HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

2015

Preliminary HSC

Assessment Task 3

Examiners ~ S. Gutesa, P. Biczo, D. Crancher, J. Dillon, G. Huxley, G. Rawson

General Instructions

- Reading time 5 minutes.
- Working time $-1\frac{1}{2}$ hours
- Attempt **all** questions.
- Your *NAME* is to be written on the multiple choice answer sheet and **each** answer booklet for questions 8 14.
- Board approved calculators and Math Aids may be used.
- This examination must **NOT** be removed from the examination room

- Section A consists of seven (7) multiple choice questions worth 1 mark each. Fill in your answer on the multiple choice answer sheet provided.
- Section B requires all necessary working to be shown in every question. This section consists of seven (7) questions worth 8 marks each. Marks may not be awarded for careless or badly arranged work.
 Each question is to be started in a new answer booklet. Additional booklets are available if required.

Name : _____

Teacher : _____

SECTION A – 7 multiple choice questions (1 mark each)

Question 1

Which of the following statements is **not true** for all values of *x*?

 A
 If x < 0 and x < -4 then x < -4.

 B
 If x < 0 and x > -4 then -4 < x < 0.

 C
 If x > 0 and x > -4 then x > -4.

 D
 If x > 0 and x < -4 then x has no solution.

Question 2

In how many ways can 10 boys be arranged in a line if the first boy in the line is Peter and the last boy in the line is Ben?

A	80 640	В	40 320
С	3 628 800	D	1 814 400

Question 3

Which equation best describes this graph?

Question 4

Simplify $2\sin 3\theta \cos 3\theta$

A	$\sin 2\theta$	В	$\sin 6\theta$
С	$\sin 3\theta$	D	$2\sin 3\theta$

Question 5

The value of $\frac{2 \tan 25^\circ}{1 + \tan^2 25^\circ} =$			
Α	$\cos 12.5^{\circ}$	В	sin12.5°
С	$\cos 50^{\circ}$	D	sin 50°

Question 6

What is the gradient of the line which makes an angle of 45° with the line y = 3x - 1?

A	$\frac{1}{3}$	В	$\frac{1}{2}$
С	2	D	3

Question 7

A circle with centre O has a tangent TU, diameter QT, $\angle STU = 25^{\circ}$ and $\angle RPS = 22^{\circ}$.

What is the size of $\angle RTQ$?

Α	22°	В	25°
С	43°	D	47°

SECTION B – 7 questions (8 marks each)

Quest	Question 8 (8 marks) Use a SEPARATE writing booklet		
(a)	If eacl	n distinct arrangement of the letters of DELETED is called a word:	
	(i)	How many words are possible?	1
	(ii)	In how many of these words will the D's be separated?	1
(b)	In how 5 men with S	w many ways can a committee of 5 be selected from 10 people, consisting of and 5 women, if one man, Ken, refuses to work in the same committee Sue?	2
(c)	Kent v nine o	wants to celebrate his 18 th birthday by having a dinner party for himself and f his friends (five girls and four boys).	
	In hov	v many ways can the people be seated at a round table if:	
	(i)	the boys and girls are to alternate?	1
	(ii)	Kent is to be seated between two particular girls?	1
(d)	In hov child 1	v many ways can 8 different gifts be distributed to two children so that each receives an odd number of gifts?	2

(a) Solve for
$$x: |x+1| \le |x-3|$$
. 2

(b) Solve for
$$x: \frac{2}{x-1} \ge 3$$
. **3**

(c) If
$$a > 0$$
 and $b > 0$, show that $a^4 + b^4 \ge a^3b + ab^3$. **3**

(a) (i) Find the equations of the vertical and horizontal asymptotes of $y = \frac{x-2}{x-4}$ and

hence sketch the graph of
$$y = \frac{x-2}{x-4}$$
.

(ii) Using the graph from part (i) and further sketching, find the

values of x for which
$$\frac{x-2}{x-4} \le 3$$
.

(b) The graph of the function $f(x) = \frac{x^4 + 3x^2}{x^4 + 3}$ is given below.

Sketch the following graphs, clearly showing any *x* or *y* intercepts.

(i)
$$y = f(x) - 1$$
 1

(ii)
$$y = |f(x) - 1|$$
 1

(iii)
$$y = f(x-2)$$
, for $1 \le x \le 3$ 1

- (i) Calculate the exact area of the sector.
- (ii) What is the length of the arc *AB*, in exact form?

