2$	
PE3	ν †	l
		2 marks: correct graph
		1 mark : significant progre
	(-2) (O 1) x	towards correct graph
	1 + +	
	(ii) From the graph $x(1-x)(x+2)^2 \le 0$ when graph is	
	below or on x axis.	
PE3	x≤0 and x≥1	1 mark : correct answer
	c) $2^{2x} - 2^{x+1} = 32$	
P3	-7	3 marks: correct justificati
	$(2^x)^2 - 2^x \cdot 2^2 = 32$	correct solution to quadrat
	$(2^x)^2 - 4.2^x - 32 = 0$	and original equation
	Let $u = 2^{x}$, $\therefore u^{2} - 4u - 32 = 0$	2 marks : substantial
	(u-8)(u+4)=0	progress to above
	$u = 8$ and $u = -4$, $\therefore 2^{\pi} = 8$ and $2^{\pi} = -4$.	l mark : significant progre
	$x=3$ ($2^*=-4$ has no solution)	to above

	d) For $2x^2 + 4x + 7 = 0$,	
P3	(i) $\alpha + \beta = \frac{-b}{a} = \frac{-4}{2} = -2$	I mark : correct answer
P3	(ii) $\alpha\beta = \frac{c}{a} = \frac{7}{2}$	I mark : correct answer
	$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$	
	$(-2)^2 = \alpha^2 + \beta^2 + 2 \times \frac{7}{2}$	
P3	$\alpha^2 + \beta^2 = -3$ e) Sum of roots = $p - \sqrt{q} + p + \sqrt{q} = 2p$	2 marks; correct answer
	Product of roots = $(p - \sqrt{q})(p + \sqrt{q}) = p^2 - q$	I mark: significant progress
	Equation is $x^2 - (sum of roots)x + (product of roots) = 0$	towards correct answer
	$\therefore \text{ equation is } x^2 - 2px + p^2 - q = 0$	
PE3	f) Using the division transformation $P(x) = (x^2 + x - 2) \cdot Q(x) + (3x - 1)$	2 marks: correct solution
	Remainder, when $P(x)$ is divided by $x-1$ is $P(1)$.	1 mark; significant progress towards correct answer
	$P(1)=(1^2+1-2).Q(1)+(3\times 1-1)$	towards correct answer
	=0+2 ∴ remainder = 2	

Task 3 2009		
Question No.3 Solutions and Marking Guidelines Outcomes Addressed in this Question P6 relates the derivative of a function to the slope of its graph		
P7 determines the derivative of a function through routine application of the rules of differentiation P8 understands and uses the language and notation of calculus		
Marking Guidelines		
1 mark correct solution		
1 mark correct solution		
3marks correct method leading to correct conclusion 2 mark substantially correct solution I mark elementary progress towards correct solution		

c i) $y = x^3 - 2x^2$ $y = 3x^2 - 4x$	I mark correct solution
ii) $y = x^3 - 2x^2$ $-3 = (-1)^3 - 2 \times (-1)^2$ -3 = -1 - 2 iii) $y = x^3 - 2x^2$ $y' = 3x^2 - 4x$ When $x = -1$ gradient of the tangent $m = 3(-1)^2 - 4(-1)$ m = 7 $y - y_1 = m(x - x_1)$ y + 3 = 7(x + 1) y + 3 = 7x + 7	1 mark correct solution 2 marks correct method leading to correct conclusion 1 mark substantially correct solution
$\begin{vmatrix} y = 7x + 4 \\ d \\ i) \end{vmatrix}$ $\frac{d}{dx} \left(\frac{1}{x} + \sqrt{x} \right) = \frac{d}{dx} \left(x^{-1} + x^{\frac{1}{2}} \right)$ $= -x^{-2} + \frac{1}{2} x^{-\frac{1}{2}}$ $= \frac{-1}{x^{2}} + \frac{1}{2\sqrt{x}}$	2 marks correct method leading to correct conclusion I mark substantially correct solution
$\begin{vmatrix} ii \\ \frac{d}{dx} (2x^3 + 1)^4 = 4(2x^3 + 1)^3 \times 6x^2 \\ = 24x^2 (2x^3 + 1)^3 \end{vmatrix}$	2 marks correct method leading to correct conclusion 1 mark substantially correct solution
$\begin{vmatrix} \frac{d}{dx} \left(\frac{3x}{2x+1} \right) = \frac{3(2x+1) - 3x \times 2}{(2x+1)^2} \\ = \frac{6x + 3 - 6x}{(2x+1)^2} \\ = \frac{3}{(2x+1)^2} $	2 marks correct method leading to correct conclusion 1 mark substantially correct solution
	i) $y = x^3 - 2x^2$ $y = 3x^2 - 4x$ ii) $y = x^3 - 2x^2$ $-3 = (-1)^3 - 2 \times (-1)^2$ -3 = -1 - 2 iii) $y = x^3 - 2x^2$ $y' = 3x^2 - 4x$ When $x = -1$ gradient of the tangent $m = 3(-1)^2 - 4(-1)$ m = 7 $y - y_1 = m(x - x_1)$ y + 3 = 7(x + 1) y + 3 = 7x + 7 y = 7x + 4 d i) $\frac{d}{dx}(\frac{1}{x} + \sqrt{x}) = \frac{d}{dx}(x^{-1} + x^{\frac{1}{2}})$ $= -x^{-2} + \frac{1}{2}x^{\frac{-1}{2}}$ $= \frac{-1}{x^2} + \frac{1}{2\sqrt{x}}$ ii) $\frac{d}{dx}(2x^3 + 1)^4 = 4(2x^3 + 1)^3 \times 6x^2$ $= 24x^2(2x^3 + 1)^3$ iii) $\frac{d}{dx}(\frac{3x}{2x + 1}) = \frac{3(2x + 1) - 3x \times 2}{(2x + 1)^2}$ $= \frac{6x + 3 - 6x}{(2x + 1)^2}$

