(a)

(b) Evaluate
$$\lim_{x \to 0} \left(\frac{3x}{\sin 5x} \right)$$
. 2

(c) Find the acute angle formed between the two lines: y = 2 and $y = x\sqrt{3} - 2$. 2

(d) Solve
$$2\cos\theta + \sqrt{3} = 0$$
 for $0 \le \theta \le 2\pi$.

(e) Express $2\sin x + \cos x$ in the form $R\sin(x+\alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Sketch $y = 2 - e^{-x}$, showing all essential detail.

(f) Find the number of ways in which the letters of the word **EPSILON** can be

(g) (i) Show that
$$x-2$$
 is a factor of the polynomial expression: $x^3 - 3x^2 + 4$. 1

(ii) Hence express
$$x^3 - 3x^2 + 4$$
 as a product of three linear factors. 1

Question 2. [START A NEW PAGE]

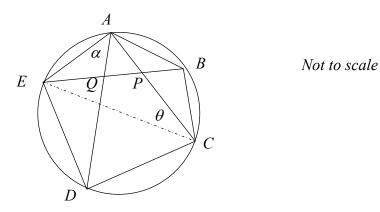
(a) Show that
$$\tan 2x + \tan x = \frac{\sin 3x}{\cos 2x \cos x}$$
.

(b) Find
$$\frac{dy}{dx}$$
 in the following:
(i) $y = \sec(x^3)$. 1

(ii)
$$y = 10x - x \ln x$$
. 2

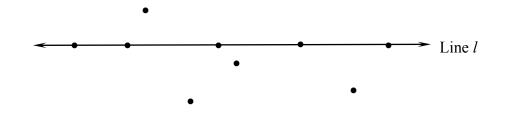
(c) Given that
$$\cos 75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 and using the double angle results, 2
or otherwise, find the exact value of $\cos\left(37\frac{1}{2}^\circ\right)$.

Question 2 continued over the page


Marks

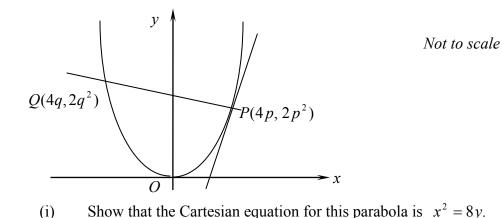
2

2


Question **2** continued:

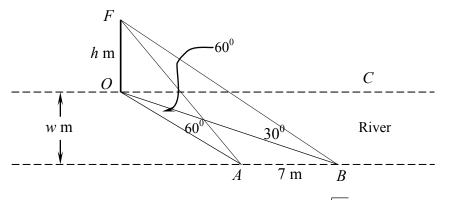
(c) ABCDE is a pentagon inscribed in a circle, where AB = AE, BE meets AC and AD at P and Q respectively.

Given $\angle ACE = \theta$ and $\angle DAE = \alpha$,


- (i) Copy the diagram onto your writing paper and 2 show that $\angle AEB = \theta$, give reasons.
- (ii) Hence, or otherwise show that *CPQD* is a cyclic quadrilateral. **3**
- (d) The diagram shows 9 points lying in the plane, 5 of which lie on the line *l*. The remaining 4 points do not lie on line *l* and no other set of 3 points is collinear.

- (i) How many sets of 3 points can be chosen from the 5 points lying on *l*? 1
- (ii) How many distinct triangles can be formed using any three of the **2** 9 points as vertices?

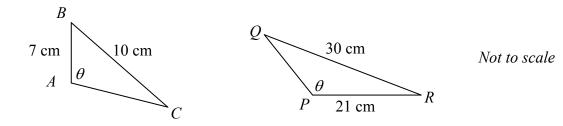
Question 3. [START A NEW PAGE]


(a) Point $P(4p, 2p^2)$ lies on the parabola shown. The normal at P intersects the parabola at the point $Q(4q, 2q^2)$.

