Question 1 (12 Marks)

- a) Solve for x: $3^{2x} 10(3^x) + 9 = 0.$ 3
- b) A function f(x) is defined as follows.

$$f(x) = \begin{cases} 0 & \text{for } x < -2 \\ -2 & \text{for } -2 \le x < 0 \\ x+1 & \text{for } x \ge 0 \end{cases}$$

- i) Evaluate f(-1) + f(1).
- ii) Sketch the function.
- c) Solve the following for *x*.

i)
$$(x-3)(5-x) < 0$$
 2

ii)
$$\frac{x}{x-1} \ge 1$$
 3

Question 2 (12 Marks) Start a new page

- a) A parabola has equation $y^2 = 8x + 2y + 7$.
 - i) Express this equation in the form $(y y_I)^2 = 4a(x x_I)$.
 - ii) Draw a neat sketch of the parabola indicating the:
 - α . co-ordinates of the focus;
 - β . equation of the axis of symmetry;
 - γ . co-ordinates of all points of intersection of the parabola with the co-ordinate axes.
- b) The point P(-3, 8) divides the interval *AB* externally in the ratio k : 1. If *A* is the point (6, -4) and *B* is the point (0, 4), find the value of *k*.

c) If
$$\cos ec\theta = -\frac{13}{5}$$
 and $\cos\theta > 0$, find exact values of $\tan\theta$ and $\cos\theta$. 3

1

3

Marks

6

3

Question 3 (12 Marks) Start a new page

a) Evaluate
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{2x^2 + x - 1}$$
.

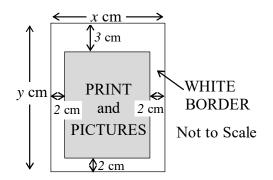
b) Differentiate $4x(5x^2-4)^3$ with respect to x leaving your answer in factorized form. 3

c) The function p(x) is defined by the rule $p(x) = (x - 1)(x^2 - 5)$.

- i) Find the real roots of the equation p(x) = 0.
- ii) Find the coordinates of the turning points of p(x), and determine whether they are maxima or minima.
- iii) Draw a sketch of the graph y = p(x), in the domain $-3 \le x \le 3$. 7

/Q4 ...Page 3

Page 2


Question 4 (12 Marks) *Start a new page*

a) Sketch the function given by
$$f(x) = \frac{x}{|x|}$$
 3

Page 3

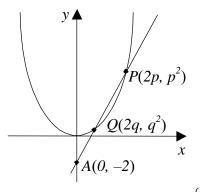
b) Shade the region in the cartesian plane which satisfies $y \le \sqrt{4-x^2}$ and $y \ge x^2 - 4$. 3

c) A children's picture book is being designed so that each page contains 320 square centimetres of print and pictures surrounded completely by a white border as illustrated in the figure below.

Each page is to have a border of width 2 centimetres at the bottom and on each side, as well as a border of width 3 centimetres at the top. Let the width of a page be x centimetres and its length be y centimetres.

6

i) Show that the area A square centimetres of one such page is given by $A = x(5 + \frac{320}{(x-4)})$


ii) Show that the page which fulfills all the printing requirements and which has the smallest area is 20 centimetres wide and 25 centimetres long.

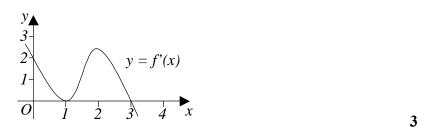
Marks

Question 5 (12 Marks) *Start a new page*

a) Determine the equation of the locus of the points P(x, y) equidistant from the y-axis and the point (1, 0).

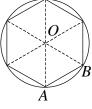
b)

i) Find the equations of the normals to the parabola $\begin{cases} x = 2t \\ y = t^2 \end{cases}$ at the points $P(2p, p^2)$ and


 $Q(2q, q^2)$, where $p \neq q$. Hence show that these normals intersect at the point R(X, Y) where X = -pq(p+q) and $Y = (p+q)^2 - pq + 2$.

- ii) If the chord PQ has gradient m and passes through the point A(0, -2) find, in terms of m, the equation of PQ. Hence show that p and q are the roots of the equation $t^2 2mt + 2 = 0$.
- iii) By considering the sum and the product of the roots of this quadratic equation show that the point R lies on the original parabola.
- iv) Find the least value of m^2 for which p and q are real. Hence find the set of possible values of the y co-ordinate of R.

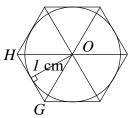
9


Question 6 (12 Marks) Start a new page

a)

The above diagram shows a sketch of the gradient function of the curve y = f(x). In your Writing Booklet, draw a sketch of the function y = f(x) given that f(0) = 0.

b)


A regular hexagon is drawn inside a circle with centre O so that its vertices lie on the circumference, as shown in the diagram. The circle has radius I cm.

- i) Prove that $\triangle OAB$ is equilateral.
- ii) Find the area of $\triangle OAB$ and hence find the area of this hexagon. Leave your answer in surd form.

2

2

Another regular hexagon is drawn outside the circle, as shown. The altitude of $\triangle OGH$ is 1 cm.

