(a) Sketch $y=2-e^{-x}$, showing all essential detail.
(b) Evaluate $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{3 x}{\sin 5 x}\right)$.
(c) Find the acute angle formed between the two lines: $y=2$ and $y=x \sqrt{3}-2$.

$$
R \sin (x+\alpha), \text { where } R>0 \text { and } 0<\alpha<\frac{\pi}{2}
$$

(f) Find the number of ways in which the letters of the word EPSILON can be
(i) arranged in a circle.
(ii) arranged in a row so that the three vowels are all next to each other.
(g) (i) Show that $x-2$ is a factor of the polynomial expression: $x^{3}-3 x^{2}+4$.
(ii) Hence express $x^{3}-3 x^{2}+4$ as a product of three linear factors.

Question 2. [START A NEW PAGE]

(a) Show that $\tan 2 x+\tan x \equiv \frac{\sin 3 x}{\cos 2 x \cos x}$.
(b) Find $\frac{d y}{d x}$ in the following:
(i) $\quad y=\sec \left(x^{3}\right)$.
(ii) $y=10 x-x \ln x$.
(c) Given that $\cos 75^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$ and using the double angle results, or otherwise, find the exact value of $\cos \left(37 \frac{1}{2}^{0}\right)$.
(c) $A B C D E$ is a pentagon inscribed in a circle, where $A B=A E, B E$ meets $A C$ and $A D$ at P and Q respectively.

Not to scale

Given $\angle A C E=\theta$ and $\angle D A E=\alpha$,
(i) Copy the diagram onto your writing paper and show that $\angle A E B=\theta$, give reasons.
(ii) Hence, or otherwise show that $C P Q D$ is a cyclic quadrilateral.
(d) The diagram shows 9 points lying in the plane, 5 of which lie on the line l. The remaining 4 points do not lie on line l and no other set of 3 points is collinear.

(i) How many sets of 3 points can be chosen from the 5 points lying on l ?
(ii) How many distinct triangles can be formed using any three of the 9 points as vertices?
(a) Point $P\left(4 p, 2 p^{2}\right)$ lies on the parabola shown. The normal at P intersects the parabola at the point $Q\left(4 q, 2 q^{2}\right)$.

(i) Show that the Cartesian equation for this parabola is $x^{2}=8 y$.
(ii) Show that the equation of the normal at P is given by:

$$
x+p y=2 p^{3}+4 p
$$

(iii) Hence, or otherwise, show that $p+q=-\frac{2}{p}$, where $p \neq 0$.
(iv) Find the coordinates of the midpoint M of chord $P Q$.
(v) Hence find the locus of M as points P and Q move on the parabola.
(b) A river has level parallel riverbanks $O C$ and $A B$ of width w metres. $O F$ is a vertical flagpole of height h metres which stands with its base O on the edge of riverbank $O C$. Positions A and B are two points on the other riverbank such that $A B=7$ metres and $\angle A O B=60^{\circ}$.
The angle of elevation to the top of the flagpole from A and B are 60° and 30° respectively, as shown below.

(i) Show that the height of the flagpole is $\sqrt{21}$ metres.
(ii) By finding the area of $\triangle A O B$, or otherwise, find the width of the river.
(a) For what value(s) of k is the line $y=12 x+k$ a tangent to $y=x^{3}$.
(b) Given the triangles $A B C$ and $P Q R$ where $\angle B A C=\angle R P Q=\theta$ and $\theta \geq 90^{\circ}$.

Copy the diagrams onto your writing paper and using the Sine rule,
3 prove that $\triangle A B C\|\| P R Q$.
(c) A cam for a motor is made with a cross-section as shown below.

Not to scale

The cam's cross-section consists of a semi-circle $O C B$ and the sector of a circle $O A B$ of centre O with a radius of $x \mathrm{~cm}$ and with an included angle $B O A=\theta$.
(i) Determine the formula for the perimeter $P \mathrm{~cm}$ of the cam $O A B C$, in terms of x and θ.
(ii) Given that the area of the cross-section of the cam is $1 \mathrm{~cm}^{2}$, show that

$$
x^{2}=\frac{8}{\pi+4 \theta} .
$$

(iii) Hence, or otherwise, show that the perimeter P is given by:

$$
P=\frac{(\pi+2+2 \theta) \sqrt{2}}{\sqrt{\pi+4 \theta}} .
$$

(iv) Determine the value of θ for least perimeter of the cam, (answer correct to the nearest minute).
$Y E A R \| M A T H E X I, T S, 2007$
PAELiMiNARy SoLuTiOMS

MATHEMATICS Extension 1 : Question.......

