\qquad

YEAR 11
 ASSESSMENT TASK 3
 2019

MATHEMATICS EXTENSION 1

General Instructions	- Reading time -5 minutes - Working time - 2 hours - Write using black pen - Calculators approved by NESA may be used - A separate reference sheet is provided - For questions in Section II, show relevant mathematical reasoning and/or calculations
Total marks: 85	Section I-5 marks - Attempt Questions 1-5 - Allow about 7 minutes for this section Section II - 80 marks - Attempt Questions 6-9 - Allow about 1 hours and 53 minutes for this section

The answers to all questions are to be returned in separate stapled bundles, clearly marked

 with Question 6, Question 7, etc., with your student number.
Question 1

Which set provides a solution to the inequality $|3 x-2| \geq|x+4|$?
A. $\left\{x:-\frac{1}{2} \leq x \leq 3\right\}$
B. $\left\{x: x \leq-\frac{1}{2}\right.$ or $\left.x \geq 3\right\}$
C. $\left\{x: x \leq-\frac{1}{2}\right\}$
D. $\{x: x \leq 3\}$

Question 2

Let $P(x)=x^{3}+3 x^{2}+a x+b$, where a and b are integers. When $P(x)$ is divided by $(x+1)$, the remainder is 4. When $P(x)$ is divided by $(x-1)$, the remainder is -2 .

What is the remainder when $P(x)$ is divided by $\left(x^{2}-1\right)$?
A. $4 x+2$
B. $-4 x-2$
C. $\quad 3 x-1$
D. $-3 x+1$

Question 3

The cubic equation $x^{3}+p x^{2}+q x+r=0$, where p, q and r are integers, has roots α, β and γ, such that $\alpha+\beta+\gamma=15$ and $\alpha^{2}+\beta^{2}+\gamma^{2}=83$.

What is the value of $p+q$?
A. 56
B. -56
C. -86
D. 86

Question 4

A team of six students is to be formed from a class of ten students. How many different teams can be formed if two particular students cannot both be selected for the team?
A. 252
B. 210
C. 168
D. 140

Question 5

What does the expression $\frac{\cos 3 x-\cos 5 x}{\sin 3 x+\sin 5 x}$ simplify to?
A. $\cot x$
B. $-\tan x$
C. $\tan x$
D. $-\cot x$
(a) Find the exact value of: $\sin \left(\sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{5}{13}\right)$

2

4
(b) If $\frac{\sin \theta}{1+\cos \theta}+\frac{\sin \theta}{1-\cos \theta}=4$, find the exact value of $\cot 2 \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$.
(c) Show that $\cos 37 \frac{1}{2}^{\circ} \sin 7 \frac{1}{2}^{\circ}=\frac{\sqrt{2}-1}{4}$, without using a calculator.
(e) Consider the function $f(x)=\frac{x-1}{x-2}$
(i) Show that $f^{-1}(x)=\frac{2 x-1}{x-1}$
(ii) Sketch f and f^{-1} on the same system of axes, showing any asymptotes and intercepts.
Clearly label your graphs.
(f) The speed, $V \mathrm{~m} \mathrm{~s}^{-1}$, of a parachute, t seconds after jumping from an aeroplane is modelled by the equation

$$
V=42\left(1-\frac{1}{e^{\frac{t}{\pi}}}\right)
$$

(i) Find the acceleration of the parachutist after $\boldsymbol{\pi}$ seconds, to two decimal places.
(ii) The parachute opens when it reaches a speed of $21 \mathrm{~m} \mathrm{~s}^{-1}$.

Find the exact time of falling before the parachute opens?
(g) Show that among the 900 students at James Ruse, at least 3 students share a birthday.
(a) For what values of x is the inequality $\frac{x}{x+1} \geq \frac{2}{x+3}$ satisfied? has a multiple root at $x=1$.
(c) The parametric equations of a curve are $x=\ln \left(1+t^{2}\right)$ and $y+1=\ln \left(1+2 t^{2}\right)$. Find the cartesian equation of the curve, and hence show that the x-intercept of the curve is $\ln \left(\frac{1+e}{2}\right)$.
(d) The graph of $y=f(x)$ is shown.

