Moriah College

Mathematics Extension 1

2016 Preliminary Examination

General Instructions

- Reading time - 5 minutes
- Working time - 2 hour
- Write using black or blue pen
- Board-approved calculators may be used

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 20 minutes for this section

Section II

60 marks

- Attempt Questions 11-14

Section I

10 marks

Attempt Questions 1-10
Allow about 20 minutes for this section
Answer each question on the multiple choice answer sheet provided.

1)	If α and β are the roots of $2 x^{2}+3 x-6=0$, what is the value of $\alpha \beta$? (A) $\frac{-3}{2}$ (B) 3 (C) $\frac{3}{2}$ (D) $\quad-3$
2)	The quadratic equation $x^{2}+k x+k=0$ has its discriminant $\Delta=0$. The value of k is: (A) 4 (B) 0 or 4 (C) 0 or -4 (D) 0
3)	A) parabola has the equation $x^{2}=12(y-2)$. The ceordinates of the focus of this parabola are:
4)	Consider the function $y=\frac{4 x^{2}-2 x}{2 x^{2}+2 x}$ The value of $\lim _{x \rightarrow \infty}\left(\frac{4 x^{2}-2 x}{2 x^{2}+2 x}\right)$ is: (A) $\quad \infty$ (B) 2 (C) 0 (D) 4

5)	Again, consider the function $y=\frac{4 x^{2}-2 x}{2 x^{2}+2 x}$ The value of $\lim _{x \rightarrow 0}\left(\frac{4 x^{2}-2 x}{2 x^{2}+2 x}\right)$ is: (A) 0 (B) $\quad \infty$ (C) -1 (D) 1
6)	If $y=\left(x^{3}+1\right)^{5}$, then $\frac{d y}{d x}=$ (A) $\quad 15 x^{2}\left(x^{3}+1\right)^{4}$ (B) $\quad 5\left(x^{3}+1\right)^{4}$ (C) $\quad 5\left(3 x^{2}+1\right)^{4}$ (D) $\quad 15 x^{2}\left(3 x^{2}+1\right)^{4}$
7)	For a certain function, it is known that $\frac{d y}{d x}=(x-1)^{2}(x-2)$. The function has a minimum turning point at $x=2$. At $x=1$, the function has which of the following shapes: (A) (B) (C) (D)
	The function $y=2 x^{3}-24 x+1$ is concave down for (A) $\quad x<0$ (B) $\quad x>0$ (C) $-2<x<2$ (D) $x<-2$

Section I Questions 11-14 60 marks

Question 11 (15 marks)

(a) Solve the equation $\boldsymbol{x}^{3}+\frac{8}{x^{3}}=\mathbf{9}$ using the substitution $\boldsymbol{M}=\boldsymbol{x}^{3}$
(b) For what values of k is the quadratic expression $\boldsymbol{k} \boldsymbol{x}^{2}+\mathbf{4 x}+\boldsymbol{k}$ positive for all values of x (ie positive definite).
(c) Consider the function

$$
y=\frac{2 x+1}{4 x-3}
$$

Find the equation of the tangent to this curve at the point where $\boldsymbol{x}=\mathbf{1}$
(d) $\quad \alpha$ and β are the roots of the quadratic equation $\boldsymbol{x}^{2}-\boldsymbol{x}-\mathbf{1}=\mathbf{0}$
(i) Find the value of $\alpha^{2} \beta+\beta^{2} \alpha$
(ii) Show that $\alpha^{2}+\beta^{2}=3$
(iii) Find the value of $\alpha^{3}+\beta^{3}$

Question 12 (16 marks)

(a) Consider the function $y=x^{4}-\mathbf{1 8} x^{2}$
(i) Find the x-coordinates of all stationary points of this function.
(iii) Sketch the curve of this function, showing the coordinates of the stationary and inflexion point.
(iv) Hence, find the values of k such that the function $\boldsymbol{y}=\boldsymbol{x}^{4}-\mathbf{1 8} \boldsymbol{x}^{2}+\boldsymbol{k}$ has no x-intercepts.
(b) Consider the function $y=x \sqrt{6-x}$
(i) Show that the derivative is given by:

$$
\frac{d y}{d x}=\frac{12-3 x}{2 \sqrt{6-x}}
$$

(ii) By finding any turning points, determine the maximum and minimum values of the function for the restricted domain $\mathbf{2} \leq \boldsymbol{x} \leq \mathbf{6}$
(c) Aparabola has the equation $y=\frac{1}{8} x(x-8)$
(i) Find the vertex of this parabola.
(ii) Find the equation of the directrix of this parabola.

Question 13 (16 marks)

The point A is $(-\mathbf{2}, \mathbf{0})$ and the point B is $(\mathbf{6}, \mathbf{0})$.
(i) Find an expression for the distance $P B$ in ternis of x and y.
(ii) The point P moves so that the distance between P and B is three times the distance between P and A (ie $\boldsymbol{P B}=\mathbf{3 P A}$).