(b) $\lim \frac{3 x}{\sin 5 x}=\lim \frac{3 x(5 x)}{5 x \sin (5 x)} \quad$ II

$$
\begin{aligned}
& =\frac{3}{5} \lim \frac{(5 x)}{\sin (5 x)} \\
& =\frac{3}{5} \times 1=\frac{3}{5}
\end{aligned}
$$

(c)

$$
\mu_{1}=2 \quad m_{1}=0
$$

$$
y=x \sqrt{3}-2 \quad m_{2}=\sqrt{3}
$$

Aul For andiney to $\operatorname{sen} \theta=\sqrt{3}$

Anl For 60°
$\angle 0=\infty^{\circ}$
(d)

$$
\begin{aligned}
2 \cos \theta & =-\sqrt{3} \\
\cos \theta & =-\frac{\sqrt{3}}{2} \\
\angle \theta & =\pi-\frac{\pi}{6} \text { or } \pi+\frac{\pi}{6} \\
\therefore \angle \theta & =\frac{5 \pi}{6} \text { or } \frac{2 \pi}{6}
\end{aligned}
$$

(e) $R \sin (x+\alpha) \equiv 2 \sin x+\cos x$

$$
\therefore R \cos \alpha=2 \cdots(t) \quad \cos x=\frac{\sqrt{t}}{\sqrt{t}}
$$

$$
\begin{array}{ll}
\therefore R=\sqrt{2^{2}+1^{2}}=\sqrt{5}, & \therefore=\cos ^{-1} \frac{2}{\sqrt{5}} / \text { si } \\
\therefore \sqrt{5} \sin (x+\alpha), \text { whare } \alpha=
\end{array}
$$

Awl For $P=\sqrt{5}$

$$
R \sin \alpha=1 \cdots(2) / \quad \sin x=\frac{1}{\sqrt{5}}
$$

+wi For $\alpha=$
$\tan ^{-1} \frac{1}{2}=0.4636 \ldots$
(t) EIO PSLN $u=7$
(i) $u=$ of ways $=7!=6!=720$
(ii) ETITOT:T.T:].] 2] $^{\text {Ne (tway } s=(4 k 3!) \times 4!}=576$
nwl For $u \times 3$!
सwl Eor 4! urno
(9) cl

$$
P(x)=x^{3}-3 x^{2}+4
$$

$P(2)=8-3 x+4=0$; by Focbor then $(x-2)$ is a feccos:
(ii)

$$
\text { i) } \begin{aligned}
& x^{3}-3 x^{2}+4=(x-2)\left(x^{2}-x-2\right) \\
&=(x-2)(x-2) C x \\
& \text { using } 2 g \text { LonG Division } \\
&x-2) x^{2}-3 x^{2}+4 \\
& \frac{x^{3}}{0}-2 x^{2} \\
&-\frac{x^{2}}{0}+2 x \\
&-\frac{2 x}{0}+4 \\
&-\frac{2 x}{\delta}+4
\end{aligned}
$$

$$
=(x-2)(x-2)(x+1)
$$

An: For Betiney the
-nfwer

YEARII MATEAEXTI, T3 2007 PRELIMINARY SOLUTIONS

MATHEMATICS Extension 1 : Question 2

(i) 1. $\angle A B E=\theta$ (Angles in the same sergment ure fraAt) (Equal qual ungles opposite equol sineos $2 . . \angle A E B=\theta$ (Equal unqles opposite equal zidens
(ii) $1 . \angle E C D=\alpha$ (Angles in same seyment cere equel tw wet s tremelngy on somp 2. $\angle A Q B=\theta+a(E$ Enterior ande of $\triangle A Q E$ equals swm of the tupo opposte unterian
3. As. $\angle P C O=\angle A Q B=\theta \leftarrow \alpha$
$\therefore P C D Q$ is a cyclic quand, as the
(e)
(1) No of ω ays $={ }^{5} C_{3}=10$
(IV) $\Delta=$ of $\Delta s=9 C_{y}={ }^{5} C_{3}=9 C_{3}-10$