On separate systems of axes, draw the graph of

$$
\begin{array}{ll}
\text { (i) } & y=f(|x|) \\
\text { (ii) } y & =\sqrt{(f(x))^{2}}
\end{array}
$$

What is the probability of choosing a committee containing at least four girls?
(f) How many people would have to be in a school before it contained at least two people with the same first and last initials.
(a) \quad Solve for x and y :

$$
\begin{aligned}
& 2 \tan ^{-1} x-\cos ^{-1} y=\frac{\pi}{2} \\
& 3 \cos ^{-1} y+\tan ^{-1} x=\frac{5 \pi}{6}
\end{aligned}
$$

(b) Solve $\cos x-\cos 3 x=0$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(c) The graph of $y=f(x)$ is drawn below.

Draw a separate half-page graph for each of the following functions, showing all important features, asymptotes and intercepts.
(i) $y^{2}=f(x)$
(ii) $y=\frac{1}{f(x)}$
(d) At a particular dinner, each rectangular table has nine seats, five facing the stage and four with their backs to the stage.
(i) In how many ways can 9 people be seated at the table if John and Mary sit on the same side?
(ii) What is the probability of John and Mary sitting on opposite sides of the table?
(e) 10 points are placed randomly in a 1 by 1 square. Show that there must be some pair of points that are within $\frac{\sqrt{2}}{3}$ of each other.
(a) (i) If $t=\tan \theta$, show that $\tan 4 \theta=\frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}}$

3

(ii) Given the roots of $\tan 4 \theta=\cot \theta$ are $\theta=\frac{\pi}{10}$ and $\theta=\frac{3 \pi}{10}$.

Find the exact value of $\tan \frac{\pi}{10}$.
(b) If α, β and γ are the roots of $3 x^{3}+8 x^{2}-1=0$, find the value of $\left(\beta+\frac{1}{\gamma}\right)\left(\gamma+\frac{1}{\alpha}\right)\left(\alpha+\frac{1}{\beta}\right)$.
(c) A metal rod is taken from a freezer at $-8^{0} \mathrm{C}$ into a room where the air temperature is $22^{\circ} \mathrm{C}$. The rate at which the rod warms follows Newton's law, that is $\frac{d T}{d t}=-k(T-22)$ where k is a positive integer, time t is measured in minutes and temperature T in ${ }^{0} C$.
(i) Show that the function $T=22-A e^{-k t}$, where A is a constant, provides this rate of change.
(ii) Hence find the value of A
(iii) The temperature of the rod reaches $4^{\circ} \mathrm{C}$ in 90 minutes.

Find the exact value of k.
(iv) Find the temperature of the rod after another 90 minutes.

1
(d) Suppose a particular population of bacteria obeys the growth formula $P(t)=\frac{6000}{3+7 e^{-0.2 t}}$ where P is measured in milligrams and time t, in hours.
(i) Predict what the population will be as t gets very large.
(ii) If the population grows the fastest when $P(t)=1000$, find when this occurs, to 4 significant figures.
(c) Sketch the graph of $P(t)$, showing all important features.

END OF EXAMINATION

Question	6		7		8		9		Total
Functions		$/ 4$		$/ 18$		$/ 6$		$/ 3$	$/ 31$
Combinatorics		$/ 2$		$/ 2$		$/ 8$		-	$/ 12$
Trigonometric Functions		$/ 10$		-		$/ 6$		$/ 6$	$/ 22$
Calculus		$/ 4$		-		-		$/ 11$	$/ 15$
MCQ									$/ 5$
Total									