(b) Prove that
$$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$$
 for all values of θ . 2

(c) Two boats P and Q are observed from the top of a vertical tower CT of height 120 m. The base of the tower, C, is at sea level.

P is on a bearing of 305° from the tower and its angle of depression from *T* is 22° . *Q* is on a bearing of 025° from the tower and its angle of depression from *T* is 27° .

(i)	Show that $\angle PCQ = 80^{\circ}$.	1
(ii)	Calculate the distance between the two boats.	3

1

1

(a) Solve
$$\sin\left(\theta + \frac{\pi}{6}\right) = 2\sin\left(\theta - \frac{\pi}{6}\right)$$
 for $0 \le \theta \le 2\pi$ 3

(b)(i)Let
$$\cos x - \sin x = R \cos(x + \alpha)$$
.2Find positive values for R and for α .2(ii)Hence solve the equation $\cos x - \sin x = 1$, for $0^{\circ} \le \theta \le 360^{\circ}$
(Give the solutions correct to the nearest minute where necessary.)2(iii)Find the maximum value of $\cos x - \sin x$.1

(a) Line *TA* is a tangent to the circle at *A* and *TB* is a secant meeting the circle at *B* and *C*. Given that TA = 6, CB = 9 and TC = x, what is the value of *x*?

Find the value of *x*, giving reasons.

(b) The diagram shows a large semicircle with diameter AB and two smaller semicircles with diameters AC and BC, respectively, where C is a point on the diameter AB. The point M is the centre of the semicircle with diameter AC.

The line perpendicular to AB through C meets the largest semicircle at the point D. The points S and T are the intersections of the lines AD and BD with the smaller semicircles. The point X is the intersection of the lines CD and ST.

(i)	Explain why <i>CTDS</i> is a rectangle.	2
(ii)	Show that $\triangle MXS$ and $\triangle MXC$ are congruent.	3
(iii)	Show that the line ST is a tangent to the semicircle with diameter AC .	1

(a)	Find	the coordinates of the point P that divides the interval joining $A(1, 6)$ and	2
	B (5,	-2) internally in the ratio 3:1.	
(b)	(i)	Show that the curves $y = 3x^2$ and $y = 4x - x^2$ intersect at both the origin and the point (1, 3).	2
	(iii)	Find the acute angle, to the nearest minute, between the two curves at (1, 3).	2
(c)	Deter	mine the ratio in which the point $P(-3, 8)$ divides the interval joining $A(6, -4)$	
(0)	and E	$\mathcal{B}(0, 4).$	2

END OF EXAMINATION.

SECTION A

Multiple choice answer sheet.

- Detach this sheet and use it to mark the answers to the questions in Section A
- Mark the answer by shading the letter that matches with the correct answer
- If you make a mistake, draw a cross through the incorrect answer

Name:			
Teacher:			

Year 11	Mathematics Extension 1	Yearly Examination 2015
Question 8	Solutions and Marking Guidelines	
	Outcome Addressed in this Question	
PE3 solv geo	ves problems involving permutations and combinations, ine metry and parametric representations	qualities, polynomials, circle
Part	Solutions	Marking Guidelines
(a) (i)	Number of ways = $\frac{7!}{2!3!}$ = 420	Award 1 ~ correct answer
(ii)	Put the <i>D</i> 's together ~ this can be done in $\frac{6!}{3!} = 120$ ways. \therefore Number of ways with the <i>D</i> 's separated is 420 - 120 = 300 ways.	Award 1 ~ correct answer
(b)	Ken in, Sue out: $\begin{pmatrix} 8 \\ 4 \end{pmatrix}$ ways	Award 2 for correct solution. Award 1 for substantial
	Ken out, Sue III: $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ ways Ken out, Sue out: $\begin{pmatrix} 8 \\ 5 \end{pmatrix}$ ways \therefore Number of ways = 196	progress towards solution.
(c) (i)	Place one boy first, the rest can be arranged in $4! \times 5! = 2880$ ways	Award 1 ~ correct answer
(ii)	Place Kent and the two girls first.	Award 1 ~ correct answer
	This can be done in 2! ways.	
	The remainder can be arranged in 7! ways.	
	$\therefore \text{ Number of ways} = 2! \times 7! = 10080$	
(d)	A 1 3 5 7 B 7 5 3 1 Number of ways = $\binom{8}{1}\binom{7}{7} + \binom{8}{3}\binom{5}{5} + \binom{8}{5}\binom{3}{3} + \binom{8}{7}\binom{1}{1}$ = 128	Award 2 for correct solution Award 1 for substantial progress towards solution