1

- (ii) Show that the equation of the normal at *P* is given by: $x + py = 2p^3 + 4p.$ 3
- (iii) Hence, or otherwise, show that $p+q=-\frac{2}{p}$, where $p \neq 0$. 2
- (iv) Find the coordinates of the midpoint M of chord PQ. 1
- (v) Hence find the locus of M as points P and Q move on the parabola. **3**
- (b) A river has level parallel riverbanks *OC* and *AB* of width *w* metres. *OF* is a vertical flagpole of height *h* metres which stands with its base *O* on the edge of riverbank *OC*. Positions *A* and *B* are two points on the other riverbank such that AB = 7 metres and $\angle AOB = 60^{\circ}$. The angle of elevation to the ten of the flagpole from *A* and *B* are 60° and 20

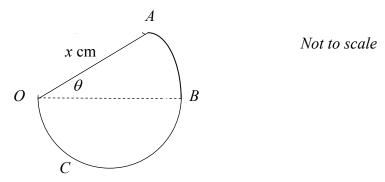
The angle of elevation to the top of the flagpole from A and B are 60^0 and 30^0 respectively, as shown below.


(i) Show that the height of the flagpole is $\sqrt{21}$ metres.

3

(ii) By finding the area of $\triangle AOB$, or otherwise, find the width of the river. 2

Question 4. [START A NEW PAGE]


- (a) For what value(s) of k is the line y = 12x + k a tangent to $y = x^3$.
- (b) Given the triangles ABC and PQR where $\angle BAC = \angle RPQ = \theta$ and $\theta \ge 90^{\circ}$.

Copy the diagrams onto your writing paper and using the Sine rule, prove that $\Delta ABC \parallel \mid \Delta PRQ$.

3

(c) A cam for a motor is made with a cross-section as shown below.

The cam's cross-section consists of a semi-circle *OCB* and the sector of a circle *OAB* of centre *O* with a radius of *x* cm and with an included angle $BOA = \theta$.

- (i) Determine the formula for the perimeter P cm of the cam *OABC*, 2 in terms of x and θ .
- (ii) Given that the area of the cross-section of the cam is 1 cm^2 , show that **2**

$$x^2 = \frac{8}{\pi + 4\theta}.$$

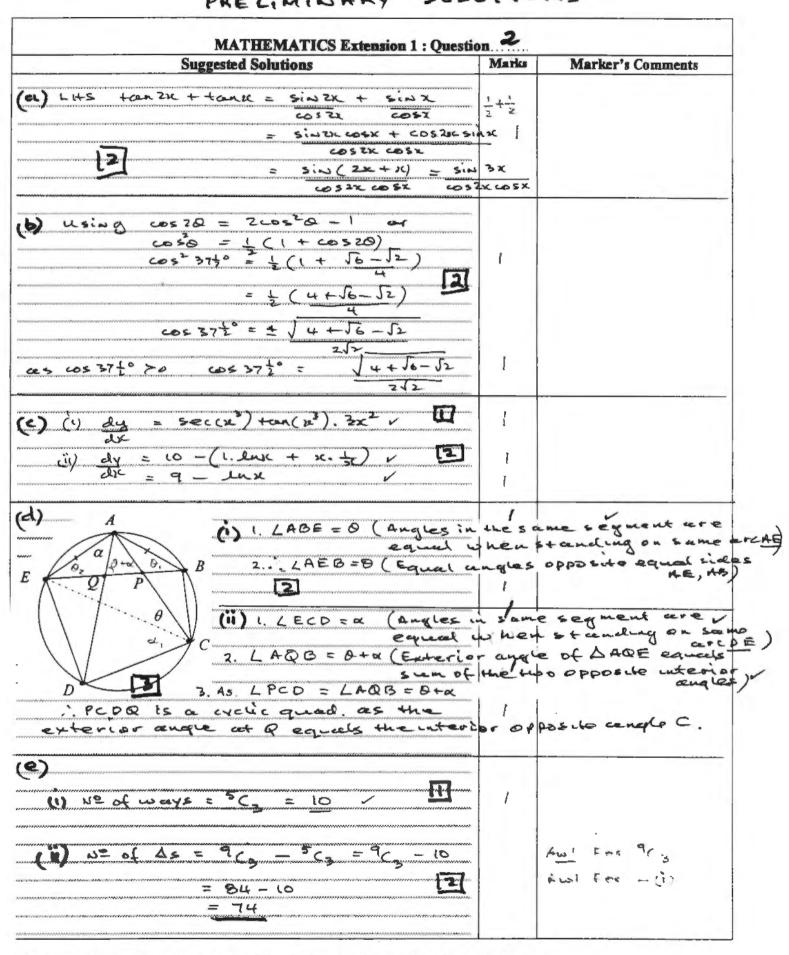
(iii) Hence, or otherwise, show that the perimeter *P* is given by: 1

