## QUESTION 1: START A NEW PAGE

## Marks

3 equations $\sqrt{3} x+y=2$ and $x-y=0$.
(b) How many ways can the ten letters of the word REGULATION be arranged in a line if the vowels $\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{U}$ occur:
(i) All together?
(ii) In the order $A, E, I, O, U$, throughout the arrangement? (not necessarily next to each other)

Answers may be left unsimplified.
(c) If $\sin A=\frac{2}{3}$ and $90^{\circ}<A<180^{\circ}$, find the exact value of $\tan 2 A$.
(d) A parabola has the equation $8 y=x^{2}+6 x+1$.
(i) Write the equation of the parabola in the form:
$(x-h)^{2}=4 a(y-k)$.
(ii) Draw a neat sketch of the parabola on a number plane showing the:
( $\alpha$ ) Vertex
( $\beta$ ) Focus
( $\gamma$ ) Directrix
(e) Write $\cos \theta+\sqrt{3} \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $0^{\circ}<\alpha<360^{\circ}$ and $R>0$.

## QUESTION 2: START A NEW PAGE

(a) Use the substitution $t=\tan \left[\frac{\theta}{2}\right]$ to solve to the nearest minute:

$$
2 \sin \theta-\cos \theta=1 \quad \text { for } 0^{\circ} \leq \theta \leq 360^{\circ} .
$$

(b) (i) Sketch the graph of $y=\frac{x-2}{x-4}$.
(ii) Hence or otherwise, solve $\frac{x-2}{x-4} \leq 2$.
(c) $X Y$ and $C Z$ are tangents at $B$ and $E$ respectively to circle centre $O$. Chord $A E$ is produced to meet $X Y$ at $D$. E is joined to centre $O$ and B .

(i) Copy the diagram and prove that $\angle E O B=\angle E C D$.
(ii) Show that $C$ is the centre of the circle through points $B, E$ and $D$.

## QUESTION 3: START A NEW PAGE

(a) If $\alpha, \beta$ and $\gamma$ are the roots of the equation $2 x^{3}-3 x^{2}-4 x+1=0$ find the value of:
(i) $\alpha+\beta+\gamma$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(b) Find the general solution in degrees to $\sin 2 \theta-\cos \theta=0$.
(c) In an activity during a sport class, students are to run from position $A$ to the fence surrounding a circular field of radius 60 m and return to position $B$. Jason, who is a top Maths student, decides to calculate which direction will give him the shortest path.

(i) If he runs from $A$ to $P$ then to $B$ show that the total path length $D \mathrm{~m}$ is given by:

$$
\begin{gathered}
D=30 \sqrt{5+4 \cos \theta}+20 \sqrt{10-6 \cos \theta} \\
\text { where } \angle P O B=\theta \text { and } 0 \leq \theta \leq \pi
\end{gathered}
$$

(ii) Find the value of $\theta$ which will give Jason the shortest path. Justify your answer.
(d) 16 people are invited to a party. They are to sit around 2 circular tables, with 8 people at each table.
(i) How many different ways can 2 groups of 8 be chosen from the 24 people?
(ii) Find the number of different seating arrangements that are possible at the party?

Answers may be left unsimplified.

## QUESTION 4: START A NEW PAGE

(a) When the polynomial $P(x)$ is divided by $x-1$, the remainder is 2 , and when divided by $x-2$ the remainder is 1 . What is the remainder when $P(x)$ is divided by $(x-1)(x-2)$ ?
(b) Find the Cartesian equation of the curve whose parametric equations are:

$$
x=\cos 2 t \text { and } y=\cos t, 0 \leq \mathrm{t} \leq 2 \pi .
$$

(c)
(i) Show that the exact value of $\sin 15^{\circ}$ is $\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
(ii) If $W X Y Z$ is a sector of a circle of radius 20 cm , find the exact area of the segment shaded in the diagram below.

(d) A frustrum of a right square pyramid has a base of side length 5 m , and a square top of side length 3 m . Its vertical height is 4 m .

(i) Show that the length of the slant edge $D H$ is $3 \sqrt{2} \mathrm{~m}$.
(ii) Calculate the size of $\angle G J E$, the angle between the sloping faces, to the nearest minute.