Justification for Q4: Students: X X X X X X X X A B
If neither A or $B: 28$ possibilities (8C6 from non A and B) If A or B: 112 possibilities ($8 \mathrm{C} 5 \times 2$)
Quation 6 \qquad
a) $\sin \left(\sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{5}{13}\right)$

$$
=\sin \left(\frac{\pi}{6}+\cos ^{-15 / 13}\right)
$$

$$
=\sin \frac{\pi}{6} \cdot \cos \left(\cos ^{-15} / 13\right)+\sin \left(\cos ^{-15} / 13\right) \cdot \cos \pi / 6
$$

$$
m=\frac{1}{2} \cdot \frac{5}{13}+\frac{12}{13} \cdot \frac{\sqrt{3}}{2}
$$

$$
m=\frac{5+12 \sqrt{3}}{26}
$$

$$
\alpha=\cos ^{-1} \frac{5}{73}
$$

$$
\text { b) } \frac{\sin \theta+\frac{\sin \theta}{1+\cos \theta}=4}{\sin \theta-\sin \theta \cos \theta+\sin \theta+\sin \theta \cos \theta} \frac{1-\cos ^{2} \theta}{}
$$

$1 m \xrightarrow{\text { domain restration }} \quad \frac{2 \sin \theta}{\cos \theta \neq 1 \therefore \theta \neq 0} \quad \sin ^{2} \theta \quad 4$

$$
\begin{array}{ll}
\cos \theta \neq 1 \therefore \theta \neq 0 & 2 \sin ^{2} \theta-\sin \theta=0 \\
(2 \sin i l a r) & \sin \theta(2 \sin \theta-1)=0
\end{array}
$$

$1 m \quad \sin \theta=0$ or $\sin \theta=\frac{1}{2}$ (for domain, $\theta=0^{\circ}, \frac{\pi}{6}$)

$$
\begin{aligned}
& \therefore \cot 2 \theta=\frac{1}{\tan 2 \theta=} 1-\tan ^{2} \theta \\
& 2 \tan \theta \\
&= 1-\left(\frac{1}{\sqrt{3}}\right)^{2} \\
& 2 / \sqrt{3} \\
&= \sqrt{3} / 3 \quad \text { only as cot } 2 \theta \text { undefi } \\
& m \quad \text { for } \theta=0
\end{aligned}
$$

(c) $\quad \cos 37 \frac{1}{2}^{\circ} \cdot \sin 7 \frac{1}{2}^{\circ}$

$$
\begin{aligned}
1 m & =\frac{1}{2}[\sin 45-\sin 30] \\
& =\frac{1}{2}\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right) \\
& =\frac{1}{2}\left(\frac{\sqrt{2}-1}{2 i}\right) \\
m & =\frac{1}{4}(\sqrt{2}-1)
\end{aligned}
$$

d) $\quad 2 y=\cos ^{-1} 2 x$

$$
1 m \begin{cases}\text { Range: } & 0 \leq 2 y \leq \pi \\ 0 \leq y \leq \frac{\pi}{2} \\ \text { Domain: } & -1 \leq 2 x \leq 1 \\ -\frac{1}{2} \leq x \leq \frac{1}{2}\end{cases}
$$

In for shape

$$
\begin{gather*}
\text { e) (1) } x=\frac{y-1}{y-2} \tag{in}\\
\\
\hline x y-2 x-y+1=0 \\
\\
y(x-1)=\frac{2 x-1}{x-1} \\
\therefore y=\frac{2 x-1}{x-1} \\
\\
\therefore f^{-1}(x)=\frac{2 x-1}{x-1}
\end{gather*}
$$

Note vertical tangents at $x= \pm \frac{1}{2}$

f) $\quad V=42\left(1-e^{-t / \pi}\right)$
(1) $a=\frac{d v}{d t}=\frac{42}{\pi} e^{-t / \pi}$
V. poorly done

$$
\begin{aligned}
\therefore a(\pi) & =\frac{42}{\pi} e^{-1} \\
& =\frac{42}{\pi_{e}} \\
& =4.9181 . .
\end{aligned}
$$