$$P = \frac{(\pi + 2 + 2\theta)\sqrt{2}}{\sqrt{\pi + 4\theta}}.$$

(iv) Determine the value of θ for least perimeter of the cam, (answer correct to the nearest minute).

4

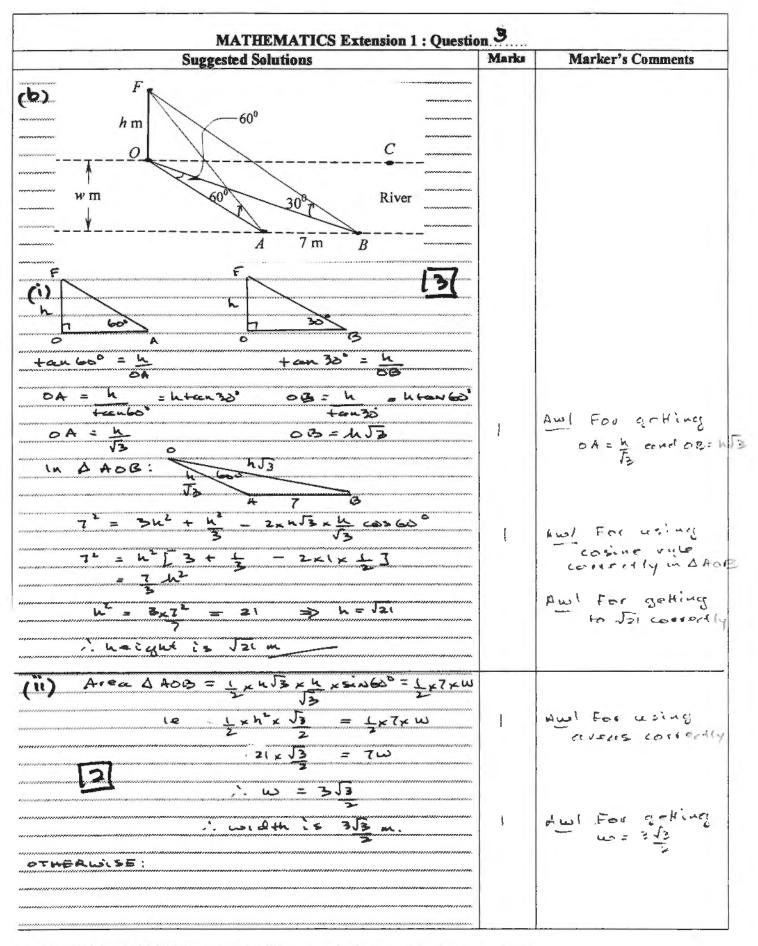
THE END 😳 😁 😣


4

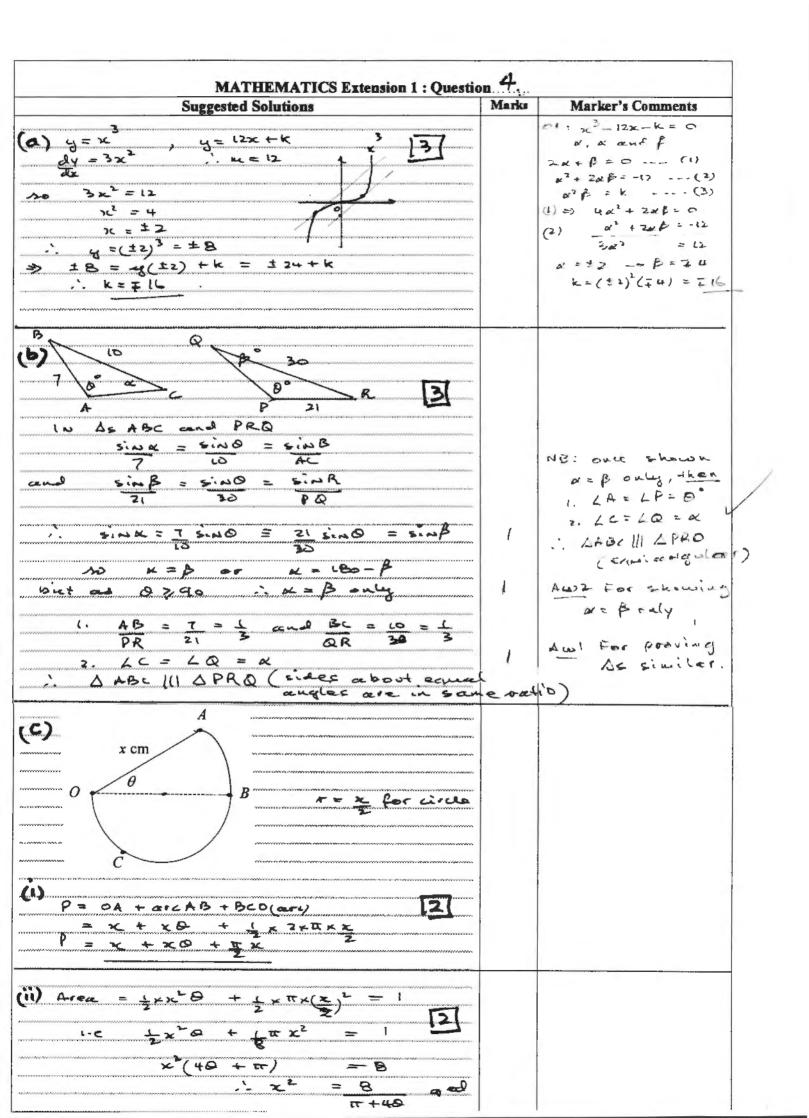
3

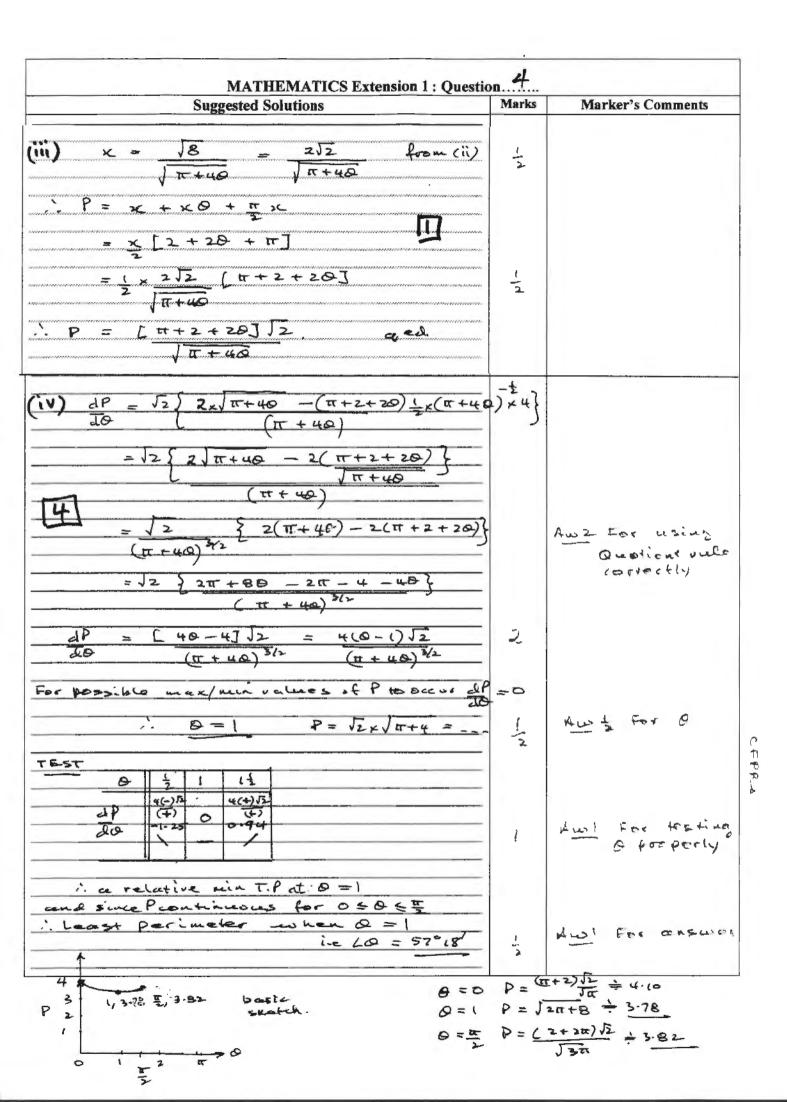
YEARII MATH EXTI, TS, 2007 PAELIMINARY SOLUTIONS

MATHEMATICS Extension 1 : Quest Suggested Solutions	Marks	Marker's Comments
¥.		
s) ·		
2 <u>V=2 H.A.</u>	SH4	
h2 1	y y wild	
7. 2	2 W-10	t
	1 sheet	e
) Lim 32 = Lim 3x(5x)		
		Aw For rigaris
$5 \times 5 \times$		
5 <u>sin(57</u>)		And Fra chamana
