Moriah College

Mathematics Extension 1

2016 Preliminary Examination

General Instructions

- Reading time 5 minutes
- Working time 2 hour
- Write using black or blue pen
- Board-approved calculators may be used

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 20 minutes for this section

Section II

60 marks

• Attempt Questions 11-14

Section I

10 marks Attempt Questions 1 - 10 Allow about 20 minutes for this section

Answer each question on the multiple choice answer sheet provided.

5)	Again, consider the function $y = \frac{4x^2 - 2}{2x^2 + 2}$	$\frac{2x}{2x}$			
	The value of $\lim_{x \to 0} \left(\frac{4x^2 - 2x}{2x^2 + 2x} \right)$ is:				
	(A) 0	(B) ∞			
	(C) -1	(D) 1			
6)	If $y = (x^3 + 1)^5$, then $\frac{dy}{dx} =$				
	(A) $15x^2(x^3+1)^4$	(B) $5(x^3+1)^4$			
	(C) $5(3x^2+1)^4$	(D) $15x^2(3x^2+1)^4$			
7)	For a certain function, it is known that $\frac{dy}{dx} = (x - 1)^2(x - 2)$. The function has a minimum turning point at $x = 2$. At $x = 1$, the function has which of the following shapes:				
	(A)	(B)			
	(C)	(D)			
8)	The function $y = 2x^3 - 24x + 1$ is con	cave down for			
	(A) $x < 0$	(B) $x > 0$			
	(C) $-2 < x < 2$	(D) $x < -2$			
/	ſ				

Section I Questions 11-14 60 marks

Question 11 (15 marks)

(a) Solve the equation
$$x^3 + \frac{8}{x^3} = 9$$
 using the substitution $M = x^3$ 3

- (b) For what values of k is the quadratic expression $kx^2 + 4x + k$ positive 3 for all values of x (ie positive definite).
- (c) Consider the function

$$y = \frac{2x+1}{4x-3}$$

Find the equation of the tangent to this curve at the point where x = 1 3

- (d) α and β are the roots of the quadratic equation $x^2 x 1 = 0$
 - (i) Find the value of $\alpha^2 \beta + \beta^2 \alpha$ 2
 - (ii) Show that $\alpha^2 + \beta^2 = 3$
 - (iii) Find the value of $\alpha^3 + \beta^3$

2

2

Question 12 (16 marks)

(a) Consider the function $y = x^4 - 18x^2$

- (b) Consider the function $y = x\sqrt{6-x}$
 - (i) Show that the derivative is given by:

$$\frac{dy}{dx} = \frac{12 - 3x}{2\sqrt{6 - x}}$$

(ii) By finding any turning points, determine the maximum and minimum values 3 of the function for the restricted domain $2 \le x \le 6$

2

Question 14 (13 marks)

(a) A rectangular sheet of cardboard measures 12cm by 9cm.

From two corners, squares of side x cm are removed as shown. The remaining cardboard is folded along the dotted lines to form a tray as shown. The height of the tray is x and the length of the tray is (12-x).

(i) Show that the volume, $V \,\mathrm{cm}^3$, of the tray is given by. 3

$$V = 2x^3 - 33x^2 + 108x$$

3

1

- (ii) Find the maximum volume of the tray
- (iii) Find the range of values that the height *x* can take, in order for the tray to be able to be constructed.

(b) Let P(x, y) be a variable point on the parabola x² = 4ay, where a is the focal length. Let A(0, 4a) be a point on the y-axis.
(i) Let D be the distance PA. Show that D² = y² - 4ay + 16a² 3
(ii) Show that the minimum value of D occurs when P is the point (±2√2a, 2a) 3

Ext 1	MULTIPLE	CHOICE
JOIUTIONS		

(1)	D	2.	В
3	А	(4)	В
(5)	С	6	A
(7)	D	(8)	A
(9)	R	(io)	D

(1) (a)
$$M = x^{3} \rightarrow M + \frac{8}{M} = 9$$

 $M^{2} - 9M + 8 = 0$
 $(M - 8)(M - 1) = 0$
 $M = 8 \text{ or } 1$
 $x^{3} = 8 \text{ or } 1$
 $(x = 2 \text{ or } 1)$

(b) $\Delta = 16 - 4k^2$ and a = k

We need $16 - tk^2 < 0$ and k > 0 $k^2 > 4$

k < - 2 or k > 2 and k > 0

Ellence k > 2

(c) u = 2x + 1 ; v = 4x - 3u' = 2 v' = 4

$$\frac{dy}{dx} = \frac{2(4x-3) - 4(2x+1)}{(4x-3)^2}$$
$$= \frac{-10}{(4x-3)^2}$$

when
$$x = 1$$
, $y = 3$ and $\frac{dy}{dx} = -10$
Yangent $\rightarrow y - 3 = -10 (x - 1)$
 $y = -10x + 13$

и

$$(d) \quad (u) \qquad \ll \beta \left(\varkappa + \beta \right) = \frac{c}{a} \times \frac{-b}{a}$$
$$= -1 \times 1$$
$$(= -1)$$

$$(\mu) \qquad \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$
$$= 1 - 2(-1)$$
$$\varepsilon = 3$$

$$(m) \quad (\alpha + \beta) (\alpha^2 - \alpha \beta + \beta^2) = 1 (3 + 1)$$

$$= 4$$

(2) (a)
$$\frac{dy}{dx} = 4x^3 - 36x$$
 and $\frac{d^3y}{dx^2} = 12x^2 - 36$
(1) $4x(x^2 - 9) = 0 \longrightarrow stahonary points when
 $[x = 0, \frac{23}{23}]$
(1) $12(x^2 - 3) = 0 \longrightarrow mflixion points when
 $[x = \frac{1}{2\sqrt{3}}]$
(11) $12(x^2 - 3) = 0 \longrightarrow mflixion points when
 $[x = \frac{1}{2\sqrt{3}}]$
(12) $\frac{-\sqrt{3}}{-\sqrt{3}} \xrightarrow{\sqrt{3}}$
(13) $\frac{-\sqrt{3}}{-\sqrt{3}} \xrightarrow{\sqrt{3}}$
(14) $\frac{-\sqrt{3}}{-\sqrt{3}} \xrightarrow{\sqrt{3}}$
(15) $\frac{-\sqrt{3}}{-\sqrt{3}} \xrightarrow{\sqrt{3}}$
(16) $\frac{-\sqrt{3}}{y} = x(6-x)^{\frac{1}{2}}$
(17) $\frac{1}{y} = x(6-x)^{\frac{1}{2}}$
(18) $\frac{1}{y} = x(6-x)^{\frac{1}{2}}$
(19) $\frac{1}{y} = x(6-x)^{\frac{1}{2}}$
(10) $\frac{1}{y} = x(6-x)^{\frac{1}{2}}$
(10) $\frac{1}{y} = x(6-x)^{\frac{1}{2}}$
(10) $\frac{1}{y} = \frac{1}{2\sqrt{6-x}}$
(12) $\frac{1}{2\sqrt{6-x}}$
(13) $\frac{1}{2\sqrt{6-x}}$
(14) $\frac{1}{y} = \frac{12-3x}{2\sqrt{6-x}}$
(15) $\frac{1}{2\sqrt{6-x}}$
(15) $\frac{1}{2\sqrt{6-x}}$$$$

(e) (i)
$$(n=2) \rightarrow LHS = 1 - \frac{1}{2^2} = \frac{3}{4}$$

RHS = $\frac{2+1}{2(2)} = \frac{3}{4}$

$$(u) \quad \underbrace{\{n=3\}}_{R=3} \rightarrow LHS = \left(1 - \frac{1}{2^2}\right) \times \left(1 - \frac{1}{3^2}\right) = \frac{3}{4} \times \frac{8}{9}$$
$$= \frac{2}{3}$$
$$RHS = \frac{3+1}{2(3)} = \frac{2}{3}$$

(iii) Assume $(1 - \frac{1}{2^2}) \times (1 - \frac{1}{3^2}) \times \dots \times (1 - \frac{1}{k^2}) = \frac{k+1}{2k}$

$$RTP \left(1-\frac{1}{2^{2}}\right) \times \dots \times \left(1-\frac{1}{k^{2}}\right) \times \left(1-\frac{1}{(k+1)^{2}}\right) = \frac{k+2}{2(k+1)}$$

$$LHS = \frac{k+1}{2k} \times \left(1-\frac{1}{(k+1)^{2}}\right) \quad by \text{ assumption}$$

$$= \frac{k+1}{2k} \times \frac{(k+1)^{2}-1}{(k+1)^{2}}$$

$$= \frac{k^{2}+2k}{2k(k+1)}$$

$$= \frac{k(-k+2)}{2k(k+1)}$$

$$= \frac{k+2}{2(k+1)}$$

$$= \frac{k+2}{2(k+1)}$$

$$1 - \frac{1}{n^2} = \frac{9999}{10000} \longrightarrow n = 100$$

E: Value of product is $\frac{101}{200}$

(14) (a)

(1) width of tray = 9-2x

Hence, $V = \chi (12 - \chi)(9 - 2\chi)$ = $\chi (108 - 33\chi + 2\chi^2)$ $V = 2\chi^3 - 33\chi^2 + 108\chi$

(u) $\frac{dV}{dx} = 6x^2 - 66x + 108$ solving $6x^2 - 66x + 108 = 0$ guins $x^2 - 11x + 18 = 0$ (x - 9)(x - 2) = 0x = 2 OR 9 (only x = 2 is

 $\frac{123}{123} \longrightarrow x = 2 \text{ gives a man. volume}$ $\int V = 2 \times 10 \times 5$ $\left(V = 100 \text{ cm}^3 \right)$

 $0 < \chi < \frac{9}{2}$ (m)

(b) (c)

$$= \chi^2 + \chi^2 - 8ay + 16a^2$$

But
$$x^2 = 4ay$$

 $\therefore D^2 = 4ay + y^2 - 8ay + 16a^2 \rightarrow (afficient for for full marks)$
 $D^2 = y^2 - 4ay + 16a^2$

(11)
$$D^2$$
 is a quadratic function in y (ie y is the variable)

$$\frac{d(b^2)}{dy} = 2y - 4a$$
solving $2y - 4a = 0 \longrightarrow y = 2a$
Since D^2 is concave up, $\{y = 2a \text{ gives a minimum} \\ nalue of D^2 ,
and hence $D$$

Now when
$$y = 2a$$
, $x^2 = 4a(2a)$
 $x^2 = 8a^2$
 $x = \pm 2\sqrt{2}a$
 $\therefore P$ is $(\pm 2\sqrt{2}a, 2a)$