$$
=84-10
$$

$$
=74
$$

MATHEMATICS Extension 1 ：Question 3 ．		
Suggested Solutions	Marks	Marker＇s Comments
（a）（i）		$(4 p)^{2}=8 \times\left(2 p^{2}\right)$ Aw＇For Ghowing
（ii） $\begin{aligned} & y=\frac{x^{2}}{8} \\ & y^{\prime}=\frac{x}{4} \end{aligned}$ Caradient of Teengent of $P \quad M_{T}=\frac{4 P}{4}=P$ ＂Normal of $P \quad m_{N}=\frac{-\frac{1}{P}}{P}, \cdots \cdots$ \therefore Earattor of Normal at P ： $\begin{aligned} & y-2 p^{2}=-\frac{1}{p}(x-4 p) \\ & p y-2 p^{3}=x+4 p \\ & \therefore \quad x+p y=2 p^{3}+4 p \quad q p d . \end{aligned}$	\checkmark	－ure $=1$ Hul Fing mas $=-\frac{1}{8}$ ruz．Fer gotiog torェいは，
	$\neq p \neq 0$	Awl For usingy p Q in nepaer（ii） Awl For artinet mo mesulk vier Ceceteri：mbi
（iv）$\left.\quad M=\frac{4 p+4 q}{2}, \frac{2 p^{2}+2 q^{2}}{2}\right)=\left(2(p+q), p^{2}+q\right.$	1	
Let $M=(x, y)$ be the gieneval poat on the （v） $\begin{array}{rlr} x & =2(p+q) \quad \cdots(1) \\ y & \equiv p^{2}+q^{2} \quad \ldots-(2) & 13 \\ p+q & =-2 \\ p+q & =\frac{x}{2^{2}}=-\frac{2}{p} & \text { so } p=-\frac{4}{x} \end{array}$ Now $p^{2}+q^{2^{2}} \equiv(p+q)^{2}-2 k q$ ， $y=\left(\frac{x}{2}\right)^{2}-2 p q$ but（3） $\text { 3) } \begin{aligned} & p^{2}+p q=-2 \\ & p q=-2-p^{2} \\ &=-2-\left(-\frac{4}{x^{2}}\right)^{2} \\ &=-2-\frac{\left(x^{2}\right.}{4} \\ & y=\frac{x^{2}}{4}-2\left(-2-\frac{16}{x^{2}}\right) \end{aligned}$ $\text { this is } y=\frac{x^{2}}{0^{4}}+\frac{32}{x^{2}}+4, \quad x \neq 0 \text {. }$	1	Aw！For eqeking $k=-$ nw For lusing $p^{2}+q^{2}$ Aw！Pas qeatting becu

[^0]

MATHEMATICS Extension 1 : Question. 4

Suggested Solutions	Marks

(a)

$$
\begin{aligned}
& y=x^{3} \\
& \frac{d y}{d x}=3 x^{2}
\end{aligned}
$$

so $3 x^{2}=12$

$$
x^{2}=4
$$

$$
x= \pm 2
$$

$$
\therefore \quad y=(\pm 2)^{3}= \pm 8
$$

$$
\Rightarrow \quad \pm 8=-8(\pm 2)+k= \pm 24+k
$$

$$
\therefore \quad k=\mp 16
$$

$1 \mathrm{~N} \quad \Delta B C$ and $P R Q$

$$
\frac{\sin \alpha}{7}=\frac{\sin \theta}{\omega 0}=\frac{\sin B}{A C}
$$

cenel $\quad \frac{\sin \beta}{21}=\frac{\sin \theta}{30}=\frac{\sin R}{P Q}$

6. $\frac{A B}{P R}=\frac{7}{21}=\frac{1}{3} \cos \frac{R C}{Q R}=\frac{10}{30}=\frac{1}{3}$
2. $\angle C=\angle Q=\alpha$
$\therefore \triangle B C l l \triangle P R Q C=A \in f$ d bout equecil ougles dete in same oratio)
(C)

\qquad
\qquad
\qquad
\qquad
\qquad
$A=x$ for circlo
\qquad
\qquad
\qquad
(i)
(a)
(ii)

Acol For poraving

- $1 \leq$ similer.

NE: over shown

$$
\begin{aligned}
& \alpha=\beta \text { onlor, then } \\
& \text { 1. } \angle A=\angle F=\theta^{\circ} \\
& \text { 2. } \angle C=\angle Q=\alpha \\
& \therefore \text { A的 } \\
& \text { (Crmanacercoln) } \\
& \text { Ans2 For mbewing }
\end{aligned}
$$ $\alpha=\beta+\alpha l y$

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \times x^{2} \theta+\frac{1}{2} \times \pi \times\left(\frac{x}{2}\right)^{2}=1 \\
& 1-e \quad \frac{1}{2} x^{2} 0+\frac{1}{6}=1 \\
& x^{2}(4 \theta+\tau)=8 \\
& \therefore x^{2}=\frac{8}{\pi+4 \theta} \quad a \operatorname{de}
\end{aligned}
$$

$$
\begin{aligned}
& P=O A+\triangle C A B+B C O \text { (curd) } \\
& =x+x \theta+x+\frac{1}{2}+2 \times \pi x x \\
& P=2+x+0+2
\end{aligned}
$$

$$
\begin{aligned}
& \wedge \nu \quad \alpha=\beta \cdot \sigma=\sim
\end{aligned}
$$

[^0]:

