HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

2015

Preliminary HSC

Assessment Task 3

Examiners ~ S. Gutesa, P. Biczo, D. Crancher, J. Dillon, G. Huxley, G. Rawson

General Instructions

- Reading time - 5 minutes.
- Working time $-1 \frac{1}{2}$ hours
- Attempt all questions.
- Your NAME is to be written on the multiple choice answer sheet and each answer booklet for questions 8-14.
- Board approved calculators and Math Aids may be used.
- This examination must NOT be removed from the examination room
- Section A consists of seven (7) multiple choice questions worth 1 mark each. Fill in your answer on the multiple choice answer sheet provided.
- Section B requires all necessary working to be shown in every question. This section consists of seven (7) questions worth 8 marks each. Marks may not be awarded for careless or badly arranged work.
Each question is to be started in a new answer booklet. Additional booklets are available if required.

Name : \qquad

Teacher : \qquad

SECTION A-7 multiple choice questions (1 mark each)

Question 1

Which of the following statements is not true for all values of x ?
A If $x<0$ and $x<-4$ then $x<-4$.
B If $x<0$ and $x>-4$ then $-4<x<0$.
C If $x>0$ and $x>-4$ then $x>-4$.
D If $x>0$ and $x<-4$ then x has no solution.

Question 2

In how many ways can 10 boys be arranged in a line if the first boy in the line is Peter and the last boy in the line is Ben?
A 80640
B $\quad 40320$
C 3628800
D $\quad 1814400$

Question 3

Which equation best describes this graph?

A $y=\frac{x}{x^{2}-4}$
B $y=\frac{x-2}{x^{2}-4}$
C $y=\frac{x+2}{x^{2}-4}$
D $\quad y=\frac{-x}{x^{2}-4}$

Question 4

Simplify $2 \sin 3 \theta \cos 3 \theta$
A $\quad \sin 2 \theta$
B $\quad \sin 6 \theta$
C $\quad \sin 3 \theta$
D $2 \sin 3 \theta$

Question 5

The value of $\frac{2 \tan 25^{\circ}}{1+\tan ^{2} 25^{\circ}}=$
A $\quad \cos 12 \cdot 5^{\circ}$
B $\quad \sin 12 \cdot 5^{\circ}$
C $\quad \cos 50^{\circ}$
D $\quad \sin 50^{\circ}$

Question 6

What is the gradient of the line which makes an angle of 45° with the line $y=3 x-1$?
A $\frac{1}{3}$
B $\quad \frac{1}{2}$
C 2
D 3

Question 7

A circle with centre O has a tangent $T U$, diameter $Q T, \angle S T U=25^{\circ}$ and $\angle R P S=22^{\circ}$.

What is the size of $\angle R T Q$?
A $\quad 22^{\circ}$
B $\quad 25^{\circ}$
C $\quad 43^{\circ}$
D $\quad 47^{\circ}$

SECTION B - 7 questions (8 marks each)

Question 8 (8 marks) Use a SEPARATE writing booklet
(a) If each distinct arrangement of the letters of DELETED is called a word:
(i) How many words are possible? 1
(ii) In how many of these words will the D's be separated?
(b) In how many ways can a committee of 5 be selected from 10 people, consisting of 5 men and 5 women, if one man, Ken, refuses to work in the same committee with Sue?
(c) Kent wants to celebrate his $18^{\text {th }}$ birthday by having a dinner party for himself and nine of his friends (five girls and four boys).

In how many ways can the people be seated at a round table if:
(i) the boys and girls are to alternate?
(ii) Kent is to be seated between two particular girls?
(d) In how many ways can 8 different gifts be distributed to two children so that each child receives an odd number of gifts?
(a) Solve for x : $|x+1| \leq|x-3|$.
(b) Solve for $x: \frac{2}{x-1} \geq 3$.
(c) If $a>0$ and $b>0$, show that $a^{4}+b^{4} \geq a^{3} b+a b^{3}$.
(a) (i) Find the equations of the vertical and horizontal asymptotes of $y=\frac{x-2}{x-4}$ and hence sketch the graph of $y=\frac{x-2}{x-4}$.
(ii) Using the graph from part (i) and further sketching, find the values of x for which $\frac{x-2}{x-4} \leq 3$.
(b) The graph of the function $f(x)=\frac{x^{4}+3 x^{2}}{x^{4}+3}$ is given below.

Sketch the following graphs, clearly showing any x or y intercepts.
(i) $y=f(x)-1$
(ii) $\quad y=|f(x)-1|$
(iii) $y=f(x-2)$, for $1 \leq x \leq 3$
(a) The circle sector shown below has radius 12 cm and $\angle A O B=\frac{2 \pi}{3}$.

(i) Calculate the exact area of the sector.
(ii) What is the length of the $\operatorname{arc} A B$, in exact form?
(b) Prove that $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$ for all values of θ.
(c) Two boats P and Q are observed from the top of a vertical tower $C T$ of height 120 m . The base of the tower, C, is at sea level.
P is on a bearing of 305° from the tower and its angle of depression from T is 22°.
Q is on a bearing of 025° from the tower and its angle of depression from T is 27°.
(i) Show that $\angle P C Q=80^{\circ}$.
(ii) Calculate the distance between the two boats.
(a) Solve $\sin \left(\theta+\frac{\pi}{6}\right)=2 \sin \left(\theta-\frac{\pi}{6}\right)$ for $0 \leq \theta \leq 2 \pi$
(b) (i) Let $\cos x-\sin x=R \cos (x+\alpha)$.

Find positive values for R and for α.
(ii) Hence solve the equation $\cos x-\sin x=1$, for $0^{\circ} \leq \theta \leq 360^{\circ}$
(Give the solutions correct to the nearest minute where necessary.)
(iii) Find the maximum value of $\cos x-\sin x$.
(a) Line $T A$ is a tangent to the circle at A and $T B$ is a secant meeting the circle at B and C. Given that $T A=6, C B=9$ and $T C=x$, what is the value of x ?

Find the value of x, giving reasons.
(b) The diagram shows a large semicircle with diameter $A B$ and two smaller semicircles with diameters $A C$ and $B C$, respectively, where C is a point on the diameter $A B$. The point M is the centre of the semicircle with diameter $A C$.

The line perpendicular to $A B$ through C meets the largest semicircle at the point D. The points S and T are the intersections of the lines $A D$ and $B D$ with the smaller semicircles. The point X is the intersection of the lines $C D$ and $S T$.

(i) Explain why $C T D S$ is a rectangle.
(ii) Show that $\triangle M X S$ and $\triangle M X C$ are congruent.
(iii) Show that the line $S T$ is a tangent to the semicircle with diameter $A C$.
(a) Find the coordinates of the point P that divides the interval joining $A(1,6)$ and $B(5,-2)$ internally in the ratio $3: 1$.
(b) (i) Show that the curves $y=3 x^{2}$ and $y=4 x-x^{2}$ intersect at both the origin and the point $(1,3)$.
(iii) Find the acute angle, to the nearest minute, between the two curves at $(1,3)$.
(c) Determine the ratio in which the point $P(-3,8)$ divides the interval joining $A(6,-4)$ and $B(0,4)$.

END OF EXAMINATION.

SECTION A

Multiple choice answer sheet.

- Detach this sheet and use it to mark the answers to the questions in Section A
- Mark the answer by shading the letter that matches with the correct answer
- If you make a mistake, draw a cross through the incorrect answer

Name:

Teacher:

Outcome Addressed in this Question
PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Part	Solutions	Marking Guidelines
(a) (i)	Number of ways $=\frac{7!}{2!3!}=420$	Award 1 ~ correct answer
(ii)	Put the D 's together \sim this can be done in $\frac{6!}{3!}=120$ ways. \therefore Number of ways with the D 's separated is $420-120=300$ ways.	Award 1 ~ correct answer
(b)	Ken in, Sue out: $\quad\binom{8}{4}$ ways	Award 2 for correct solution.
	Ken out, Sue in: $\quad\binom{8}{4}$ ways	Award 1 for substantial progress towards solution.
	Ken out, Sue out: $\quad\binom{8}{5}$ ways \therefore Number of ways $=196$	
(c) (i)	Place one boy first, the rest can be arranged in $4!\times 5!=2880$ ways	Award 1 ~ correct answer
(ii)	Place Kent and the two girls first.	Award 1 ~ correct answer
	This can be done in 2 ! ways.	
	The remainder can be arranged in 7 ! ways. \therefore Number of ways $=2!\times 7!=10080$	
(d)	$\begin{array}{lllll}\text { A } & 1 & 3 & 5 & 7\end{array}$	Award 2 for correct solution
	$\begin{array}{lllll} \text { B } & 7 & 5 & 3 & 1 \end{array}$	Award 1 for substantial progress towards solution
	$\begin{aligned} \text { Number of ways } & =\binom{8}{1}\binom{7}{7}+\binom{8}{3}\binom{5}{5}+\binom{8}{5}\binom{3}{3}+\binom{8}{7}\binom{1}{1} \\ & =128 \end{aligned}$	

Year 11 Mathematics Extension 1 Examination 2015			
Question No. 9 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
P4	Chooses and applies appropriate algebraic techniques		
P5	Understands the concept of a function and the relationship between a function and its graph.		
PE3	Solves problems involving inequalities		

	b)	
PE6,P4	(i)	
		1 mark for correct graph
PE6,P4	(ii)	
PE6	 (iii)	1 mark for correct graph
		1 mark for correct graph

Year 11 Ext 1 Mathematics	
Question No. 13	Solutions and Marking Guidelines
	Outcomes Addressed in this Question

Outcomes Addressed in this Question
PE2 - uses multi-step deductive reasoning in a variety of contexts
PE3 - solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations

Outcome	Solutions	Marking Guidelines
PE3	(a) $\quad B T \cdot T C=A T^{2}\binom{$ product of intercepts of secant is equal }{ to the square of intercept on tangent } $\begin{aligned} (x+9) x & =6^{2} \\ x^{2}+9 x-36 & =0 \\ (x-3)(x+12) & =0 \\ x & =3 \text { or }-12 \\ x & =3 \quad(x \text { is positive }) \end{aligned}$	2 marks: correct solution, 1 mark: substantially correct solution
PE2	(b)(i) $\begin{aligned} & \angle A D B=90^{\circ} \text { (angle in semicircle) } \\ & \angle A S C=90^{\circ}\left(\begin{array}{cc} \\ \angle C T B & =90^{\circ}\left("^{\circ}\right) \\ \angle . \end{array}\right) \end{aligned}$ $\therefore C T D S$ is a rectangle (quadrilateral with 3 right angles)	2 marks: correct solution, 1 mark: substantially correct solution
PE2	$\begin{aligned} & \text { (b)(ii) In } \triangle M X S \& \triangle M X C \\ & M X \text { is common } \\ & X S=X C \quad(\text { equal diagonals of rectangle bisect each other }) \\ & M S=M C \quad(\text { radii }) \\ & \therefore \triangle M X S \& \triangle M X C \quad(S S S) \end{aligned}$	3 marks: correct solution, 2 marks: substantially correct solution 1 mark: limited progress towards correct solution
PE2	(b)(iii) $\quad \angle M S X=\angle M C S$ (matching angles in congruent triangles) $=90^{\circ}$ $\therefore S T$ is tangent (perpendicular to radius)	1 mark: correct solution,

Year 11 Mathematics Extension 1 Task 32015		
Question No. $14 \quad$ Solutions and Marking Guidelines		
Outcomes Addressed in this Question		
P4 - chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques		
Outcome	Solutions	Marking Guidelines
	(a) $\begin{array}{ll} A(1,6) B(5,-2) m: n=3: 1 P(x, y) \\ x=\frac{m x_{2}+n x_{1}}{m+n} & y=\frac{m y_{2}+n y_{1}}{m+n} \\ x=\frac{(3)(5)+(1)(1)}{(3)+(1)} & y=\frac{(3)(-2)+(1)(6)}{(3)+(1)} \\ x=\frac{16}{4} & y=\frac{0}{4} \\ x=4 & y=0 \end{array}$ $\therefore P$ has coordinates $(4,0)$. (b)(i) Point of intersection: (solve simultaneously or show full substitution of coordinates into both equations) $\begin{equation*} y=3 x^{2} . \tag{1} \end{equation*}$ $\begin{equation*} y=4 x-x^{2} . . \tag{2} \end{equation*}$ $3 x^{2}=4 x-x^{2}$ $4 x^{2}-4 x=0$ $4 x(x-1)=0$ \therefore Points of intersection at $x=0, x=1$. When $x=0, y=3(0)^{2}=0$ When $x=1, y=3(1)^{2}=3$ \therefore The two curves intersect at the origin and $(1,3)$. (b)(ii) For $y=3 x^{2}, y^{\prime}=6 x$ When $x=1, y^{\prime}=6(1)=6$ $\therefore m_{1}=6$ For $y=4 x-x^{2}, y^{\prime}=4-2 x$ When $x=1, y^{\prime}=4-2(1)=2$ $\therefore m_{2}=2$ $\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$ $\tan \theta=\frac{6-2}{1+(6)(2)}$ $\tan \theta=\frac{4}{13}$ $\therefore \theta=17^{\circ} 6^{\prime}$ (to the nearest minute).	2 marks Correct solution. 1 mark Some progress towards correct solution. 2 marks Correct solution. 1 mark Some progress towards correct solution. 2 marks Correct solution. 1 mark Some progress towards correct solution.

Multiple choice:

1. C
2. B
3. A
4. B
5. D
6. B
7. C
