Total marks (84) Attempt questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Questi	ion 1 (12 marks) Use a SEPARATE writing booklet.	Marks			
a)	Factorise $a^2 - 4b^2 + 2a + 4b$.	2			
b)	Solve $x^2 > 9x$.	2			
c)	Solve the following inequation				
	$\frac{x+1}{x-3} \le 2.$	3			
d)	Using the fact that $(\sqrt{x} + \sqrt{y})^2 = x + y + 2\sqrt{xy}$, express $11 + 4\sqrt{6}$ in the form $(\sqrt{x} + \sqrt{y})^2$.	2			
e)	Find the values of a, b, c given that $x^2 + x + 1 \equiv a(x-1)^2 + b(x-1) + c$.	3			
Questi	ion 2 (12 marks) Use a SEPARATE writing booklet.				
a)	By drawing appropriate straight lines on the same axes as the graph of $y = 2^x$,	3			
	(i) $2^{x} = x + 2$ (ii) $2^{x} = x - 2$ (iii) $2^{x} = 2 - x$				
b)	 (i) Sketch the graphs of y = x² - 2 and y = 3 on the same number plane. (ii) Write down the inequalities that simultaneously represent the region bounded by the two graphs. 	2 2			

c) A parabola has the equation $x^2 - 10x + 16y + 9 = 0$.

(i) Express this equation in the form $(x-h)^2 = -4a(y-k)$. 2

(ii) Draw a neat sketch of the parabola indicating the coordinates of the vertex and focus.

Newington College		ollege	Year 11 Ext 1 Mathematics	Final Preliminary	Final Preliminary 2007		
Quest	tion 3 (1	l2 marks)	Use a SEPARATE writing booklet.	Μ	larks		
a)	The line $3x + ky - 5 = 0$ makes an angle of 135° with the positive <i>x</i> axis.						
	(i)	Show that	the gradient of the line is $\frac{-3}{k}$.		1		
	(ii)	Find the va	lue of k .		2		
b)	Find in th	the coordina e ratio 1 : 3.	ttes of the point that divides the join o	of (-3, 2) and (5, 7) externally	3		
c)	Find 3r-	the perpendition $4y + 12 = 0$	icular distance between the pair of pa and $3x - 4y - 6 = 0$	rallel lines	3		
	[Hin	t: Find the cc	pordinates of a point on one of the lin	es.]			
d)	Prov	we that $x^2 + (x^2)$	(k-3)x - k = 0 has real roots for all v	values of <i>k</i> .	3		
Quest	tion 4 (12 marks)	Use a SEPARATE writing booklet.				
a)	A poi	nt $P(x,y)$ mov	ves in such a way that its distance fro	om $A(-2,1)$ is twice its	4		
	distan	ce from the p	point $B(2,1)$. Determine and describe	e the locus of the point $P(x,y)$.			
b)	Consi	der the point	$P(2ap, ap^2)$ on the parabola $x^2 = 4$	lay.			
	(i)	Show that t	the equation of the normal to the par	abola $x^2 = 4ay$ at the	2		
		point <i>P</i> is g	given by $x + py = 2ap + ap^3$.				
	(ii)	Find the eq	uation of the line which passes throu	ugh the focus $S(0, a)$ and	2		
		is perpendi	cular to the normal.				
	(iii)	If the line f	Found in part (ii) meets the normal at	<i>N</i> , find the coordinates	2		
		of <i>N</i> .					
	(iv)	Show that t	the locus of N is a parabola and find	its vertex.	2		

2

2

Question 5 (12 marks)Use a SEPARATE writing booklet.Marks

a) Solve
$$\sin 2\theta = \frac{\sqrt{3}}{2}$$
 for $0^\circ \le \theta \le 360^\circ$.

b) If
$$\sin \theta = p$$
, where θ is acute, find expressions for $\cos \theta$ and $\tan \theta$ in terms of p. 3

c) Solve for
$$0^{\circ} \le \theta \le 360^{\circ}$$
, to the nearest degree: $4 \sec^2 \theta - \tan \theta = 7$. 3

d) Solve for *x*:

$$x^2 - 5x + 2 + \frac{4}{5x - x^2 - 2} = 0.$$

Question 6 (12 marks) Use a SEPARATE writing booklet.

a)

The diagram shows the graph of y = f(x). **Copy or trace** this graph into your Writing Booklet. On the same set of axes draw the graph of y = f'(x).

- b) Let $y = x\sqrt{x}$. (i) