Question 1.

- (a) Find $\lim_{x\to 0} \left(\frac{\sin 2x}{\tan 5x} \right)$
- (b) If $x = \alpha$, $x = \beta$ and $x = \gamma$ are the roots of the equation $3x^3 + 4x^2 2x + 1 = 0$, find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- (c) Find the angle to the nearest minute between the lines 4x 5y + 3 = 0 and y = 3x 2.
- (d) Circle with centre *O* and radii *AO*,*BO*,*CO*,*DO* and *EO* is shown below with $\angle AOB = 15^\circ, \angle BOC = 25^\circ, \angle COD = 35^\circ$ and $\angle DOE = 40^\circ$. Prove that AD = CE

- (e) (i) Show that x-3 is a factor of $x^3 12x^2 + 47x 60$. (ii) Hence express $x^3 - 12x^2 + 47x - 60$ as a product of linear factors.
- (f) Find an expression between x and y that is independent of t when $x = e^t + e^{-t}$ and $y = e^t e^{-t}$.
- (g) Find the number of ways all the letters from the word *choice* can be arranged around a circle.

Question 2.

(a) If $\sin A = \frac{1}{4}$ and angle A is obtuse, find the exact values of : (i) $\sin 2A$ (ii) $\cos \frac{A}{2}$ 2

- (b) A polynomial P(x) has a remainder of 2 when divided by x-1 and a remainder of 3 when divided by x+2. Find the remainder when P(x) is divided by $x^2 + x - 2$.
- (c) How many ways can a group of 2 men and 3 women be chosen from 6 men and 5 women?
- (d) (i) Write $\sqrt{2}\cos x + \sqrt{7}\sin x$ in the form $R\cos(x-\alpha)$, where R > 0 and α is to the nearest minute.
 - (ii) Graph $y = \sqrt{2} \cos x + \sqrt{7} \sin x$ for $0^\circ \le x \le 360^\circ$, showing all points where the curve crosses the x and y axes.
 - (iii) Solve $\sqrt{2}\cos x + \sqrt{7}\sin x = 1$ for x in the domain $0^\circ \le x \le 360^\circ$ 2

2

3

1 2

2

3

2

2

2

Question 3.

- (a) Find the number of words that can be formed using all the letters from $\{a, b, c, d, e, f, g\}$ 2 if a vowel is at each end and the letters f and g are together.
- (b) Find the equation in expanded form of a monic cubic polynomial with real roots : $1, 2 + \sqrt{3}$ and $2 \sqrt{3}$.
- (c) Differentiate with respect to *x* in simplest terms:

(i)
$$y = \frac{\sin(x+7)}{\cos(x-9)}$$

(ii)
$$y = \log_x 3$$

(d) The points $P(2p, p^2)$ and $Q(2q, q^2)$ lie on the parabola with equation $x^2 = 4y$, such that pq = 4. The normals to the parabola at *P* and *Q* intersect at *N*. (i) Derive the equation of the normal at the point *P*.

(ii) Show that the intersection point N of the normals is $(-4(p+q), p^2+q^2+6)$.

(iii) Find the Cartesian equation of the locus of N, stating any restrictions.

Question 4.

(a) A vertical post *BD* of length *h* metres is held in position by ropes *AD* and *DC*. The distance *AC* is 30 metres, $\angle ABC = 100^{\circ}$ and the angles of elevation of *D* from *A* and *C* are 10° and 8° respectively.

(i) Show that

$$h = \frac{30 \tan 80^{\circ} \tan 10^{\circ}}{\sqrt{\tan^2 8^{\circ} + \tan^2 10^{\circ} - 2 \tan 8^{\circ} \tan 10^{\circ} \cos 100^{\circ}}}$$

(ii) Find the height of the post to the nearest centimetre.

(b) Triangle *ABC* is inscribed in a circle. The tangent to the circle at *A* meets *BC* produced at *D* as shown with $\angle ABC = \alpha^{\circ}$ and $\angle ADC = (90 - 2\alpha)^{\circ}$, where $0^{\circ} < \alpha^{\circ} < 45^{\circ}$. Prove *BC* is the diameter of the circle.