END OF EXAMINATION

YEAR II PRELIM ANSWERS
Extension I 2005

$$
\begin{align*}
& \text { (a) } \left.\begin{array}{l}
\sqrt{3} x+y=2 \quad m=-\sqrt{3} \\
x-y=0 \quad m=1
\end{array} \right\rvert\, \\
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \quad=\left|\frac{-\sqrt{3}-1}{1-(\sqrt{3})(1)}\right| \\
& \theta=75^{\circ} \text { (1) } \tag{1}
\end{align*}
$$

$$
\theta=75^{\circ}
$$

 6 elements arranged 6. Waus $A, E, I, O, U$ can be arranged 5! ways
$\therefore$ total arrangements

$$
=6!\times 5!(86400)
$$

ways
(ii) 10 elements arranged 10! ways
For each arrangement of vowels only one has them in the correct order
ie 1 out of 5 !
$\therefore$ no of ways with oowels in $A E I O$ order $=10$ ! $=30240$
$\sin A=2 / 3 \quad 90^{\circ}<A<180^{\circ}$ $\therefore$ 2nd quadrant angle $\therefore \tan A<0 \quad \tan A=-\frac{2}{\sqrt{5}}$ $\frac{2 \lambda^{3} A^{A}}{-\sqrt{5}}$
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
(1) $=\frac{2(-2 / \sqrt{5})}{1-\left(\frac{-2}{\sqrt{5}}\right)^{2}}=\frac{-4 / \sqrt{5}}{1-\frac{4}{5}}$ (1) $=-4 \sqrt{5}$
(d) $\quad \begin{array}{r}8 y=x^{2}+6 x+1 \\ \therefore x^{2}+6 x=8 y-1 \\ x^{2}+6 x+9\end{array}$

$$
x^{2}+6 x+9=8 y-1+9 a
$$

$$
(x+3)^{2}=8(y+1)
$$

$$
(x+3)^{2}=4 \times 2(y+1) \text { (1) }
$$

vertex $=(-3,-1)$

- focal length $=2$ uncts
$\therefore$ focus $=(-3,1)$
directrici $y=-3$

$\cos \theta+\sqrt{3} \operatorname{sen} \theta$
$=2\left[\frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta\right]$
$=R[\cos \theta \cos \alpha-\sin \theta \sin \alpha]$ $R^{2}=1^{2}+(\sqrt{3})^{2}=4$
$\therefore R=2 \quad(a s R>0)$
$\cos \alpha=\frac{1}{2} \quad \sin \alpha=-\frac{\sqrt{3}}{2}$
$\therefore \alpha$ is a 4 th quad angle
$\therefore \alpha=360^{\circ}-60^{\circ}$

$$
=300^{\circ}
$$

$\therefore$ Answer is
$2 \cos \left(\theta+300^{\circ}\right)$
(1)
(1)
check $180^{\circ}=\theta$

$$
\text { LHS }=2 \times \sin 180^{\circ}-\cos 180^{\circ}
$$

$$
=-(-1)=1
$$

$$
=R H S
$$

$$
180^{\circ} \text { is a solution }
$$

$$
\therefore \theta=63^{\circ} 8 \text { or } 180^{\circ}
$$


asymptotes (1)
instercepts
to $\frac{x-2}{x-4} \leqslant 2$
consider $\frac{x-2}{x-4}=$

$$
x-2=2 x-8
$$

$$
6=x
$$

Frew graph
$x \leqslant 4$ or $x \geqslant 6$
${ }^{x} \times$

$$
\begin{aligned}
& \text { (a) } t=\tan \left(\frac{1}{2} 0\right) \\
& \therefore \sin \theta=\frac{2 t}{1+t^{2}} \quad \cos \theta=\frac{1-t^{2}}{1+t^{2}} \\
& \therefore 2 \sin \theta-\cos \theta=1 \text { (1) } \\
& 2\left(\frac{2 t}{1+t^{2}}\right)-\frac{\left(1-t^{2}\right)}{\left(1+t^{2}\right)}= \\
& \therefore 4 t-1+t^{2}=1+t^{2} \\
& 4 t=2 \\
& t=\frac{1}{2} \\
& \tan \frac{1}{2} \theta=\frac{1}{2} \\
& \therefore \frac{1}{2} \theta=26.56505118 \\
& \therefore \theta=53.13010236^{\circ} \\
& \theta=53^{\circ} 8^{\prime} \text { (neanik }
\end{aligned}
$$


(1) To prave $\angle E O B=\angle E C D$
(1) $\angle O B C=90^{\circ}$ (and and incuran tampone $\angle O E L=90^{\circ}$ (similarly at $E$ )
(1). OECD is a cycuc quadividesul (oppositic arglis of OECD sumto isoi)
(1). $\angle E O B=\angle E C O$ (exterwir angle of $O E C D$ equals apposithe mheren
(ii) To show $c$ is centre of Circle through B, Eand D.
$C E=C B$ (interepts of tangents from externadpant $C$ ane eqyad)
 is $40^{\circ}$ )
$\angle C E D+\angle B E C+\angle A E B=180^{\circ}$ (angli siom of strought-angleat $F$ is iso.
$\angle E E D+\angle B E C=90^{\circ}$
$\angle B E C=\angle D A B$ (anylinialtenud seiment is esivid to Menqu cutwer n. seigment "spimal tom (and
(1) ${ }^{\text {tangent }}, \angle C E D+B A B=90^{\circ}$
$\angle A B D=90^{\circ}$ (angle between radub aned tangect $=96^{\circ}$ at $B$ )
$\angle A B D+\angle D A B+\angle A D B=180^{\circ}$
(angh seint of $\triangle A B D$ is $180^{\circ}$ )
(1) : $\angle D A B+\angle A D B=90^{\circ}$
$\angle C E D=\angle A D B$
(1). ${ }^{\circ} E=C D$ (tyimal sudes Angles in $A$ (b) 0 ) tyued
( $B$
$C E=C D=C B$