9 Solutions and Marking Guidelines Outcomes Addressed in this Question es and applies appropriate algebraic techniques				
Outcomes Addressed in this Question				
es and applies appropriate algebraic techniques				
 P4 Chooses and applies appropriate algebraic techniques P5 Understands the concept of a function and the relationship between a function and its graph. PE3 Solves problems involving inequalities 				
Solutions	Marking Guidelines			
(a) $ x+1 \le x-3 $ $\therefore (x+1)^2 \le (x-3)^2$ (as both sides positive / zero, inequality remains true when squaring) $\therefore x^2 + 2x + 1 \le x^2 - 6x + 9$ $\therefore 8x \le 8$	2 marks : correct solution 1 mark : substantial progress towards correct solution			
$\therefore 8x \le 8$ $\therefore x \le 1.$ (b) $\frac{2}{x-1} \ge 3$ $2(x-1) \ge 3(x-1)^2$ (multiplying both sides by $(x-1)^2$) $2(x-1)-3(x-1)^2 \ge 0$ $(x-1)(2-3(x-1))\ge 0$ $(x-1)(5-3x)\ge 0$ From the graph, $1\le x\le \frac{5}{3}$. But $x \ne 1$, as denominator cannot be zero, so $1 < x \le \frac{5}{2}$.	3 marks : correct solution 2 mark : partially correct solution. 1 mark : substantial progress towards correct solution			
(c) Consider the difference $a^{4} + b^{4} - (a^{3}b + ab^{3}) = a^{4} - a^{3}b + b^{4} - ab^{3}$ $= a^{3}(a-b) + b^{3}(b-a)$ $= a^{3}(a-b) - b^{3}(a-b)$ $= (a-b)(a^{3} - b^{3})$ $= (a-b)(a^{-}b)(a^{2} + ab + b^{2})$ $= (a-b)^{2}(a^{2} + ab + b^{2})$ Since $a > 0$ and $b > 0$, then $a^{2} > 0$, $ab > 0$ and $b^{2} > 0$. $\therefore a^{2} + ab + b^{2} > 0$. Also, $(a-b)^{2} \ge 0$. Hence, $(a-b)^{2}(a^{2} + ab + b^{2}) \ge 0$, $a^{4} + b^{4} - (a^{3}b + ab^{3}) \ge 0$, Hence $a^{4} + b^{4} \ge a^{3}b + ab^{3}$.	3 marks : correct solution 2 mark : partially correct solution. 1 mark : substantial progress towards correct solution			
	problems involving inequalities Solutions a) $ x+1 \le x-3 $ $\therefore (x+1)^2 \le (x-3)^2$ (as both sides positive / zero, inequality remains true when squaring) $\therefore x^2 + 2x + 1 \le x^2 - 6x + 9$ $\therefore 8x \le 8$ $\therefore x \le 1$. b) $\frac{2}{x-1} \ge 3$ $2(x-1) \ge 3(x-1)^2$ (multiplying both sides by $(x-1)^2$) $2(x-1) - 3(x-1)^2 \ge 0$ $(x-1)(2-3(x-1)) \ge 0$ $(x-1)(5-3x) \ge 0$ From the graph, $1 \le x \le \frac{5}{3}$. But $x \ne 1$, as denominator cannot be zero, so $1 < x \le \frac{5}{3}$. c) Consider the difference $a^4 + b^4 - (a^3b + ab^3) = a^4 - a^3b + b^4 - ab^3$ $= a^3(a-b) + b^3(b-a)$ $= (a-b)(a^3-b^3)$ $= (a-b)(a^3-b^3)$ $= (a-b)(a^2+ab+b^2)$ Since $a > 0$ and $b > 0$, then $a^2 > 0$, $ab > 0$ and $b^2 > 0$. $\therefore a^2 + ab + b^2 > 0$. Hence, $(a-b)^2(a^2 + ab + b^2) \ge 0$, $a^4 + b^4 - (a^3b + ab^3) \ge 0$. Hence $a^4 + b^4 \ge a^3b + ab^3$.			