Year 11	Extension 1 Mathematics	Yearly Examination 2009
Question N	o. 4 Solutions and Marking Guidelines Outcomes Addressed in this Question	
P4 chooses	and applies appropriate arithmetic, algebraic, graphical, trigonon	netric and geometric techniques
Outcome	Solutions	Marking Guidelines
·	(a) $m_{AC} = \frac{3-0}{0-2} = -\frac{3}{2}$	1 mark – correct answer
	(b) AC has $m = -\frac{3}{2}$, and passes through (0, 3) so it's equation is $y - y_1 = m(x - x_1)$ $y - 3 = -\frac{3}{2}(x - 0)$ $2y - 6 = -3x$ $3x + 2y - 6 = 0$	2 marks — correct solution with steps clearly shown 1 mark — substantially correct method
	(c) BE is altitude :: BE \perp AC $m_{BE} = -\frac{1}{m_{AC}} = \frac{2}{3}$ $y - y_1 = m(x - x_1)$ $y - 0 = \frac{2}{3}(x - (-1))$ $3y = 2x + 2$ $2x - 3y + 2 = 0$	2 marks — correct solution with steps clearly shown 1 mark — substantially correct method
	(d) $3x + 2y - 6 = 0, (-1, 0)$ $d_{BE} = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$ $= \frac{ 3(-1) + 2(0) - 6 }{\sqrt{3^2 + 2^2}}$ $= \frac{9}{\sqrt{13}}$	2 marks — correct solution 1 mark — substantially correct solution Note: — 0 marks assuming is the midpoint of AC is incorrect and simplifies the question.

(e)
$$x+3y-2=0$$
 ...(1) $2x-3y+2=0$...(2) (I) +(2) gives $3x=0$ $x=0$ which is the y-axis (f) Midpoint of AC $M: \left(\frac{2+0}{2}, \frac{0+3}{2}\right)$ ie $\left(1, \frac{3}{2}\right)$ (g) $B: \left(\frac{n}{-1}, \frac{n}{0}\right)$ $M: \left(\frac{n}{2}, \frac{n}{2}\right)$ $\frac{p}{2}:1$ $R: \left(\frac{lx_1 + kx_2}{k+l}, \frac{ly_1 + ky_2}{k+l}\right)$ $= \left(\frac{1(-1) + 2(1)}{2 + 1}, \frac{1(0) + 2(\frac{1}{2})}{2 + 1}\right)$ $= \left(\frac{1}{3}, 1\right)$ (h) AB has $m_i = 3$ AC has $m_2 = -\frac{3}{2}$ (from (a)) $\tan \theta = \left|\frac{m_i - m_2}{1 + m_i m_1}\right|$ $= \left|\frac{3}{2} - \left(-\frac{3}{2}\right)\right|$ $= \frac{2}{1}$ $= \frac{9}{7}$ $\theta = 52^{\circ}$