= <u>3</u> × 1 = <u>3</u>		Aw) For showing and then 3 5
		5
$METHODI = 2 m_1 = 0$	1	
y= xJ3-2 m1= 13		Aul For goding to Long = 13
$tan 0 = 10 - \sqrt{3} = \sqrt{3}$	12	tern 0 = 13
L+DxJ31 1		
~	Γ.	Awl For 60°
LO = 60°	1	
N		
$\frac{1}{\cos\theta} = -\sqrt{3}$		
$LQ = \pi - \pi \text{ or } \pi + \pi $	1 1	
REAL ($x + \alpha$) = 2 sinx + work	. · · ·	
RENDY COSAL + REDEXCENE = 2 sink + LOSX		Awl For RE.5
		Awirer
$\therefore \operatorname{Rcosa} = 2 - (1) \operatorname{cosa} = f_{\pm} \left(\frac{1}{2} \right)$	Ð	And For NE -
R Sind = 1 === (2) Sind = 1		Awl For a = -
. R= 12+11 = 15 . x= cos' 2/s	1-1-1	ton 1 = 0.4636
J5/	一方	. 1
1. J5 sin(x+ x), where x=		
L) EID PSLN M=Y	1	Aw: Fee 6: / 720
(i) N^2 of ways = $T! = 6! = 720$		
(ii) [EIII01.1.1.1.] ~ Nº of way &= (4×3!)×4!	1 576	Awl For Ux3!
(ii) [E] [] [] [] [] Nº of way & = (4 K 3!) × 4!	-	Hul For 4! und
(1) $P(x) = x^{3} - 3x^{2} + 4$		
P(2) = 8 - 3+4+4 = 0 . by Factor H	en ac-) is a factor v
(ii) $x^{2} - 3x^{2} + 4 = (x - 2)(x^{2} - x - 2)$		A of the and we be
(ii) $x^{2} - 3x^{2} + 4 = (x - 2)(x^{2} - x - 2)$ = $(x - 2)(x - 2)(x + 1)$		And For getting +
	1	
	<u></u>	
$(x-2)(x^3-3x^2) + 4$		
0 - x		
$\frac{-11^{2}+211}{0}$		
- 214 +4		