Need to be in

$$
\mathrm{m} \quad=4.92 \mathrm{~m} / \mathrm{s}^{2}
$$ $2 d \rho$.

m (11)

$$
\begin{aligned}
& 21=42\left(1-e^{-t / \pi}\right) \\
& -e^{-t / \pi}=-\frac{1}{2} \\
& \therefore t / \pi=\ln 2
\end{aligned}
$$

somestindents
$1 m$

$$
\therefore t=\pi \ln 2 \operatorname{se} .
$$

centime to five decimal places wait get the second mark

- If there are 366 students and 366 days, then ho student may share a birthday
However with 1 more, at least 2 students may.
Hence if $2 \times 366=732$ students at least 2 may.
1 m However with 1 more than 732 , at least 3 may
So with 900 students at least 3 may share a birthday, by the PHP.
[Similar argument if 365 days in a year are considered.
OR From $n=d q+r$,

$$
900=2 \times 366+168
$$

By PHP, at least $(2+1)$ students may share a birthday

MATHEMATICS Extension 1 : Question........
Suggested Solutions \quad Marks

Marker's Comments

(1) Inequality m in out
the restrictions
Since $x \neq-3$ or -1
$x<-3$ or $-2 \leqslant x<-1$ or $x \geqslant 1$
or
$\frac{x}{x+1} \geqslant \frac{2}{x+3}$

$$
\begin{aligned}
& \frac{x}{x+1}-\frac{2}{x+3} \geqslant 0 \\
& \frac{x^{2}+3 x-2 x-2}{(x+1)(x+3)} \geqslant 0 \\
& \frac{x^{2}+x-2}{(x+1)(x+3)} \geqslant 0 \\
& \frac{(x+2)(x-1)}{(x+1)(x+3)} \geqslant 0
\end{aligned}
$$

Since LHS has the same sign as $(x+3)(x+2)(x+1)(x-1)$ then draw polynomi
Anyone who multiplied both sides by terms that are not necessarily positive to begin with, will receive 2 maximum provided they did every thing else correctly.

MATHEMATICS Extension 1 : Question
a) Continued.

Don square both sides!!!
When solving $a^{2} \geqslant b^{2}$ you are solving for
$a>b$ (when a is positive) AND
$a<b$ (when a is negative)

$$
\begin{array}{r}
\text { b) let } f(x)=2 x^{3}-(2 a+1) x^{2}+(2+b) x-1 \\
f^{\prime}(x)=6 x^{2}-(4 a+2) x+(2+b) \\
f^{\prime}(1)=0 \Rightarrow 6(1)^{2}-(4 a+2)(1)+(2+b)=0 \\
6-4 a-2+2+b=0 \\
4 a-b=6-E q n 1 \\
2 a-2 a-1+2+b-1=0 \\
2 a-b=2-E q n 2
\end{array}
$$

$$
\text { Eqn } 1-E q_{n} 2 \rightarrow 2 a=4
$$

$$
a=2
$$

Sub $a=2$ into Eq 1 .

$$
2(2)-b=2
$$

$$
4-b=2
$$

$$
b=2
$$

$$
\begin{align*}
\therefore a & =2 \\
b & =2 \tag{1}
\end{align*}
$$

MATHEMATICS Extension 1 : Question.
c)

$$
\begin{array}{rr}
x=\ln \left(1+t^{2}\right) & y+1=\ln \left(1+2 t^{2}\right) \\
1+t^{2}=e^{x} & 1+2 t^{2}=e^{y+1} \\
t^{2}=e^{x}-1 & 2 t^{2}=e^{y+1}-1 \\
& t^{2}=\frac{e^{y+1}-1}{2}
\end{array}
$$

$$
\therefore e^{x}-1=\frac{e^{y+1}-1}{2}
$$

(1) Raising e to the power of both sides

Make t^{2} the subject for both equations

$$
2 e^{x}-2=e^{y+1}-1
$$

$$
2 e^{x}-e^{y+1}-1=0
$$

(1) Simplifying the constants from both sides
(1) for getting to the result without skipping steps

Note: Cartesian equation can be simplified to

$$
y=\operatorname{Ln}\left(2 e^{x}-1\right)-1
$$

but not necessary.