	Year 11 Mathematics Extension 1 Task 3, 2015		
Ouestion No. 11 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question		
P4 - chooses	s and applies appropriate arithmetic, algebraic, graphical, trigonometric a	and geometric techniques	
Outcome	Solutions	Marking Guidelines	
P4	(a) (i) $A = \frac{1}{2} (12^2) (\frac{2\pi}{3}) = 48\pi \text{ cm}^2$ (ii) $l = 12 (\frac{2\pi}{3}) = 8\pi \text{ cm}$	 (a)(i) 1 mark: Correct, exact answer. (ii) 1 mark: Correct, exact answer. 	
	(b) $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1}{\sec^2 \theta} - \frac{\tan^2 \theta}{\sec^2 \theta}$ $= \cos^2 \theta - \frac{\sin^2 \theta}{\cos^2 \theta} \times \cos^2 \theta$ $= \cos^2 \theta - \sin^2 \theta$ $= \cos 2\theta$	 (b) 2 marks: Correct solution. 1 mark: Relevant progress involving trig identities. 	
	(c) (i) $\angle PCQ = (360 - 305)^{\circ} + 25^{\circ} = 80^{\circ}$ (ii) P C C C C C	 (c) (i) 1 mark: Correct expression. (ii) 3 marks: Correct solution, including all steps. 2 marks: Significant progress. 1 mark: Some progress using 3D trigonometry. Lots of diagrams had T and C in 	
	P Q In $\triangle PCT$, $PC = \frac{120}{\tan 22^{\circ}}$ In $\triangle QCT$, $QC = \frac{120}{\tan 27^{\circ}}$ In $\triangle PCQ$, $PQ^2 = PC^2 + QC^2 - 2(PC)(QC)\cos 80^{\circ}$ $\Rightarrow PQ = 346$ m to the nearest m.	the same place, which made it impossible to see the 3D involved.	

Year 11 Mathematics Extension 1 Task 3 2015				
Question No. 12 Solutions and Marking Guidelines				
Outcomes Addressed in this Question				
P4 - choose	chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques			
Dutcome	Solutions	Marking Guidelines		
P4	(a) $\sin\left(\theta + \frac{\pi}{6}\right) = 2\sin\left(\theta - \frac{\pi}{6}\right)$ $\sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6} = 2\sin\theta\cos\frac{\pi}{6} - 2\cos\theta\sin\frac{\pi}{6}$ $\frac{3}{2}\cos\theta = \frac{\sqrt{3}}{2}\sin\theta$ $\tan\theta = \sqrt{3} (\cos\theta \neq 0)$ $\theta = \frac{\pi}{3}, \frac{4\pi}{3}$ Check that $\cos\theta = 0$ is not a possible solution.	 (a) 3 marks: Correct solution, that should include: correct expansion of trigonometric sum; correct value for tanθ; and both solutions in radians (Or equivalent) 2 marks 2 components of the above correct. 1 mark 1 component of above correct. 		
	(b) (i) $\cos x - \sin x = R \cos x \cos \alpha - R \sin x \sin \alpha$ $\rightarrow R = \sqrt{2}; \alpha = 45^{\circ}$ (ii) $\sqrt{2} \cos (x + 45^{\circ}) = 1 \qquad 45^{\circ} \le x + 45^{\circ} \le 405^{\circ}$ $\cos (x + 45^{\circ}) = \frac{1}{\sqrt{2}}$ $x + 45^{\circ} = 45^{\circ}, 315^{\circ}, 405^{\circ}$ $x = 0^{\circ}, 270^{\circ}, 360^{\circ}$	 (b) (i) 2 marks: both answers correct according to the sum format that is given in the question. 1 mark: 1 answer correct. (ii) 2 marks: Correct working and achieving all possible solutions. 1 mark: Considerable progress. 		
	(iii) $\cos(x+45^\circ)$ has a maximum value of 1. Therefore $\sqrt{2}\cos(x+45^\circ)$ has a maximum = $\sqrt{2}$	 (iii) 1 mark: Correct answer, dependent upon the value for <i>R</i> given in part (i). In (b) (i), many people had memorised a format that wasn't relevant to the cos of a sum. You need to be able to adapt to what the question is seeking. 		

Year 11 Ext 1 Mathematics		Task 3 2015
Question N		
	Outcomes Addressed in this Question	
PE2 - uses r	nulti-step deductive reasoning in a variety of contexts	
PE3 - <u>solves</u>	s problems involving permutations and combinations, inequalities, polynomials, circle geo	metry and parametric
representations		
Outcome	Solutions	Marking
		Guidelines
PE3	(a) $BT.TC = AT^2$ (product of intercepts of secant is equal to the square of intercept on tangent) $(x+9)x = 6^2$ $x^2 + 9x - 36 = 0$ (x-3)(x+12) = 0 x = 3 or -12	2 marks: correct solution, 1 mark: substantially correct solution
	$x = 3 \qquad (x \text{ is positive})$	
PE2	(b)(i) $\angle ADB = 90^{\circ}$ (angle in semicircle) $\angle ASC = 90^{\circ}$ (""") $\angle CTB = 90^{\circ}$ (""")	2 marks: correct solution, 1 mark: automatically
	\therefore CTDS is a rectangle (quadrilateral with 3 right angles)	correct <u>solution</u>
	(b)(ii) In $\Delta MXS \& \Delta MXC$ MX is common	<u>3 marks</u> : correct solution,
PE2	$XS = XC (\text{equal diagonals of rectangle bisect each othe}$ $MS = MC (\text{radii})$ $\therefore \Delta MXS \& \Delta MXC (SSS)$	r) 2 marks: substantially correct solution 1 mark: limited progress towards correct solution
PE2	(b)(iii) $\angle MSX = \angle MCS$ (matching angles in congruent trian = 90° $\therefore ST$ is tangent (perpendicular to radius)	gles) <u>1 mark:</u> correct solution,

	Year 11 Mathematics Extension 1 Task 3 2015		
Question No. 14 Solutions and Marking Guidelines			
P4 choose	Outcomes Addressed in this Question	nd geometric techniques	
Outcome	Solutions	Marking Guidelines	
	$A(1,6) B(5,-2) m: n = 3:1 P(x, y)$ $x = \frac{mx_2 + nx_1}{m+n} \qquad y = \frac{my_2 + ny_1}{m+n}$ $x = \frac{(3)(5) + (1)(1)}{(3) + (1)} \qquad y = \frac{(3)(-2) + (1)(6)}{(3) + (1)}$ $x = \frac{16}{2} \qquad y = \frac{0}{2}$	2 marks Correct solution. 1 mark Some progress towards correct solution.	
	$\begin{array}{c} 4 \\ x = 4 \\ \therefore P \text{ has coordinates } (4,0). \end{array}$		
	(b)(i) Point of intersection: (solve simultaneously or show full substitution of coordinates into both equations) $y = 3x^2(1)$ $y = 4x - x^2(2)$ $3x^2 = 4x - x^2$ $4x^2 - 4x = 0$ 4x(x-1) = 0	2 marks Correct solution. 1 mark Some progress towards correct solution.	
	Points of intersection at $x = 0$, $x = 1$. When $x = 0$, $y = 3(0)^2 = 0$ When $x = 1$, $y = 3(1)^2 = 3$ The two curves intersect at the origin and (1,3). (b)(ii) For $y = 3x^2$, $y' = 6x$		
	When $x = 1$, $y' = 6(1) = 6$ $\therefore m_1 = 6$ For $y = 4x - x^2$, $y' = 4 - 2x$ When $x = 1$, $y' = 4 - 2(1) = 2$ $\therefore m_2 = 2$	2 marks Correct solution. 1 mark Some progress towards correct solution.	
	$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $\tan \theta = \frac{6 - 2}{1 + (6)(2)}$ $\tan \theta = \frac{4}{13}$ $\therefore \theta = 17^{\circ}6' \text{ (to the nearest minute).}$		

(c) A(6,-4) B(0,4) P(-3,8)	2 marks Correct solution.
Let $m: n = k: 1$	1 mark Some progress towards correct solution.
$x = \frac{mx_2 + nx_1}{m + n}$	
(k)(0) + (1)(6)	
$-3 = {(k) + (1)}$	
$-3 = \frac{6}{k+1}$	
-3(k+1) = 6	
-3k - 3 = 6	
-3k = 9	
$\therefore k = -3$	
\therefore The ratio is $-3:1$ or	
external division in the ratio 3:1.	

Multiple choice:	
1. C	
2. B	
3. A	
4. B	
5. D	
6. B	
7. C	