a) Solve for x : $\quad 3^{2 x}-10\left(3^{x}\right)+9=0$.
b) A function $f(x)$ is defined as follows.

$$
f(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<-2 \\
-2 & \text { for } & -2 \leq x<0 \\
x+1 & \text { for } & x \geq 0
\end{array}\right.
$$

i) Evaluate $f(-1)+f(1)$.
ii) Sketch the function.
c) Solve the following for x.
i) $(x-3)(5-x)<0$
ii) $\frac{x}{x-1} \geq 1$
a) A parabola has equation $y^{2}=8 x+2 y+7$.
i) Express this equation in the form $\left(y-y_{1}\right)^{2}=4 a\left(x-x_{1}\right)$.
ii) Draw a neat sketch of the parabola indicating the:
α. co-ordinates of the focus;
β. equation of the axis of symmetry;
γ. co-ordinates of all points of intersection of the parabola with the co-ordinate axes.
b) The point $P(-3,8)$ divides the interval $A B$ externally in the ratio $k: 1$. If A is the point $(6,-4)$ and B is the point $(0,4)$, find the value of k.
c) If $\operatorname{cosec} \theta=-\frac{13}{5}$ and $\cos \theta>0$, find exact values of $\tan \theta$ and $\cos \theta$.

Question 3 (12 Marks) Start a new page
a) Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{2 x^{2}+x-1}$.
b) Differentiate $4 x\left(5 x^{2}-4\right)^{3}$ with respect to x leaving your answer in factorized form.
c) The function $p(x)$ is defined by the rule $p(x)=(x-1)\left(x^{2}-5\right)$.
i) Find the real roots of the equation $p(x)=0$.
ii) Find the coordinates of the turning points of $p(x)$, and determine whether they are maxima or minima.
iii) Draw a sketch of the graph $y=p(x)$, in the domain $-3 \leq x \leq 3$.
a) Sketch the function given by $f(x)=\frac{x}{|x|}$
b) Shade the region in the cartesian plane which satisfies $y \leq \sqrt{4-x^{2}}$ and $y \geq x^{2}-4$.
c) A children's picture book is being designed so that each page contains 320 square centimetres of print and pictures surrounded completely by a white border as illustrated in the figure below.

Each page is to have a border of width 2 centimetres at the bottom and on each side, as well as a border of width 3 centimetres at the top. Let the width of a page be x centimetres and its length be y centimetres.
i) Show that the area A square centimetres of one such page is given by

$$
A=x\left(5+\frac{320}{(x-4)}\right) .
$$

ii) Show that the page which fulfills all the printing requirements and which has the smallest area is 20 centimetres wide and 25 centimetres long.
a) Determine the equation of the locus of the points $P(x, y)$ equidistant from the y-axis and the point (1, 0).
b)

i) Find the equations of the normals to the parabola $\left\{\begin{array}{l}x=2 t \\ y=t^{2}\end{array}\right.$ at the points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$, where $p \neq q$. Hence show that these normals intersect at the point $R(X, Y)$ where $X=-p q(p+q)$ and $Y=(p+q)^{2}-p q+2$.
ii) If the chord $P Q$ has gradient m and passes through the point $A(0,-2)$ find, in terms of m, the equation of $P Q$. Hence show that p and q are the roots of the equation $t^{2}-2 m t+2=0$.
iii) By considering the sum and the product of the roots of this quadratic equation show that the point R lies on the original parabola.
iv) Find the least value of m^{2} for which p and q are real. Hence find the set of possible values of the y co-ordinate of R.
a)

The above diagram shows a sketch of the gradient function of the curve $y=f(x)$. In your Writing Booklet, draw a sketch of the function $y=f(x)$ given that $f(0)=0$.
b)

A regular hexagon is drawn inside a circle with centre O so that its vertices lie on the circumference, as shown in the diagram. The circle has radius 1 cm .
i) Prove that $\triangle O A B$ is equilateral.
ii) Find the area of $\triangle O A B$ and hence find the area of this hexagon. Leave your answer in surd form.

Another regular hexagon is drawn outside the circle, as shown. The altitude of $\triangle O G H$ is 1 cm .

iii) Find the area of $\triangle O G H$ and hence find the area of this outer hexagon. Leave your answer in surd form.
iv) By considering the results in (ii) and (iii), explain why $\frac{3 \sqrt{3}}{2}<\pi<2 \sqrt{3}$.

YR II EXT ONE PRELIM 2006
(1.) a)

$$
\begin{align*}
& 3^{2 x}-10\left(3^{x}\right)+9=0 \quad \text { Let } u=3^{x} \\
& u^{2}-10 u+9=0 \text { (1) } \\
& (u-9)(u-1)=0 \\
& n=1 \text { or } 9 . \text { (1) } \begin{array}{ll}
& 3^{x}=1 \text { or } 3^{x}=9 . \\
& x=0 \text { or } x=2
\end{array}
\end{align*}
$$

b) (i) $f(-1)+f(1)=-2+(i+1)=0$
(ii)

(1) mask each section includfy
c) (i) $(x-3)(5-x)<0$
$x>5$ or $x<3$
(1) Conect.
Regrows

(ii)

$$
\begin{aligned}
& \frac{x}{x-1} \geqslant 1 \\
& \times(x-1)^{2} \times(x-1)^{2} \\
& x(x-1) \geqslant(x-1)^{2} \\
& x^{2}-x \geqslant x^{2}-2 x+1 \\
& x \geqslant 1 \text { (1) } \\
& \text { BUT } x \neq 1 \quad \therefore x>1
\end{aligned}
$$

(1) Excludes $x=1$.

MARKERS COMMENT
a) Those recgrifang an equation reducible to quadratic completed well. Some dropped equal zen making an expression not an equation. some found n but failed to fund x.
b) Lots failed to evaluate $f(1)$ giving answer of $x-1$!
(i) Common mutates on graph were falluse to deal with endpoints citral values missing from ares
c) i) Many drew concave up parabola but then identified cone eth the region below x asps. Some confine to separate legoors with writing a single inequality with forte endpoint ie $3>x>5$!
(ii) Moot common mistake was failure to exclude $x=1$ form solution

Q2
(a)(i)

$$
\begin{aligned}
& \because y^{2}=8 x+2 y+7 \\
& \therefore y^{2}-2 y=8 x+7 \\
& \therefore(y-1)^{2}=8 x+8 \\
& \therefore(y-1)^{2}=8(x+1)
\end{aligned}
$$

$$
1 \text { Mark -final answer }
$$

(ii)

(b)

$$
\begin{aligned}
& \quad x_{p}=\frac{m x_{2}+n x_{1}}{m+n} \\
& \therefore-3=\frac{k 0+1.6}{k+1} \\
& \therefore-3 k-3=6 \\
& \therefore-3 k=9 \\
& \therefore k=-3
\end{aligned}
$$

| 3 Marks: | $k= \pm 3$ (either accepted) |
| :--- | :--- | :--- |
| 2 Marks | one error (eg. swapped x_{1} and x_{2}) |
| 1 Mark $:$ multiple errors, but tried to use correct method | |
| 0 Marks: no idea. | |

Q2. (C)

$$
\begin{aligned}
\operatorname{cosec} \theta & =-\frac{13}{5}, \cos \theta>0 \\
\therefore \sin \theta & =-\frac{5}{13}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=13^{2}-5^{2} \\
& x=12
\end{aligned}
$$

$$
\sin \theta<0
$$

$$
\cos \theta>0
$$

$\therefore 4^{\text {th }}$ quadrant

$$
\begin{aligned}
& \tan \theta=-\frac{5}{12} \\
& \cos \theta=\frac{12}{13}
\end{aligned}
$$

1 Mark
-Quadrant
1 Mark
Mark

03 III Prelim06 Ext 1
(a) $\lim _{x \rightarrow \infty} \frac{3-\frac{2}{x}+\frac{1}{x^{2}}}{2+\frac{1}{x}-\frac{1}{x^{2}}}=\frac{3}{2}$

L Lim nstation peor $\lim _{x \rightarrow \infty}=$ diductue of thaik $\frac{3}{2} n+\infty$
(b) $\frac{d}{d x} 4 x\left(5 x^{2}-4\right)^{3}=4 x \times 3\left(5 x^{2}-4\right)^{2} \times 10 x+4\left(5 x^{2}-4\right)^{3}$
product we (1)

$$
\begin{aligned}
& =4\left(5 x^{2}-4\right)^{2}\left(30 x^{2}+5 x^{2}-4\right) \\
& =\left(5 x^{2}-4\right)
\end{aligned}
$$

$$
\begin{equation*}
=4\left(5 x^{2}-4\right)^{21}\left(35 x^{2}-4\right) \tag{3}
\end{equation*}
$$