MATHEMATICS Extension 1: Question.
e) Total $=N(4$ girls $)+N\left(5 g_{i r} / s\right)+N\left(6 g_{i r} / s\right)$

$$
+N(7 \text { girls })
$$

$$
\begin{align*}
& =\left({ }^{7} C_{4} \times{ }^{5} C_{3}\right)+\left({ }^{7} C_{5} \times{ }^{5} C_{2}\right)+\left({ }^{7} C_{6} \times{ }^{5} C_{1}\right) \\
& +\left({ }^{7} C_{7} \times{ }^{5} C_{0}\right) \\
& =350+210+35+1 \\
& =596 \tag{1}
\end{align*}
$$

$$
N\left(n_{0} \text { restrictions }\right)={ }^{12} C_{7}=792
$$

f) There are 26 letters in the alphabet
\therefore There are 26^{2} different initials combinations
\therefore Number of students required

$$
\begin{aligned}
& =26^{2}+1 \\
& =676+1 \\
& =677
\end{aligned}
$$

*Students also received 1 mark for

$$
\begin{aligned}
& P=(4 \text { girls })+(5 \text { girls }) \\
& +(6 \text { girls })+\left(7_{\text {girl }}\right) \\
& { }^{12} C_{7}
\end{aligned}
$$

$$
\therefore \text { Probability }(\geqslant 4 \text { girls })=\frac{596}{792}=\frac{149}{198}
$$

\qquad
\qquad

$$
\square
$$

a)

$$
\begin{align*}
& 2 \tan ^{-1} x-\cos ^{-1} y=\pi / 2 \\
& 2 \tan ^{-1} x+6 \cos ^{-1} y=5 \pi / 3 \tag{2}\\
& \text { (2)-(1) } \quad \begin{aligned}
7 \cos ^{-1} y & =7 \pi / 6 \\
\cos ^{-1} y & =\pi / 6 \\
\therefore y & =\sqrt{3} / 2
\end{aligned}
\end{align*}
$$

Sub into (1):

$$
\begin{aligned}
2 \tan ^{-1} x & =\pi / 2+\pi / 6 \\
\tan ^{-1} x & =\pi / 3 \\
\therefore \quad x & =\sqrt{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \cos x-\cos 3 x=0 \\
& \cos (2 x-x)-\cos (2 x+x)=0 \\
& 2 \sin 2 x \cdot \sin x=0 \\
& \therefore \sin 2 x=0 \text { or } \sin x=0 \\
& 2 x=0, \pi,-\pi \text { or } x=0 \\
& \therefore x=0 \text { or } \pm \pi / 2
\end{aligned}
$$

1 eliminating x
1 exact value of y

d) 0000 facing stage:
 Jhas 5 to choose from M has 4 to choose from
backs to stage:
J has 4 to choose from
M has 3 to choose from
other 7 arranged in $7!$ ways
\therefore J\&M can be seated in $4 \times 3 \times 7$! $+5 \times 4 \times 7$!

$$
\begin{aligned}
& =7!(12+20) \\
& =161280 \text { ways }
\end{aligned}
$$

(ii) Method 1:

Total no. of arrangements $=9$!
P (J\&M on opposite sides)
$=1-P(J \& M$ on same side)

$$
=1-\frac{161280}{9!}
$$

$$
=5 / 9
$$

1 asymptotes and y-intercept of 1
$1(-1,1 / 2)$ as a minimum
shape and axes labelled
mostly well done.

1 no. of ways facing stage
1 no. of ways back to stage
method 2:
No. of ways $J \& M$ can be seated on opposite sides:

or

$$
\begin{aligned}
\text { No. of ways } & =4 \times 5 \times 7!+4 \times 5 \times 7! \\
& =40 \times 7! \\
& =201600
\end{aligned}
$$

P (J\&M on opposite sides)

$$
\begin{aligned}
& =\frac{201600}{9!} \\
& =\frac{5}{9}
\end{aligned}
$$

Divide the $\mid x /$ square into 9 smaller squares of size $\frac{1}{3} \times \frac{1}{3}$. Let the 10 points be the pigeons and the a smaller squares be the pigeonholes. Worst case scenario, 9 points are placed randomly inside the $1 x$ square So that there is one point in each smaller square, when a cloth point is placed inside the square there must now be
total arrangements

1 explanation of dividing Ix I square into smaller squares of size $\frac{1}{3} \times \frac{1}{3}$ units

1 use of pigeon hole Principle: 10 pigeons into 9 pigeonholes can be apart is when they are placed at either end of the diagonal in a $\frac{1}{3} \times \frac{1}{3}$ square

$$
\begin{aligned}
d^{2} & =\left(\frac{1}{3}^{2} \pm \frac{1}{3}^{2} \cdot\right. \text { by Pythagoras } \\
& =\frac{2}{9}
\end{aligned}
$$

$1 / 3$
\therefore There will be 2 points within $\frac{\sqrt{2}}{3}$ of each other
Notes: Many students were not consistent in the language used, interchanging between squares/spaces/boxes/minisquare. Consistent language is necessary. Many students did not account for the points being placed randomly inside the $|x|$ square and arranged the points around the square and then many fudged their answer. many explanations need so be worded better.

Pythagoras' Theorem with explanation and conclusion

MATHEMATICS Extension 1 : Question.......
Suggested Solutions
a) i) $R T P: \tan 4 \theta=\frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}}$

$$
\text { LBS }=\tan 4 \theta
$$

$$
\text { CHS }=
$$

\qquad

$$
\begin{aligned}
& =\frac{\tan 4 \theta}{1-\tan ^{2} 2 \theta} \\
& =\frac{2 \times \frac{2 t}{1-t^{2}}}{1-\left(\frac{2 t}{1-t^{2}}\right)^{2}}
\end{aligned}
$$

$$
=\frac{4 t}{1-t^{2}}
$$

$$
\begin{aligned}
& =\frac{4 t}{1-t^{2}} \frac{1-\frac{4 t^{2}}{\left(1-t^{2}\right)^{2}}}{4 t}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{4 t}{1-t^{2}}}{\frac{\left(1-t^{2}\right)^{2}-4 t^{2}}{\left(1-t^{2}\right)^{2}}} \\
& =\frac{4 t\left(1-t^{2}\right)^{2}}{\left(1-t^{2}\right)\left(\left(1-t^{2}\right)^{2}-4 t^{2}\right)} \\
& =\frac{4 t\left(1-t^{2}\right)}{1-2 t^{2}+t^{4}-4 t^{2}} \\
& =\frac{4 t\left(1-t^{2}\right)}{t^{4}-6 t^{2}+1}
\end{aligned}
$$

\Rightarrow shown some working towards final step.

MATHEMATICS Extension 1 : Question........
Suggested Solutions \quad Marks
Marker's Comments

$$
\begin{aligned}
& \therefore \tan ^{2} \theta=\frac{5 \pm 2 \sqrt{5}}{5} \\
& \tan \theta= \pm \sqrt{\frac{5 \pm 2 \sqrt{5}}{5}}
\end{aligned}
$$

since $\theta=\frac{\pi}{10}$ is a solution, $\tan \frac{\pi}{10}$ is in the list quadrant

$$
\begin{array}{r}
\therefore \tan \frac{\pi}{10}>0 \\
\therefore \tan \frac{\pi}{10}=\sqrt{\frac{5 \pm 2 \sqrt{5}}{5}}
\end{array}
$$

Now, $\tan \theta$ is an increasing function for $0 \leqslant \theta<\frac{\pi}{2}$,

$$
\begin{aligned}
& \therefore \tan \frac{3 \pi}{10}>\tan \frac{\pi}{10} \\
& \therefore \tan \frac{\pi}{10}=\sqrt{\frac{5-2 \sqrt{5}}{5}}
\end{aligned}
$$

$1 \Rightarrow$ correct solution!
b)

$$
\text { 0) } \left.\begin{array}{rl}
& 3 x^{3}+8 x^{2}-1=0 \\
\alpha+\beta+\gamma=-\frac{8}{3} \\
& \alpha \beta+\alpha \gamma+\beta \gamma=0 \\
& \left(\frac{\left.\beta+\frac{1}{\gamma}\right)\left(\gamma+\frac{1}{3}\right.}{\alpha}\right)\left(\alpha+\frac{1}{\beta}\right) \\
= & \left(\frac{\gamma \beta+1}{\gamma}\right)\left(\frac{\alpha \gamma+1}{\alpha}\right)-\left(\frac{\alpha \beta+1}{\beta}\right) \\
= & \frac{1}{\alpha \beta \gamma}\left(-\alpha-\gamma^{2}+\beta \gamma+\alpha \gamma+1\right)(\alpha \beta+1) \\
= & \frac{1}{\alpha \beta \gamma}\left(-\alpha^{2} \beta^{2} \gamma^{2}+\alpha \beta \gamma^{2}+\alpha \beta^{2} \gamma+\beta \gamma\right. \\
= & \alpha \beta \gamma+\alpha^{2} \beta \gamma+\alpha \gamma+\alpha \beta+1 \\
= & \frac{1}{3}+\frac{1}{3}\left(-\frac{8}{3}\right)+\alpha(\alpha+\beta+\gamma)+\alpha \beta+\alpha \gamma+\beta-1 \\
= & \frac{1}{3}+1 \\
= & \frac{2}{3}
\end{array}\right\}
$$

MATHEMATICS Extension 1 : Question.......
Suggested Solutions \quad Marks
Marker's Comments
c) i)

$$
\begin{aligned}
\frac{d T}{d t} & =(-k)\left(-A e^{-k t}\right) \\
& =(-k)\left(22-A e^{-k t}-22\right) \\
& =(-k)(T-22) \\
\quad T & =22-A e^{-k t} \text { is a solution } \\
\text { to } \frac{d T}{d t} & =(-k)(T-22)
\end{aligned}
$$

ii) when $t=0, T=-8$

$$
\begin{aligned}
-8 & =22-A e^{-k(0)} \\
A & =22+8 \\
A & =30
\end{aligned}
$$

$1 \Rightarrow$ show substitution
iii) when $t=90, T=4$

$$
\begin{aligned}
& 4=22-30 e^{-k(90)} \\
& 30 e^{-90 k}=18
\end{aligned}
$$

$$
e^{-90 k}=\frac{18}{30}
$$

$$
e^{-90 k}=\frac{3}{5}
$$

$$
-90 k=\ln \frac{3}{5}
$$

$$
k=\frac{-\ln \frac{3}{5}}{90}
$$

$$
\text { or } k=\frac{\ln \frac{5}{3}}{90}
$$

iv) when $t=180$

$$
\begin{aligned}
& \text { When } t=180 \\
& =22-30 e^{T \frac{\ln _{2}}{90}(180)} \\
& =11.2
\end{aligned}
$$

di) $P(t)=\frac{6000}{3+7 e^{-0.2 t}}$

$$
\begin{aligned}
& a s t \rightarrow \infty \\
& \therefore P(t) \rightarrow \frac{e^{-0.2 t} \rightarrow 00}{3} \\
&=2000 \\
& \therefore \text { as } t \rightarrow \infty P(t) \text { approaches } 2000
\end{aligned}
$$

