Answer question 1 to 5 on the Multiple Choice answer sheet

Question 1

The point A has coordinates $(-6,4)$ and the point B has coordinates $(5,1)$. Find the coordinates of the point which divides $A B$ internally in the ratio 3:4
(A) $(-39,13)$
(B) $\left(-\frac{12}{7}, \frac{23}{7}\right)$
(C) $\left(-\frac{9}{7}, \frac{19}{7}\right)$
(D) $\left(\frac{2}{7}, \frac{16}{7}\right)$

Question 2

BC is the diameter of the circle. A is a point on the circle. The tangent at A meets BC produced at $\mathrm{D} . \angle D A C=35^{\circ}$. What is the size of of $\angle B D A$
(A) 10°
(B) 15°
(C) 20°
(D) 25°

Question 3

$\mathrm{P}(\mathrm{x})$ is an odd polynomial. When $\mathrm{P}(\mathrm{x})$ is divided by $(\mathrm{x}-2)$ the remainder is 5 .
What is the remainder when $\mathrm{P}(\mathrm{x})$ is divided by $(\mathrm{x}+2)$
(A) -5
(B) $-5 x$
(C) 5 x
(D) 5

Question 4

Which of the following is an expression for $\frac{1}{1-\tan \mathrm{x}}-\frac{1}{1+\tan \mathrm{x}}$?
(A) $\frac{2 \tan x}{\sec ^{2} x}$
(B) $\tan 2 x$
(C) $\frac{\tan 2 x}{\tan x}$
(D) $\tan x \tan 2 x$

Question 5

At Euclid High School the Year 12 grade consists of n boys and n girls
A committee of 4 is chosen from Year 12 students
How many different committees can be formed containing 2 boys and 2 girls?
(A) $\quad n^{2}\left(n^{2}-2 n+1\right)$
(B) $\frac{n^{2}\left(n^{2}-2 n+1\right)}{4}$
(C) $n^{2}-n$
(D) $\frac{n^{2}-n}{2}$

Question 6 Start a New Sheet of Paper (20 marks)
(a) Six students are to be seated in a row on the stage for an assembly. How many ways can they be placed if:
(i) There are no restrictions on where they sit?
(ii) Two particular students insist on sitting next to each other?
(iii) Two particular students refuse to sit next to each other?
(b) A serial number is made up of 4 letters followed by 2 numbers if zero isn't allowed how many serial numbers are there.
(c) Let $\mathrm{P}(\mathrm{x})=2 x^{3}-3 x^{2}-3 x+2$

Express P(x) as a product of its 3 linear factors
(d) What is the general solution to the equation $2 \sin ^{2} \theta+5 \cos \theta+1=0$

Give answer in radians
(e) (i) Show that $\tan 75^{\circ}=2+\sqrt{3}$
(ii) The lines $\mathrm{y}=\mathrm{mx}$ and $\mathrm{x}=\mathrm{y} \sqrt{3}$ meet at an angle of 75°. Find the value(s) of m
(f) (i) Change $\frac{3 \pi}{8}$ radians to degrees
(ii) Convert 109° to radians to 1 decimal place
(g) Solve the inequality $\frac{2 x-5}{x-4} \geq x$

Question 7 Start a New Sheet of Paper (20 marks)
(a) How many different arrangements are possible of COONABARABRAN if all the letters are used.
(b) A committee of 5 is to be chosen from 5 boys and 7 girls. Find how many committees are possible
(i) If there are no restrictions?
(ii) A particular boy is to be on the committee?
(iii) There is a majority of boys?
(c)

Write down a possible function for the polynomial function sketched above. (Do NOT use calculus)
(d) Given that α, β, γ are the roots of $2 x^{3}+3 x^{2}+4 x+5$ find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$
(e) Solve the equation $3 \sin \theta-\cos \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

Give the answer to the nearest minute.
(f) Solve the equation $\cos 2 \mathrm{x}+\sin 2 \mathrm{x}+1=0$ for $0<x<2 \pi$

Question 8 Start a New Sheet of Paper (20 marks)
(a) A group consisting of two adults, two boys and two girls is to be seated at a round table.

The adults are to be seated together. The girls and boys are to sit in alternating positions.
How many different seating arrangements are possible?
(b) How many different arrangements of the word MAMMOTH can be made if only five letters are used?
(c) Prove $\left(p^{2}-q^{2}\right)\left(p^{4}-q^{4}\right) \leq\left(p^{3}-q^{3}\right)^{2}$ for all real p and q
(d) (i) Graph $\mathrm{y}=\cos 2 \mathrm{x}$ and $\mathrm{y}=\mathrm{x}$ on the same axes between $-\pi \leq x \leq \pi$
(ii) How many solutions to $\cos 2 \mathrm{x}=\mathrm{x}$ are there if $-\pi \leq x \leq \pi$
(e) The diagram shows a sector OAB of a circle, centre O and radius x metres. Arc AB subtends an angle of θ radians at O . An equilateral triangle BCO adjoins the sector

(i) Write an expression in terms of θ and x for
(α) the perimeter of OABC.
(β) the area of OABC .
(ii) Given that the perimeter has the value $(12-2 \sqrt{3})$ metres, show that the area A is given by

$$
\mathrm{A}=\frac{(6-\sqrt{3})^{2}(2 \theta+\sqrt{3})}{(\theta+3)^{2}}
$$

(iii) For what value of θ is the area a maximum? Justify your answer.

Question 9 Start a New Sheet of Paper (20 marks)
(a) Consider the point $\mathrm{T}\left(4 \mathrm{t}, 2 t^{2}\right)$ on the parabola $x^{2}=8 \mathrm{y}$

(i) Show that the equation of the tangent at T has the equation $\mathrm{y}-\mathrm{tx}+2 t^{2}=0$
(ii) The tangent meets the parabola $x^{2}+4 y=0$ at two points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ as shown. Show that x_{1} and x_{2} are the roots of the quadratic equation $x^{2}+4 t x-8 t^{2}=0$
(iii) Write an expression for $\frac{x_{1}+x_{2}}{2}$
(iv) If $M(x, y)$ is the midpoint of $P Q$, find the coordinates of M in terms of t.
(v) Find the locus of M as T varies

Question 9 continued on next page

Question 9 continued
(b) The elevation of a tower T at a place P due east of it is 42°. At a place Q due south of P the elevation is 33°. The distance from P to Q is 450 metres.
(i) Draw a diagram labelling all the information given
(ii) Prove $\mathrm{h}=\frac{450}{\sqrt{\cot ^{2} 33^{\circ}-\cot ^{2} 42^{\circ}}}$ where h =height of the tower
(iii) Find the height of the tower to 2 decimal places
(c)

In the diagram above, P is the midpoint of the chord AB in the circle with centre O . A second chord ST passes through P and the tangents at the endpoints meet AB produced at M and N respectively. Join OS.
(i) Explain why OPNT is a cyclic quadrilateral.
(ii) Explain why OPSM is also cyclic.
(iii) Let $\theta=\angle$ OTS . Show that $\theta=\angle \mathrm{OMP}=\angle \mathrm{ONP}$
(iv) Hence, prove that $\mathrm{AM}=\mathrm{BN}$.

