Question 1.
(a) Find $\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{\tan 5 x}\right)$
(b) If $x=\alpha, x=\beta$ and $x=\gamma$ are the roots of the equation $3 x^{3}+4 x^{2}-2 x+1=0$, find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(c) Find the angle to the nearest minute between the lines $4 x-5 y+3=0$ and $y=3 x-2$.
(d) Circle with centre O and radii $A O, B O, C O, D O$ and $E O$ is shown below with

(e) (i) Show that $x-3$ is a factor of $x^{3}-12 x^{2}+47 x-60$.
(ii) Hence express $x^{3}-12 x^{2}+47 x-60$ as a product of linear factors.
(f) Find an expression between x and y that is independent of t when $x=e^{t}+e^{-t}$ and $y=e^{t}-e^{-t}$.
(g) Find the number of ways all the letters from the word choice can be arranged around a circle.

Question 2.

(a) If $\sin A=\frac{1}{4}$ and angle A is obtuse, find the exact values of :
(i) $\sin 2 A$
(ii) $\cos \frac{A}{2}$
(b) A polynomial $P(x)$ has a remainder of 2 when divided by $x-1$ and a remainder of 3 when divided by $x+2$.
Find the remainder when $P(x)$ is divided by $x^{2}+x-2$.
(c) How many ways can a group of 2 men and 3 women be chosen from 6 men and 5 women?
(d) (i) Write $\sqrt{2} \cos x+\sqrt{7} \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and α is to the nearest minute.
(ii) Graph $y=\sqrt{2} \cos x+\sqrt{7} \sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$, showing all points where the curve crosses the x and y axes.
(iii) Solve $\sqrt{2} \cos x+\sqrt{7} \sin x=1$ for x in the domain $0^{\circ} \leq x \leq 360^{\circ}$

Question 3.

(a) Find the number of words that can be formed using all the letters from $\{a, b, c, d, e, f, g\}$ if a vowel is at each end and the letters f and g are together.
(b) Find the equation in expanded form of a monic cubic polynomial with real roots :

$$
1,2+\sqrt{3} \text { and } 2-\sqrt{3} .
$$

(c) Differentiate with respect to x in simplest terms:
(i) $y=\frac{\sin (x+7)}{\cos (x-9)}$
(ii) $y=\log _{x} 3$
(d) The points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ lie on the parabola with equation $x^{2}=4 y$, such that $p q=4$. The normals to the parabola at P and Q intersect at N.
(i) Derive the equation of the normal at the point P.
(ii) Show that the intersection point N of the normals is $\left(-4(p+q), p^{2}+q^{2}+6\right)$.
(iii) Find the Cartesian equation of the locus of N, stating any restrictions.

Question 4.

(a) A vertical post $B D$ of length h metres is held in position by ropes $A D$ and $D C$. The distance $A C$ is 30 metres, $\angle A B C=100^{\circ}$ and the angles of elevation of D from A and C are 10° and 8° respectively.
(i) Show that

$$
h=\frac{30 \tan 80^{\circ} \tan 10^{\circ}}{\sqrt{\tan ^{2} 8^{\circ}+\tan ^{2} 10^{\circ}-2 \tan 8^{\circ} \tan 10^{\circ} \cos 100^{\circ}}}
$$

(ii) Find the height of the post to the nearest centimetre.
(b) Triangle $A B C$ is inscribed in a circle.

The tangent to the circle at A meets $B C$ produced at D as shown with $\angle A B C=\alpha^{\circ}$ and $\angle A D C=(90-2 \alpha)^{\circ}$, where $0^{\circ}<\alpha^{\circ}<45^{\circ}$.
Prove $B C$ is the diameter of the circle.

(c) (i) Show $\frac{d}{d x}\left(\frac{x^{2}-3 x+2}{x^{2}+4 x+3}\right)=\frac{7 x^{2}+2 x-17}{\left(x^{2}+4 x+3\right)^{2}}$
(ii) Find the location of the turning points of $y=\frac{x^{2}-3 x+2}{x^{2}+4 x+3}$, and test their nature.
(iii) Graph $y=\frac{x^{2}-3 x+2}{x^{2}+4 x+3}$, showing all asymptotes, turning points, and points where the curve crosses the coordinate axes.

YRII PRuIminaxy E=xr 12008
(a)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\operatorname{An} 2 x_{x}}{7 \operatorname{tin} 5 x} & =\lim _{x \rightarrow x}\left\lfloor\frac{\sin 2_{k}}{4 x} \cdot \frac{5 x}{\operatorname{sen} 5 x} \cdot \operatorname{in} 5 k \cdot \frac{2}{5}\right\rfloor \\
& =1 \cdot 1 \cdot 1 \cdot \frac{2}{5} \\
& =\frac{2}{5}
\end{aligned}
$$

(d)
(c)

$$
\begin{aligned}
m_{1} & =\frac{4}{5} \quad m_{2}=3 \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} n_{1}}\right| \\
& =\left|\frac{\frac{1}{5}-3}{1+\frac{1}{3} \cdot 3}\right| \\
& =\left|\frac{11}{17}\right|
\end{aligned}
$$

$$
\theta=32^{\circ} 54^{\prime}
$$

(d) $\angle A 0 D=15+25+35$
$=75^{\circ}$
$\begin{array}{cccc}\angle C O E & =75^{\circ} 40\end{array}$

$$
=75^{\circ}
$$

- $A D=C E$ (En, +iviangles mothend
(c)

$$
\begin{aligned}
\therefore F(3) & =3^{3}-12 \times 3^{2}+47 \times 3-60 \\
& =27-105 \times 141-60 \\
& =145-168 \\
& =0 \\
& \Rightarrow x-3 \text { is a finter }
\end{aligned}
$$

(ii) $x^{3}-2 x^{2}+47 x-60=(x-3)\left(x^{2}-4 x+20\right)$

$$
=(x-3)(x-4)(x-5)^{\prime}
$$

(1)
(g)

$$
\begin{array}{rlrl}
e & { }^{4} \\
c, 0 & \text { way } & =\frac{5!}{\lambda!} \\
& =60 .
\end{array}
$$

$$
\begin{aligned}
& x^{2}=r^{2, t}+2+e^{-2, t} \\
& y^{2}=e^{2 t}-2+e^{-2 t} \\
& \text { (i) } x^{2}-y^{\prime}=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { L } 4 \beta \text { 时 }=-\frac{4}{3} \\
& \alpha \beta+\alpha r s \beta=-\frac{2}{3} \\
& L^{2}+y^{\prime}+\gamma^{\prime}=(2 L \beta+y)^{3}-2[\alpha+\alpha \gamma+\beta \gamma] \\
& \text { - }\left(-\frac{1}{3}\right)^{2}-2 \cdot \frac{-2}{3} \\
& =\frac{16}{9}+\frac{4}{3} \\
& =\frac{28}{9} \\
& \therefore 3 \frac{1}{4}
\end{aligned}
$$

$2(a)$
(i) $\sin 2 A=2 \sin A \cos A$

$$
\begin{aligned}
& =2, \frac{1}{4} \cdot-\frac{\sqrt{15}}{4} \\
& =-\frac{\sqrt{15}}{8}
\end{aligned}
$$

$\cos A<0$
A atutise
(ii)

$$
\begin{aligned}
& \cos A=2 \cos ^{2} \frac{A}{2}-1 \\
& 2 \cos ^{2} \frac{A}{2}=1+\left(-\frac{\sqrt{15}}{8}\right) \\
& \cos ^{2} \frac{A}{2}=\frac{8-\sqrt{15}}{16} \\
& \cos \frac{A}{2}=\frac{\sqrt{8-\sqrt{15}}}{4}
\end{aligned}
$$

Halve detuse \rightarrow mente anghe $\ln \frac{A}{2}>0$.
(b) $P(x)=(x-1)(x+2) Q(k)+a x+b$

$$
\begin{array}{ll}
x=1 & 2=a+k \\
x=-2 & 3=-2 a+h \\
& a=-\frac{1}{3} \quad h=2 \frac{1}{3}
\end{array}
$$

Kemuinider $x=-\frac{x}{3}+2 \frac{1}{3}$
(c)

$$
\begin{aligned}
\text { No ways } & =\binom{6}{2}\binom{5}{3}^{3} \\
& =15 \times 10 \\
& =150
\end{aligned}
$$

$$
\begin{aligned}
\alpha(i) \quad R \cos (x-\alpha) & =R \cos x \cos \alpha+R \operatorname{sen} i \sin \alpha \\
R \sin \alpha & =\sqrt{7} \quad R>0 \quad \sin \alpha y_{0} \\
R \cos \alpha & =\sqrt{2} \quad \cos \alpha>0 \\
\operatorname{Tan} \alpha & =\sqrt{\frac{7}{2}} \quad 0<\alpha<20^{\circ} \\
\alpha & =61^{\circ} 52 \\
R & =3 \\
\therefore \sqrt{2} \cos x & +\sqrt{7} \sin x=3 \cos \left(x-61^{\circ} 52^{\prime}\right)
\end{aligned}
$$

3(a)

$$
\begin{aligned}
& \text { ways }\left\{\begin{array}{l}
a, e\}=2 \\
\text { ways }\left\{f_{y}\right]=2 \\
\text { ways bed }(4)=4!2
\end{array}\right. \\
& \text { Toul ways }=4!1 \times 2=96 \\
& (x-1)(x-2+\sqrt{3})(x-2-\sqrt{3})=0 \\
& (x-1)\left((x-2)^{2}-3\right)=0 \\
& \left(x-1\left(x^{2}-4 x+1\right)=0\right. \\
& x^{3}-5 x^{2}+5 x-1=0
\end{aligned}
$$

(i)
(e)
(i)

$$
\begin{aligned}
y & =\frac{\sin (x+7)}{\cos (x-9)} \\
\frac{d y}{d x} & =\frac{\cos (\sin 9) \cos (x+7)-\sin (x+y) \cdot-\sin (x-9)}{\cos ^{2}(x-9)} \\
& =\frac{\cos (x-9-(x-7)}{\cos ^{\prime}(x-9)} \\
& =\frac{\cos 16}{\cos ^{2}(x-9)} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\log _{x} 3 \\
& =\frac{\ln 3}{\ln x} \\
\frac{d y}{d x} & =\frac{-1}{x} \frac{\ln 3}{\ln ^{2} x} \\
& =\frac{-1}{x} \cdot \frac{\ln 3}{\ln \cdot} \cdot \frac{1}{\ln x} \\
& =\frac{-\log x^{3}}{x \ln x}
\end{aligned}
$$

$3(d)$

$$
\begin{aligned}
1) & =2 p \quad y=p \\
\frac{d x}{d p} & =2 \quad \frac{d y}{d y}=2 p \\
\frac{d y}{d x} & =\frac{\frac{d y}{d y}}{\frac{d x}{d p}} \\
& =\frac{2 p}{2} \\
& =p \\
M_{N} & =-\frac{1}{p}
\end{aligned}
$$

Epre nosant

$$
\begin{align*}
& y-r^{2}=-\frac{1}{r}(x-2) \\
& p y-p^{3}=-x+2 p \\
& \begin{array}{l}
x+p y+2 p+p^{3} \\
x+y y=2 q+q^{3} \\
f y(p-z)=x(p-q)+p^{3},
\end{array} \tag{c}\\
& =2(p-\eta)+(p-q)\left(p^{2}+1 q+q^{2}\right) \\
& =(p-q)\left[2+p^{2}+4+z^{2}\right] \\
& \begin{array}{l}
y=p^{2}+z^{2}+6 \quad p \neq q \\
z=2 p+p^{3}-p^{3}-p q^{2}-6 p
\end{array} \\
& \begin{aligned}
y & =p^{2}+z^{2}+6 \quad p \neq q \\
\therefore \quad x & =2 p+p^{3}-p^{3}-p q^{2}-6 p
\end{aligned} \\
& =-\frac{q}{q}-4 p-12 \cdot 2 \\
& \begin{array}{l}
=-4 p-4 \\
=-4(p+2)
\end{array} \\
& \begin{array}{l}
=-4 p-4 \\
=-4(p+2)
\end{array} \\
& N=\left(-4(p+z), p^{2}+z^{2}+6\right)
\end{align*}
$$

(iii)

$$
\begin{aligned}
k & =-4(p+z) \\
x^{2} & =16\left[p^{2}+q^{2}+2 / z\right] \\
& =16\left[p^{2}+q^{2}+8\right] \\
& =16[y-6+8] \\
k^{2} & =16(y+2)
\end{aligned}
$$

Kestriction $\quad x=-4\left(p+\frac{4}{p}\right)$.

Ristuction $k \geqslant 16$ oi $k \leq \sqrt{2}$.

4(i) $\quad A D=\frac{\alpha}{\operatorname{Tan} 0^{\circ}} \quad B C=\frac{1}{\operatorname{Tan} 8^{\circ}}$

$$
\begin{aligned}
& A C^{2}=A B^{2}+A C^{2}-2 A B \cdot B C \text { ios } \angle A B C \\
& 30^{2}=\frac{h^{2}}{\operatorname{Tan}^{2} 10^{\circ}}+\frac{h^{2}}{\tan ^{2} \delta^{\circ}}-\frac{2 h^{2} \cos 100^{\circ}}{\operatorname{Tan} 10^{\circ} \operatorname{Tan} 0^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{30 \operatorname{Tan} 5^{\circ} \operatorname{Tan} 10^{\circ}}{\sqrt{\operatorname{Tan}^{2} 8+\operatorname{Tan}^{2} 10^{\circ}-2 \operatorname{Tan} 8^{\circ} \operatorname{Tan} 0^{\circ} \cos 100^{\circ}}} \\
& =3.05 \mathrm{~m} \text {. }
\end{aligned}
$$

(el) $\angle D A C=\angle A B C$ (Angle letween etround \& truged $=\alpha$

$$
\begin{aligned}
\therefore \angle D C A & =180^{\circ}-\alpha-\left(90^{\circ}-2 \alpha\right)(\text { Angk sum } \triangle A D C \\
& =90+\alpha .
\end{aligned}
$$

$\therefore \angle B A C=90^{\circ}$ (Extecor angle $\triangle A B C$)
$\therefore B C$ is doantes (angh shmicircle)
(b) (i) $y=\frac{x^{2}-3 x+2}{x^{2}+4 x+3}$

$$
\begin{aligned}
y^{\prime} & =\frac{\left(x^{2}+4 x+3\right)(2 x-3)-\left(x^{2}-3 x+2\right)(2 x+4)}{\left(x^{2}+4 x+3\right)^{2}} \\
& =\frac{2 x^{3}-3 x^{2}+8 x^{2}-12 x+6 x-4-\left[2 x^{3}+4 x^{2}-6 x^{2}+2 x+4 x\right.}{\left(x^{2}+4 x+3\right)^{2}} \times 5 \\
& =\frac{+5 x^{2}-6 x-9-\left[-2 x^{2}-8 x+8\right]}{\left(x^{2}+4 x+3\right)^{2}} \\
& =\frac{7 x^{2}+2 x-17}{\left(x^{2}+4 x+3\right)^{2}}
\end{aligned}
$$

Ternany pate $y^{\prime}=0$.

$$
\begin{align*}
& 7 x^{2}+2 x-17=0 \\
& x=\frac{-2 \pm \sqrt{4+4 \times 7 \times 17}}{14} \\
&=\frac{-1 \pm \sqrt{120}}{7} \tag{1}\\
&=\frac{-1 \pm 2 \sqrt{30}}{7} \quad \begin{array}{l}
x=-1.71 \\
y=-10.98
\end{array} \quad \text { er } 1.42
\end{align*}
$$

 $x=-1-71$

x	-1.8	-1.71	-1.6
$\frac{d y}{k_{2}}$		0	-3.23

relatiom max at $(-1.41,-10.98)$

Test
$k=+1.42$.

x	1.3	1.42	1.5
$\frac{d y y}{d m}$	-0.03	0	0.01

iii) $y=\frac{(x-1)(x-2)}{(x+3)(x+1)}$