Question No. 5 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
	PE2 uses multi-step deductive reasoning in a variety of contexts Performs routine arithmetic and algebraic manipulation involving trigonometric identities		
P4 cho	oses and applies appropriate trigonometric and geometric techniques		
Outcome	Solutions	Marking Guidelines	
P4, PE2	(a) (i) Let $\angle OAC = x^\circ$	2 marks Correct solution	
	∠BAC = 60° (angle in equilateral ΔBAC) ∴ ∠BAO = $60^{\circ} - x^{\circ}$	1 mark Substantial progress towards correct solution	
	Also, $\angle OAP = 60^{\circ}$ (angle in equilateral $\triangle OAP$)	program to make to meet so and to so	
	$\therefore \angle PAC = 60^{\circ} - x^{\circ}$		
	=∠BAO		
DEA D4	(S) In Ale AOD and ADC	3 marks	
PE2, P4	(ii) In Δ 's AOB and APC AO = AP (equal sides in equilateral Δ OAP)	Correct solution. 2 marks	
	∠BAO = ∠PAC (shown above)	Substantially correct solution where reasoning is	
	$AB = AC$ (equal sides in equilateral ΔBAC)	incomplete or erroneous. 1 mark	
5 .	∴ ΔAOB = APC	Demonstrates some knowledge of how these two triangles may be proved to be congruent.	
	(iii) Now OD - CD (common dimension)	1 mark	
PE2, P4	(iii) Now, OB = CP (corresponding sides in congruent Δ 's)	Correct solution	
P3, P4	(b)	2	
15,14	$L.H.S = \frac{\cos A + \sin A}{\cos A - \sin A}$	3 marks Correct solution.	
		2 marks Substantially correct solution mostly correct use	
	$= \frac{\cos A + \sin A}{\cos A - \sin A} \times \frac{\cos A + \sin A}{\cos A + \sin A}$	of identities. 1 mark	
	$=\frac{\cos^2 A + 2\sin A \cos A + \sin^2 A}{\cos^2 A - \sin^2 A}$	Demonstrates some knowledge of trig. identities,	
		making some progress towards correct solution.	
	$=\frac{1+\sin 2A}{\cos 2A}$		
	$=\frac{1}{\cos 2A} + \frac{\sin 2A}{\cos 2A}$		
	$= \sec 2A + \tan 2A$		
	=R.H.S		
P3, P4	(c)		
13,17			
	$\frac{\tan\frac{\alpha}{2} + \tan\frac{3\alpha}{2}}{1 - \tan\frac{\alpha}{2}\tan\frac{3\alpha}{2}} = \tan\left(\frac{\alpha}{2} + \frac{3\alpha}{2}\right)$	I mark Correct answer	
	\mathcal{L} \mathcal{L}		
	$=\tan\left(\frac{4\alpha}{2}\right)$		
	$=\tan 2\alpha$,	
	CD CD		
P3, P4	(d) (i) $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$	1 mark Correct answer	
ma n	(ii) $\cos(\alpha + \beta) = \cos(\alpha \cos \beta - \sin(\alpha \sin \beta))$	ч,	
P3, P4		2 marks	
	$\frac{7\sqrt{3}}{2}\cos\alpha - \frac{7}{2}\sin\alpha = 7\left(\frac{\sqrt{3}}{2}\cos\alpha - \frac{1}{2}\sin\alpha\right)$	Correct solution, demonstrating knowledge of	
	$=7(\cos\alpha\cos30^{\circ}-\sin\alpha\sin30^{\circ})$	both trig. identities and exact trig. ratios. 1 mark	
	$=7\cos(\alpha+30^{\circ})$	Partially correct solution OR correct answer without reference to exact trig, ratios.	
	which is in the form $A\cos(\alpha + \beta)$ where $A = 7$ and $\beta = 30^{\circ}$.		
P3, P4	(iii) The minimum value of $\cos \theta$ is -1 when θ =180°.	2 marks	
	:. The minimum value of $A\cos(\alpha+\beta)$ is -A when $\alpha+\beta=180^{\circ}$.	Correct solution.	
	Since $\frac{7\sqrt{3}}{2}\cos\alpha - \frac{7}{2}\sin\alpha = 7\cos(\alpha + 30^{\circ})$, the minimum value of the expression	1 mark Partially correct solution.	
	is -7 when $\alpha + 30^\circ = 180^\circ$ ie. when $\alpha + 30^\circ = 180^\circ$.		
	The expression $\frac{7\sqrt{3}}{2}\cos\alpha - \frac{7}{2}\sin\alpha$ has a minimum value of -7 when $\alpha=150^\circ$.	-	
	<u>L</u>		