Show that the equation of the locus of P is given by the circle: 2

$$
x^{2}+6 x+y^{2}=0
$$

(iii) Find the centre of the circle.

(b)
(i) Find the discriminant of the quadratic equation $\boldsymbol{x}^{2}-\mathbf{2 x}+\boldsymbol{k}=\mathbf{0}$.
(ii) The line $\boldsymbol{y}=\boldsymbol{2 x}$ is a tangent to the parabola $\boldsymbol{y}=\boldsymbol{x}^{2}+\boldsymbol{k}$.

Draw a diagram showing the tangent and the parabola.
(iii) Using part (i), find the value of k.
(iv) Hence, find the coordinates of the point where the line touches the parabola.

Question 14 (13 marks)

(a) A rectangular sheet of cardboard measures 12 cm by 9 cm .

From two corners, squares of side $x \mathrm{~cm}$ are removed as shown.
The remaining cardboard is folded along the dotted lines to form a tray as shown.
The height of the tray is x and the length of the tray is $(12-x)$.

(i) Show that the volume, $V \mathrm{~cm}^{3}$, of the tray is given by.

$$
V=2 x^{3}-33 x^{2}+108 x
$$

(ii) Find the maximum volume of the tray
(iii) Find the range of values that the height x can take, in order for the tray to be able to be constructed.
(b) Let $P(x, y)$ be a variable point on the parabola $x^{2}=4 a y$, where a is the focal length.

(i) Let D be the distance $P A$.

Show that $D^{2}=y^{2}-4 a y+16 a^{2}$
(ii) Show that the minimum value of D occurs when P is thopoint $(\pm \mathbf{2} \sqrt{2} \boldsymbol{a}, \mathbf{2 a})$

Ext 1
Solutions MULTIPLE CHOICE
(1.)

D
(2.)

B
(3)

A
(4) B
(5) c
(6) A
(7) D
(8) A
(9)

B
(io) D
(ii) (a)

$$
\begin{aligned}
M=x^{3} \rightarrow M+\frac{8}{M} & =9 \\
M^{2}-9 M+8 & =0 \\
(M-8)(M-1) & =0 \\
M & =8 \text { OR } 1 \\
x^{3} & =8 \text { OR } 1 \\
\underbrace{x} & =2 \text { OR } 1
\end{aligned}
$$

(b) $\Delta=16-4 k^{2}$ and $a=k$

We need $16-4 k^{2}<0$ and $k>0$

$$
\begin{aligned}
& k^{2}>4 \\
& k<-2 \text { or } k>2 \\
& \text { Hence } \\
& k>2
\end{aligned} \text { and } k>0
$$

(c)

$$
\begin{array}{rlrl}
u & =2 x+1 & v=4 x-3 \\
u^{\prime}= & v^{\prime}=4 \\
\frac{d y}{d x} & =\frac{2(4 x-3)-4(2 x+1)}{(4 x-3)^{2}} \\
& =\frac{-10}{(4 x-3)^{2}}
\end{array}
$$

when $x=1, y=3$ and $\frac{d y}{d x}=-10$

$$
\text { Yangent } \longrightarrow y-3=-10(x-1)
$$

(d) (l)

$$
\begin{aligned}
\alpha \beta(\alpha+\beta) & =\frac{c}{a} \times \frac{-b}{a} \\
& =-1 \times 1
\end{aligned}
$$

(μ)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =1-2(-1)
\end{aligned}
$$

(m)

$$
\begin{aligned}
(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) & =1(3+1) \\
C & =4
\end{aligned}
$$

(12) (a) $\frac{d y}{d x}=4 x^{3}-36 x$ and $\frac{d^{2} y}{d x^{2}}=12 x^{2}-36$
(1) $\quad 4 x\left(x^{2}-9\right)=0 \rightarrow$ stationary points when

$$
C_{x}=0, \pm 3
$$

$(\mu) \quad 12\left(x^{2}-3\right)=0 \longrightarrow$ inflexion points when

$$
x= \pm \sqrt{3}
$$

(mi)

(iv) $(\hat{k}>81$ to rave the curve above x-axes.
(b) (c)

$(\mu) \quad \frac{d y}{d x}=0 \quad x=4$
($4,4 \sqrt{2}$) is a max. furx. pt

$$
\begin{aligned}
& x=2, y=4 \\
& x=6, y=0
\end{aligned}
$$

\therefore Max. value is $4 \sqrt{2}$
Min. value is 0
(c) $\quad y=\frac{1}{8} x^{2}-x$
(4) $\{$ ventex is $(4,-2)\}$

$$
\begin{aligned}
4 a & =8 \\
a & =2
\end{aligned}
$$

(4)

(13) (a)

(1) Cdistance $P_{B}=\sqrt{(x-6)^{2}+y^{2}}$
(u)

$$
\begin{align*}
\sqrt{(x-6)^{2}+y^{2}} & =3 \sqrt{(x+2)^{2}+y^{2}} \\
x^{2}-12 x+36+y^{2} & =9 x^{2}+36 x+36+9 y^{2} \\
8 x^{2}+48 x+8 y^{2} & =0 \\
x^{2}+6 x+y^{2} & =0
\end{align*}
$$ to this point

(μ)

$$
(x+3)^{2}+y^{2}=9
$$

Ccentre is $(-3,0)$
(b) (l) $\Delta=4-4 k$
(μ)

(ii) $x^{2}+k=2 x$ gives point(s) of intersection

$$
x^{2}-2 x+k=0
$$

$y=2 x$ is a tangent so $x^{2}-2 x+k=0$ has I root

$$
\therefore \quad 4-4 k=0 \quad \longrightarrow \quad r_{k}=1
$$

(IV) $\quad x^{2}-2 x+1=0 \rightarrow(x-1)^{2}=0 \rightarrow(1,2)$
(c) (1)
(u)

$$
\left.\left.\begin{array}{rl}
(n=3 \rightarrow L H S & =\left(1-\frac{1}{2^{2}}\right) \times\left(1-\frac{1}{3^{2}}\right)
\end{array}\right)=\frac{3}{4} \times \frac{8}{9}\right) ~=\frac{2}{3} ~=\frac{3+1}{2(3)}=1
$$

(mi) Assume $\left(1-\frac{1}{2^{2}}\right) \times\left(1-\frac{1}{3^{2}}\right) \times \cdots \times\left(1-\frac{1}{k^{2}}\right)=\frac{k+1}{2 k}$

$$
R+P \quad\left(1-\frac{1}{2^{2}}\right) \times \ldots \times\left(1-\frac{1}{k^{2}}\right) \times\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2(k+1)}
$$

LHS $=\frac{k+1}{2 k} \times\left(1-\frac{1}{(k+1)^{2}}\right)$ by assumption

$$
=\frac{k+1}{2 k} \times \frac{(k+1)^{2}-1}{(k+1)^{2}}
$$

$$
=\frac{k^{2}+2 k}{2 k(k+1)}
$$

$$
=\frac{k(k+2)}{2 k(k+1)}
$$

By principles of M.I. true for $x \geqslant 2$

$$
=\frac{k+2}{2(k+1)}
$$

$n=2$ case proven in part (i)
(iv) $\quad 1-\frac{1}{x^{2}}=\frac{9999}{10000} \longrightarrow x=100$
\therefore Value of product is $\frac{101}{200}$

$$
\begin{aligned}
& \sum=2 \rightarrow \text { HHS }=1-\frac{1}{2^{2}}=\frac{3}{4} \\
& \text { RHo }=\frac{2+1}{2(2)}=\frac{3}{4}
\end{aligned}
$$

(14) (a)
(1) urdth of tray $=9-2 x$

Hence, $V=x(12-x)(9-2 x)$

$$
\begin{aligned}
& =x\left(108-33 x+2 x^{2}\right) \\
\{V & =2 x^{3}-33 x^{2}+108 x
\end{aligned}
$$

(μ)

$$
\frac{d v}{d x}=6 x^{2}-66 x+108
$$

solving $6 x^{2}-66 x+108=0$
gives $\quad x^{2}-11 x+18=0$

$$
\begin{aligned}
&(x-9)(x-2)=0 \\
& x=2 \text { or } 9 \quad \text { (only } x=2 \text { is } \\
& \text { valid) }
\end{aligned}
$$

x	1	2	3
v^{\prime}	+	0	-

(m) of

$$
\begin{aligned}
& V=2 \times 10 \times 5 \\
& V=100 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) (c)

$$
\begin{aligned}
D^{2} & =(x-0)^{2}+(y-4 a)^{2} \\
& =x^{2}+y^{2}-8 a y+16 a^{2}
\end{aligned}
$$

But $x^{2}=4 a y$

(u) D^{2} is a quadratic function in y (ce y is the variable)

$$
\begin{aligned}
& \frac{d\left(b^{2}\right)}{d y}=2 y-4 a \\
& \text { solving } 2 y-4 a=0 \longrightarrow y=2 a
\end{aligned}
$$

Since D^{2} is concave up, $y=2 a$ grues a muxumum value of D^{2}. and hence D

Now when $y=2 a, x^{2}=4 a(2 a)$

$$
\begin{aligned}
& x^{2}=8 a^{2} \\
& x= \pm 2 \sqrt{2} a
\end{aligned}
$$

$$
\therefore \quad P \text { is }(\pm 2 \sqrt{2} a, 2 a)
$$