PE, D


4

3 (d) ${ }^{(2)} 2$ groups of 8

$$
\begin{aligned}
& \text { Rem (grovps porthequal) } \\
& \text { (grous }{ }^{16 C_{5}} \\
& \frac{C_{8} \times}{2!}=\frac{12870}{2} \\
& =6435
\end{aligned}
$$

## (u)

## Number of seating

 arransements at each table is 7 !Total no at 2 tables is

$$
\frac{{ }^{16} c_{8} \times{ }^{8} c_{8}}{2!} \times(7!)^{2}
$$

$$
\left.\begin{array}{rl}
\text { (a) } P(x)= & (x-1)(x-2) Q(x) \\
& +a x+b \\
P(1)=2 \\
P(2)=1 \\
2=a+b \\
1=2 a+b
\end{array}\right\}(1)
$$

$\therefore$ Remander is (i) $-x+3$
(b) $\begin{aligned} x= & \cos 2 t \\ -1 & \leq x \leq\end{aligned}$
$y=\cos t$
$-1 \leq y \leq 1$
$x=2 \cos ^{2} t-1$ (1)
or $\left.=2 y^{2}-1\right\}$ (1)
or $2 y^{2}=x+1$
$\left.\begin{array}{r}-1 \leq x \leq 1 \\ -1 \leq y \leq 1\end{array}\right\}(1)$

```
(c) \(\begin{aligned} & \sin \left(45^{\circ}-30^{\circ}\right)=\sin 15 \\ = & \sin 45 \cos 30^{\circ}-\cos 45^{\circ} \sin 33^{\circ}\end{aligned}\)
    \(=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 3^{\circ}\)
\(=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2}\) (1)
    \(=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\)
    \(=\frac{\sqrt{3}-1}{2 \sqrt{2}}\)
\[
\text { (c) } \begin{align*}
& \sin \left(45^{\circ}-30^{\circ}\right)=\sin 15 \\
= & \sin 45 \cos 30^{\circ}-\cos 45^{\circ} \sin 30 \\
= & \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
= & \frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}  \tag{1}\\
= & \frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{align*}
\]
```

    Area of sigment
        \(A=\frac{1}{2} r^{2}(\theta-\sin \theta)\)
        \(=\frac{1}{2} \times 20^{2}(8 \times 5=-3 \ln 15)\)
        \(=200\left(\frac{\pi}{12}^{-180}\left(\frac{\sqrt{3}-i}{2 \sqrt{2}}\right)\right)\) (1)
        \(\mathrm{cm}^{2}\)
    (d)
    Area of sigment
$\left.=\frac{1}{2} \times 20^{2}(2) \times \pi-\sin 15\right)$
$=200\left(\frac{\pi}{12}{ }^{\frac{180}{2 \sqrt{2}}}-\left(\frac{\sqrt{3}-i}{2 \sqrt{2}}\right)\right.$ (1)
$\mathrm{cm}^{2}$
(d)

$-\times D^{2}=\sqrt{4^{2}+1^{2}}$

(1)
$1+x=1 \mathrm{~cm}$
$D H=\sqrt{17+1}$


Yearell Prelim ANSWERS

| Extension I 2005 |  |
| ---: | :--- |
| $\left.1 . \begin{array}{rl}\text {（a）} \sqrt{3} x+y=2 \quad m=-\sqrt{3} \\ x-y=0 \quad m=1\end{array}\right\}$（1） |  |
| $\tan \theta$ | $=\left\|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right\|$ |
|  | $=\left\|\frac{-\sqrt{3}-1}{1-(\sqrt{3})(1)}\right\| \quad$（1） |
| $\theta$ | $=75^{\circ}$ |

