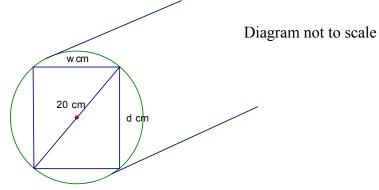

YEAR 11 Extension 1 – Preliminary Examination 2006

Question 1 (15 Marks)				
(a)	Factorise completely: $3x^3 + 375$	2		
(b)	Differentiate with respect to x: (i) $y = 1 - \frac{3}{\pi}$	1		
	(ii) $y = \frac{e^{2x} - e^x}{e^x}$	2		
	(iii) $y = \log_e(\cos 2x)$	2		
(c)	Find the coordinates of the point dividing the interval from $(-7, 0)$ to $(3, 5)$ in the ratio 3:2, externally.	2		
(d)	Find the size of the acute angled formed by the straight lines: 2x - y + 3 = 0 and $x - 3y - 2 = 0$.	3		
(e)	(e) Solve $\tan\theta = \sin 2\theta$ for $0 \le \theta \le 360^{\circ}$.			
Question 2 (15 Marks) Start a new page				
Question	2 (15 Marks) Start a new page	Marks		
Question (a)	2 (15 Marks) Start a new page The equation $(x - 3y + 5) + k(x + 2y) = 0$ represents the family of straight lines passing through the point of intersection of point <i>P</i> .	Marks		
	The equation $(x - 3y + 5) + k(x + 2y) = 0$ represents the family of straight	Marks 2		
	 The equation (x - 3y + 5) + k(x + 2y) = 0 represents the family of straight lines passing through the point of intersection of point <i>P</i>. (i) For what values of k is one of the lines in the family parallel 			
	 The equation (x - 3y + 5) + k(x + 2y) = 0 represents the family of straight lines passing through the point of intersection of point <i>P</i>. (i) For what values of <i>k</i> is one of the lines in the family parallel to the straight line x + y - 2 = 0? (ii) For what values of <i>k</i> does one of the lines in the family pass 	2		
	 The equation (x - 3y + 5) + k(x + 2y) = 0 represents the family of straight lines passing through the point of intersection of point <i>P</i>. (i) For what values of <i>k</i> is one of the lines in the family parallel to the straight line x + y - 2 = 0? (ii) For what values of <i>k</i> does one of the lines in the family pass through the centre of the circle x² + y² - 10y + 21 = 0? 	2 2		
(a)	 The equation (x - 3y + 5) + k(x + 2y) = 0 represents the family of straight lines passing through the point of intersection of point <i>P</i>. (i) For what values of <i>k</i> is one of the lines in the family parallel to the straight line x + y - 2 = 0? (ii) For what values of <i>k</i> does one of the lines in the family pass through the centre of the circle x² + y² - 10y + 21 = 0? (iii) Find the coordinates of <i>P</i>. The polynomial P(x) = x⁴ - 3x³ + ax² + bx - 6 has a remainder of 8 when divided by (x + 1). If (x - 3) is a factor of P(x), find the values 	2 2 2		

Question 4 (15 Marks) Start a new page


(a) A(h, k + a) is a fixed point on the Cartesian Number plane and a, h, k are constants. P(x, y) is a variable point on the same plane and L is a fixed line on the same plane with equation y = k - a.

(i) l	Find the perpendicular	distance from the point <i>P</i> to the line <i>L</i> .	1
-------	------------------------	---	---

(ii) Prove that the locus of P is given by $(x - h)^2 = 4a(y - k)$ 3

if distance PA is equal to the perpendicular distance found in part (i).

- (iii) If h = 1, k = -2 and |a| = 3; draw a neat sketch of the locus, clearly 3 showing the vertex and focus.
- (b) A rectangular beam of width w cm and depth d cm is cut from a cylindrical wooden log as shown.

The diameter of the cross – section of the log is 20 cm. The strength S of the beam is proportional to the product of its width and the square of its depth.

(i) Show that $S = k w(400 - w^2)$.

2

- (ii) What numerical dimensions will give a beam of maximum strength? 3 Justify your answer.
- (iii) A square beam with diagonal 20 cm could have been cut from the Same log. Show that the rectangular beam of maximum strength is more than 60% stronger than this square beam.

~End of exam ~

Marks