- iii) Find the area of $\triangle OGH$ and hence find the area of this outer hexagon. Leave your answer in surd form. 3
- iv) By considering the results in (ii) and (iii), explain why $\frac{3\sqrt{3}}{2} < \pi < 2\sqrt{3}$. 2

END OF PAPER

$$\frac{\mathcal{R} \text{ II } \text{ BUT ONE } \text{ PRELIM 2006}}{(De) 3^{2x} - 10(3^{2}) + 9 = 0} \text{ Let } N = 3^{x}}$$

$$\frac{u^{2} - 10(x + 9 = 0)}{(u - 9)(u - 1) = 0}$$

$$N = 1 \text{ or } 9 \cdot 0 \quad 3^{x} = 1 \text{ or } 3^{x} = 9,$$

$$x = 0 \text{ or } x = 2 \quad 0$$
b) $(i - 9)(i - 1) = 0$
(i)
$$\frac{1}{(1 - 9)(u - 1)} = 0 \quad 0$$
(i)
$$\frac{1}{(1 - 9)(u - 1)} = -2 + (1 + 1) = 0 \quad 0$$
(i)
$$\frac{1}{(1 - 1)} \quad 0 \text{ mark each},$$
Section includy
$$\frac{1}{(-1)} \quad 0 \text{ mark each},$$
Section includy
$$\frac{1}{(-1)} \quad 0 \text{ mark each},$$

$$\frac{1}{($$

4r 11 Prelim Ext 1 2006 $y^{2} = 8x + 2y + 7$ $y^{2} - 2y = 8x + 7$ $(y - 1)^{2} = 8x + 8$ Q2(a)(i)1 Mark-Completing the square Correctly $x^{2} = \frac{8(x+1)}{2}$ $\left(\begin{array}{c} \vdots \\ \vdots \end{array} \right)$ 1+212 focus: (1,1) Axis: y=1 \mathcal{X} $\left(-\frac{7}{8}, 0\right)$ 1-252 1 Mark: focus 1 Mark: axis 1 Mark: y-intercepts 1 Mark: x-intercept (based on answer for part(i)) $\chi_p = M\chi_2 + N\chi_1$ Mth 3 = k.0 + 1.6K+1 -3k-3 = 6 -3kK = - 7 $k = \pm 3$ (either accepted) Marks 3 one error (eg. swapped x, and x2 Marks 2 multiple errors, but tried to use correct method Mark Marks no idea

Q2. (c) $\cos \theta = -\frac{13}{5}$, $\cos \theta \ge 0$ $\therefore \sin \Theta = -\frac{5}{13}$ $x^2 = 13^2 - 5^2$ 13 -5 $\chi = 12$ ø x sind <0 S A COSO >0 4th quadrant 1 Mark E T - Quadrant $\tan \Theta = -\frac{5}{12}$ 1 Mark $\frac{12}{13}$ $\cos \Theta =$ 1 Mark

YII Prelim 06 Ext 1 Lin petation poor Lim = deduction of mark == no working & mark) $\frac{3 - \frac{2}{x} + \frac{1}{x^2}}{2 + \frac{1}{x} - \frac{1}{2^2}}$ lim X-700 3 6) 2 $(b) d 4x (5x^{1}-4)^{3}$ 4xx 3(5x- $10x + 4(s)c^{2} - 4$ product whe (1) L fre $= 4(5x^{2}-4)(30x^{2}+5x^{2}-4)$ 1 br fachrizats 4 (5x - 4) (35x -<u>یمد</u>د محمد (no product rule us marks). 3) $(c)_{ij}(x-i)(x^2-5)=0$ Mary (2)5 $\chi = 1$ ±15 $(ii) p'(x) = (x-1)2x + (x^2 - 5)$ $= 2x^2 - 2x + x^2 - 5$ $3x^2 - 2x - 5$ = (3x - 5)(x +stat pt when p(x) = 0 $\hat{a}(3x-5)(x+1)=0$ p''(x) = 6x - 2p(-1) = 8At 2=-1 = -8 < 0 i. max at (-1,8) NIQ. $p(\underline{s}) = -$ A-{ 2 = 127 $\rho^{\prime\prime}(\frac{z}{z}) = 8 > 0$ Ž., . Min <u>A</u> ŝ bright 1 theregets + end it <u>_</u>___ 2 (many nested rí extreme value) 8

Ţ

(b)(ii) Aread SAOB = $\frac{1}{2}$ abs. c = $\frac{1}{2} \times 1 \times 1 \times 560$ $=\frac{\sqrt{3}}{4}cm^{2}$ $\therefore Area d hexagon = 6 \times \frac{\sqrt{3}}{2}$ $= \frac{3\sqrt{3}}{2}$ (iii) $x = 6030^{\circ}$ $x = \frac{1}{6030^{\circ}}$, Area of outer leading $x = \frac{1}{6030^{\circ}}$, Area of outer leading $x = \frac{1}{5}$ $x = \frac{1}{5}$ = & X 17 = 2 53 eil (1v) Area of Circle = πr^{1} = πx^{2} = π Inner Hexagons < Ana fairle < Outer Hexagon $3\overline{3}$ < $\overline{11}$ < $2\overline{3}$ from (i) or inici)