（b）（6）AEIOU 回 回回囲 6 elements arranged 6．ways $A, E, I, O, l i$ can be arranged 5 ！ways
$\therefore$ totalarrangements

$$
=6!\times 5!(86400)
$$

（ii） 10 elements arranged
$10!$ ways
For each arrangement of vowels only one has them in the correct order ie 1 out of 5 ！ $\therefore$ no of ways wrth oowels $\begin{aligned} \text { in } A E \text { EOU order }= & =10! \\ & =30240\end{aligned}$
$\sin A=2 / 3 \quad 90^{\circ}<A<180^{\circ}$ $\therefore$ 2nd quadrant angle． $\therefore \tan A<0 \quad \tan A=-\frac{2}{\sqrt{5}}$ $\frac{\left.2 l^{3}\right|^{A}}{-\sqrt{5} \mid}$
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
（1）$=\frac{2(-2 / \sqrt{5})}{1-\left(\frac{-2}{\sqrt{5}}\right)^{2}}=\frac{-4 / \sqrt{5}}{1-\frac{4}{5}}$ （1）$=-4 \sqrt{5}$
 $x^{2}+6 x+9=8 y-1+9 a$ $(x+3)^{2}=18(y+1)$ $(x+3)^{2}=4 \times 2(y+1)$（1）
vertex $=(-3,-1)$ ．
$\therefore$ focal length $=2$ units $\therefore$ Poens $=(-3,1)$ dinectuix $y=-3$
（e）

$\cos \theta+\sqrt{3} \sin \theta$
$=2\left[\frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta\right]$
$=R[\cos \theta \cos \alpha-\sin \theta \sin \alpha$
$R^{2}=1^{2}+(\sqrt{3})^{2}=4$
$\therefore R=2 \quad(a s R>0)$
$\cos \alpha=\frac{1}{2} \quad \sin \alpha=-\frac{\sqrt{3}}{2}$.
$\therefore \alpha$ is a $4^{\text {th }}$ quad angle
$\therefore \alpha=360^{\circ}-60^{\circ}$

$$
=300^{\circ}
$$

$\therefore$ Answer is
$2 \cos \left(\theta+300^{\circ}\right)$
（1）
（1）

$2 |$| （a）$\quad t=\tan \left(\frac{1}{2} \theta\right)$ |
| :--- |
| $\therefore \sin \theta=\frac{2 t}{1+t^{2}} \cos \theta=\frac{1-t^{2}}{1+t^{2}}$ |

$2 \sin \theta-\cos \theta=1$

$$
2\left(\frac{2 t}{1+t^{2}}\right)-\frac{\left.(1-1)^{2}\right)}{\left(1+t^{2}\right)}=
$$

$4 t-1+t^{2}=1+t^{2}$ $4 t=2$
$t=\frac{1}{2}$
$\tan \frac{1}{2} \theta=\frac{1}{2}$
$\therefore \frac{1}{2} \theta=26.56505118$
$\therefore \theta=53.13010236^{\circ}$
$\theta=53^{\circ} 8^{\prime}$（menturk）

## check $180^{\circ}=\theta$

$$
\text { LHS }=2 \times \sin 180^{\circ}-\cos 180^{\circ}
$$

$$
=-(-1)=1
$$

$$
=R H S
$$

$180^{\circ}$ is a solution
$\theta=63^{\circ} 8$ or $180^{\circ}$

asymptotes $(1)$
intercepts
to
Solve $\frac{x-2}{x-4} \leqslant 2$
consider $\frac{x-2}{x-4}=2$ ．

$$
\begin{aligned}
x-2 & =2 x-8 \\
6 & =x
\end{aligned}
$$

$$
\varepsilon=x
$$

Frote grach
$x<4$ or $x \geqslant 6$（1）

（b）To prove $\angle E O B=\angle E C D$
 $\angle O E C=90^{\circ}$（similanily at $E$ ）
（1）．OECD is a cyche gquaditukial （Oprosite anglis of OECD sumtoric．） 1）．$\angle E O B=\angle E C O$（exterurangle of OECD eiguals appasite interver
（ii）To show $c$ is centre of Curde through B，Eand D．
$\left.0_{C E}\right)^{2}=C B$（intereptes of tangents from． externalpant $c$ are equad）
 is if $0^{\circ}$ ）
$\angle C E D+\angle B E C+\angle A E B=180^{\circ}$（anglisiom of strught angleat $E$ is iso．

$$
\angle C E D+\angle B E C=90^{\circ}
$$

segment is wiwnel to anqut cwtween
tongent thid chatid utE）
（1）$\therefore \angle C E D+D A B=90^{\circ}$
$\angle A B D=40^{\circ}$（angle berwewn
radusawn tanjert $=90^{\circ}$ at $B$ ）
$\angle A B D+\angle A H B+\angle A D B=180^{\circ}$
（anglisicmof $\triangle A B D$ 1s $180^{\circ}$ ）
（1）：$\angle D A B+\angle A D B=C^{\circ}$
（1）$\therefore \angle C E D=\angle A D B$
 angles in $A E(D)$
$C E=C D=C B$
C＂centri of curcie through
BE，D


## FILE COPY