1 he dif.
Ifor fadianzat
(no pooduct ruce no marks)
(c) (i) $(x-1)\left(x^{2}-5\right)=0$

$$
x=1, \pm \sqrt{5}
$$

stll maxy $(-\sqrt{5}$!
exchudeng
(ii)

$$
\begin{aligned}
\rho^{\prime}(x) & =(x-1) 2 x+\left(x^{2}-5\right) \\
& =2 x^{2}-2 x+x^{2}-5 \\
& =3 x^{2}-2 x-5 \\
& =(3 x-5)(x+1)
\end{aligned}
$$

Stat pt when $p(x)=0$
i $(3 x-5)(x+1)=0$

$$
\begin{aligned}
& x=-1,5 / 3 \\
& p^{\prime \prime}(x)=6 x-2
\end{aligned}
$$

At $x=-1 \quad p(-1)=8$.

$$
p^{4}(-1)=-8<0
$$

$\therefore \underline{\text { max at }(-1,8)}$
$A t x=\frac{5}{3} \quad p\left(\frac{5}{3}\right)=-1 \frac{13}{27}$

$$
p^{\prime \prime}\left(\frac{5}{3}\right)=8>2
$$

in at $\left(\underline{5}+\sqrt{5},-\frac{13}{27}\right)$
$\sqrt{1} 1$ bungpts 1 itercentat and pt
(hany nuxed extictue value)

Q6a)

(b)

i) Prove that $\triangle \triangle A B$ io equilaleral

Nethof, -Geanetry

$$
\begin{aligned}
\text { Pugle at center } & =\frac{360}{6} \text { [regulertexagn] } \\
& =60^{\circ}
\end{aligned}
$$

as $\triangle O A B$ is sozedes $[O A=O B]$
Noter
Rearons muct be given. $\angle O A B=\angle O B A$ [ba ingle equal]

$$
\begin{array}{r}
\therefore 2 \angle O B A+60^{\circ}=180[c \text { surof } A] \\
\therefore \angle O B A=60^{\circ}, \angle O A B=60^{\circ}
\end{array}
$$

$$
\therefore \angle O B A=60, \angle O A B \text { is equilateral }
$$

$\frac{\text { Nethod } 2 \text {-Trigponanatry }}{0}$

$$
\begin{aligned}
A B^{2} & =1^{2}+1^{2}-2 \times 1 \times 16060^{\circ} \\
& =2-2 \times \frac{1}{2} \\
& =1
\end{aligned}
$$

$\therefore \triangle O A B$ is equilated.
(b) (ii)

$$
\begin{aligned}
\text { Arearaf } \triangle A O B & =\frac{1}{2} a b S c \\
& =\frac{1}{2} \times 1 \times 1 \times \operatorname{sic} 60 \\
& =\frac{\sqrt{3}}{4} \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Area of hexagon } & =6 \times \frac{\sqrt{3}}{4} \\
& =\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{1}{x}=\operatorname{Cos} 30^{\circ} \\
& \begin{aligned}
x & =\frac{1}{\cos 30^{\circ}} . \therefore \text { Areapfonterlecage } \\
& =\frac{1}{\delta 1 / 2}
\end{aligned} \\
& =\frac{1}{57 / 2} \\
& =\frac{2}{\sqrt{3}}=6 \times \frac{1}{2} \times \frac{2 \sqrt{3}}{3} \times \frac{2 \sqrt{3}}{3} \\
& x \sin 60^{\circ} \\
& =4 \times \frac{\sqrt{3}}{2} \\
& =2 \sqrt{3} \text { an }
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\text { Area of Circle } & =\pi r^{2} \\
& =\pi \times i^{2} \\
& =\pi
\end{aligned}
$$

Irrer Hea of

$$
\therefore \quad \frac{3 \sqrt{3}}{2}<\pi<2 \sqrt{3} \text { (iiom siici) }
$$