 $(90-2\alpha)^{\circ}$

A

B

1

2

2

3

2

2

2

2

4

2

3

- (ii) Find the location of the turning points of $y = \frac{x^2 3x + 2}{x^2 + 4x + 3}$, and test their nature.
- (iii) Graph $y = \frac{x^2 3x + 2}{x^2 + 4x + 3}$, showing all asymptotes, turning points, and points where the curve crosses the coordinate axes. 3

End of Exam

$$\frac{\sqrt{R} 11 \int R_{L,LM,IMARY} = E_{N}r 1 2008}{160 \text{ km} \frac{M_{L,LM}}{760 \text{ K} \frac{M_{L,M}}{760 \text{ K} \frac{M_{L,M}}{760$$

$$\frac{2}{(1)} \sum_{k=1}^{k} \sum_{i=1}^{k} \frac{-\sqrt{15}}{4} \qquad (5)A < 0$$

$$= \frac{4}{\sqrt{15}} \frac{4}{4} - \frac{1}{4} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{8} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= \sqrt{15} \qquad (5)A < 0$$

$$= -\frac{\sqrt{15}}{16} \qquad Halor oblose \rightarrow ueuk angle$$

$$= -\frac{$$

2)

 \bigcirc

(ii)
$$\sqrt{2} (0)(k + \sqrt{7})(m + 1)$$

 $(1i) \sqrt{2} (0)(k + \sqrt{7})(m + 1)$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 1)$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i) \sqrt{2} (0)(k + \sqrt{7})(m + 2) = 1$
 $(2i)$

$$3(a) \quad \text{where} \quad \left\{\begin{array}{l} q, e\right\} = 2 \\ \text{where} \quad \left\{\begin{array}{l} k_{1} \right\}^{2} = 2 \\ \text{where} \quad k_{2} \\ \text{Tokel where } = 4 \cdot 2 \times 2 - 9 \\ \text{where} \quad k_{2} = -3 \\ \text{where} \quad k_{2} = -3 \\ \text{where} \quad k_{3} = 5 \\ \text{whe$$

3(d)
$$k = 2p$$
 $y = p^{*}$
 $\frac{d_{x}}{dq} = 2$ $\frac{d_{y}}{dq} = 2q$
 $\frac{d_{y}}{dt} = \frac{d_{y}}{dt}$
 $= \frac{d_{y}}{dt}$
 $=$

(iii)
$$k = -4(p+p)$$

 $k^{2} = 16\left[p^{2}+q^{2}+2p\right]$
 $= 16\left[p^{2}+q^{2}+8\right]$
 $= 16\left[q-6+8\right]$
 $k^{2} = 16\left(q+2\right)$
 $kegtriotion $k = -4\left(p+\frac{4}{p}\right)$
 $kgtriotion $k = -4\left(p+\frac{4}{p}\right)$
 $k = -4\left(p+\frac{4}{p}\right)$
 $k = -4\left(p+\frac{4}{p}\right)$
 $k^{2} = -2\left(p+\frac{4}{p}\right)$
 $k^{2} = -2\left(p+\frac$$$$$$$$$$$

6

1.

$$\begin{array}{c} (t) \quad 1 \quad DAc= [ABc] \left(\begin{array}{c} large between shared & mageld \\ = d \\ \vdots \quad 1 \quad 2ccd = 190^{4} - d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 90 \quad bd \\ \vdots \quad 1 \quad 2ccd = 190^{4} - d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 90 \quad bd \\ \vdots \quad 1 \quad 2ccd = 190^{4} - d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 90 \quad bd \\ \vdots \quad 1 \quad 2ccd = 190^{4} - d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 90 \quad bd \\ \vdots \quad 1 \quad 2ccd = 190^{4} - d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 90 \quad bd \\ \vdots \quad 1 \quad 2ccd = 190^{4} - d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 90 \quad bd \\ \vdots \quad 1 \quad 2ccd = 10^{4} - 2d - (10^{4} - 2d) \left(\begin{array}{c} Arryde \quad Svm \quad b \quad ADc \\ = 10^{4} - 2d - 2d - 2d - 2d - 2d + 2d \\ (k^{4} - 4rcd - 3)^{2} \end{array}\right) \\ \end{array}\right) \quad Tet \\ = \frac{2e^{2} - 2k^{4} + 8k^{4} - (2k + 4c - 4 - \frac{2k^{4} - 4k^{4} + 4k^{4} + 2k^{4} + 2k^{4$$