YEAR II MATH EXT 1, T3 2007 PRELIMINARY SOLUTIONS

\CALLISTO\StaffHome\$\WOH\RAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc


MATHEMATICS Extension 1 : Quest Suggested Solutions	Marks	Marker's Comments
$(i) x = 4b \Rightarrow b = \frac{x}{2} \therefore y = 2x \frac{x^2}{16}$ $(i) x = 4b \Rightarrow b = \frac{x}{2} \therefore y = 2x \frac{x^2}{16}$ $(i) x = 2b^{2}$ $(i) x = 2b^{2}$ $(i) x = 2b^{2}$		$(4\not=)^2 = g_M(2\not=^2)$ Aw! For showing
(i) $y = \frac{x^2}{8}$ $y' = \frac{x}{3}$ (tradient of Tangent at P $m_1 = 4b = b$ ii ii Normal at P $m_1 = -\frac{1}{5}$ \therefore Equation of Normal at P: $y - 2b^2 = -\frac{1}{5}(x - 24b)$ $p_3 - 2b^2 = -\frac{1}{5}(x - 24b)$ $p_4 - 2b^2 = -\frac{1}{5}(x - 24b)$ $p_5 - 2b^2 = -\frac{1}{5}(x - 24b)$	~	And For gotting to my st dual For mass-i hual For Botting to result.
$(iii) mp = -\frac{1}{p} p \neq 0 p + 0 saccsfles(i)$ $2p^{2} - 2q^{2} = -\frac{1}{p} uq + p \cdot 2q^{2} = 2p^{3} + 4p$ $4p - 4q p = -\frac{1}{p} 2q + pq^{2} = p^{3} + 2p$ $2(p-q)(p+q) = -\frac{1}{p} pq^{2} - p^{3} = 2p - 2q$ $\frac{p(q^{2} - p^{3})}{p(q^{2} - p^{2})} = 2(p-q)$ $\frac{p+q}{2} = -\frac{1}{p} q \neq p p(q^{2} - p^{2}) = 2(p-q)$ $\frac{p+q}{2} = -\frac{1}{p} q \neq p p(q^{2} - p^{2}) = 2(p-q)$ $\frac{p+q}{2} = -\frac{1}{p} q \neq p p(q^{2} - p^{2}) = 2(p-q)$ $\frac{p+q}{2} = -\frac{1}{p} q \neq p p(q^{2} - p^{2}) = 2(p-q)$ $\frac{p+q}{2} = -\frac{1}{p} q \neq p p(q^{2} - p^{2}) = 2(p-q)$	₹≠₽≠0	Awl For using plQ in nopoler (ii) Awl For gottine too posuld vice tectooisadi
iv) $M = (\underline{u}p + \underline{u}q, \underline{2p^2 + 2q^2}) = (\underline{2(p+q)}, \underline{p^2}, \underline{p^2}, \underline{2p^2 + 2q^2}) = (\underline{2(p+q)}, \underline{p^2}, \underline{p^2}, \underline{2p^2 + 2q^2}) = (\underline{2(p+q)}, \underline{p^2}, \underline{p^2}, \underline{p^2}, \underline{p^2}) = (\underline{2(p+q)}, \underline{p^2}) = $		allows or
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$kq = -2 - p^{2}$ $= -2 - (-\frac{4}{32})^{2}$ $= -2 - (-\frac{4}{32})^{2}$ $= \frac{2^{2}}{2}$ $= 2^{2$		Awl For getting be Awl For using bright for the


\CALLISTO\StaffHome\$\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

\\CALLISTO\StaffHome\$\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc
