Answer question 1 to 5 on the Multiple Choice answer sheet

Question 1

The point A has coordinates (-6,4) and the point B has coordinates (5,1). Find the coordinates of the point which divides AB internally in the ratio 3:4

(A) (-39,13) (B) $\left(-\frac{12}{7},\frac{23}{7}\right)$ (C) $\left(-\frac{9}{7},\frac{19}{7}\right)$ (D) $\left(\frac{2}{7},\frac{16}{7}\right)$

Question 2

BC is the diameter of the circle. A is a point on the circle. The tangent at A meets BC produced at D. $\angle DAC = 35^{\circ}$. What is the size of of $\angle BDA$

(A) 10^{o} (B) 15^{o} (C) 20^{o} (D) 25^{o}

Question 3

P(x) is an odd polynomial. When P(x) is divided by (x-2) the remainder is 5.

What is the remainder when P(x) is divided by (x+2)

(A) -5 (B) -5x (C)
$$5x$$
 (D) 5

Question 4

Which of the following is an expression for $\frac{1}{1-\tan x} - \frac{1}{1+\tan x}$?

(A)
$$\frac{2\tan x}{\sec^2 x}$$
 (B) $\tan 2x$ (C) $\frac{\tan 2x}{\tan x}$ (D) $\tan x \tan 2x$

Question 5

At Euclid High School the Year 12 grade consists of n boys and n girls

A committee of 4 is chosen from Year 12 students

How many different committees can be formed containing 2 boys and 2 girls?

(A)
$$n^2(n^2 - 2n + 1)$$
 (B) $\frac{n^2(n^2 - 2n + 1)}{4}$ (C) $n^2 - n$ (D) $\frac{n^2 - n}{2}$

Question 6 Start a New Sheet of Paper (20 marks)

•

(a) Six students are to be seated in a row on the stage for an assembly. How many ways can they be placed if:		
(i) There are no restrictions on where they sit?	1	
(ii) Two particular students insist on sitting next to each other?	1	
(iii) Two particular students refuse to sit next to each other?	1	
(b) A serial number is made up of 4 letters followed by 2 numbers if zero isn't allowed how many serial numbers are there.	1	
(c) Let $P(x) = 2x^3 - 3x^2 - 3x + 2$		
Express $P(x)$ as a product of its 3 linear factors	3	
(d) What is the general solution to the equation $2\sin^2\theta + 5\cos\theta + 1 = 0$ Give answer in radians	3	
(e) (i) Show that $\tan 75^{\circ} = 2 + \sqrt{3}$	2	
(ii) The lines $y = mx$ and $x = y\sqrt{3}$ meet at an angle of 75°. Find the value(s) of m	3	
(f) (i) Change $\frac{3\pi}{8}$ radians to degrees	1	
(ii) Convert 109° to radians to 1 decimal place	1	
(g) Solve the inequality $\frac{2x-5}{x-4} \ge x$	3	

Question 7 Start a New Sheet of Paper (20 marks)

(a) How many different arrangements are possible of COONABARABRAN if all the letters are used.

(b)	b) A committee of 5 is to be chosen from 5 boys and 7 girls. Find how many committees are possible		1
	(i)	If there are no restrictions?	1
	(ii)	A particular boy is to be on the committee?	1
	(iii)	There is a majority of boys?	3

(c)

Write down a possible function for the polynomial function sketched above. (Do NOT use 2 calculus)

- (d) Given that α , β , γ are the roots of $2x^3 + 3x^2 + 4x + 5$ find the value of $3\alpha^2 + \beta^2 + \gamma^2$
- (e) Solve the equation $3\sin\theta \cos\theta = 1$ for $0^\circ \le \theta \le 360^\circ$ 4 Give the answer to the nearest minute.
- (f) Solve the equation $\cos 2x + \sin 2x + 1 = 0$ for $0 < x < 2\pi$ 4

Question 8 Start a New Sheet of Paper (20 marks)

- (a) A group consisting of two adults, two boys and two girls is to be seated at a round table. The adults are to be seated together. The girls and boys are to sit in alternating positions. 2 How many different seating arrangements are possible?
- (b) How many different arrangements of the word MAMMOTH can be made if only five letters 3 are used?

(c) Prove
$$(p^2 - q^2)(p^4 - q^4) \le (p^3 - q^3)^2$$
 for all real p and q 2

- (d) (i) Graph $y = \cos 2x$ and y = x on the same axes between $-\pi \le x \le \pi$ 3
 - (ii) How many solutions to $\cos 2x = x$ are there if $-\pi \le x \le \pi$ 1
- (e) The diagram shows a sector OAB of a circle, centre O and radius x metres. Arc AB subtends an angle of θ radians at O. An equilateral triangle BCO adjoins the sector

- (i) Write an expression in terms of θ and x for
 - (α) the perimeter of OABC.
 - (β) the area of OABC.
- (ii) Given that the perimeter has the value $(12 2\sqrt{3})$ metres, show that the area A is given by

$$A = \frac{(6 - \sqrt{3})^2 (2\theta + \sqrt{3})}{(\theta + 3)^2}$$

(iii) For what value of θ is the area a maximum? Justify your answer.

4

1

2

2

Question 9 Start a New Sheet of Paper (20 marks)

(a) Consider the point T(4t,2 t^2) on the parabola x^2 =8y

(i)	Show that the equation of the tangent at T has the equation $y-tx+2t^2=0$	2
(ii)	The tangent meets the parabola $x^2 + 4y = 0$ at two points P (x_1, y_1) and $Q(x_2, y_2)$ as shown. Show that x_1 and x_2 are the roots of the quadratic equation $x^2 + 4tx - 8t^2 = 0$	2
(iii)	Write an expression for $\frac{x_1 + x_2}{2}$	1
(iv)	If $M(x,y)$ is the midpoint of PQ ,find the coordinates of M in terms of t.	2
(v)	Find the locus of M as T varies	1

Question 9 continued on next page

Question 9 continued

(b) The elevation of a tower T at a place P due east of it is 42° . At a place Q due south of P the elevation is 33° . The distance from P to Q is 450 metres.

(i) Draw a diagram labelling all the information given 1 (ii) Prove $h = \frac{450}{\sqrt{\cot^2 33^\circ - \cot^2 42^\circ}}$ where h =height of the tower 2

1

(iii) Find the height of the tower to 2 decimal places

(c)

In the diagram above, P is the midpoint of the chord AB in the circle with centre O. A second chord ST passes through P and the tangents at the endpoints meet AB produced at M and N respectively. Join OS.

(i) Explain why OPNT is a cyclic quadrilateral.	
(ii) Explain why OPSM is also cyclic.	3
(iii) Let $\theta = \angle OTS$. Show that $\theta = \angle OMP = \angle ONP$	2
(iv) Hence, prove that $AM = BN$.	2
	1

END OF EXAMINATION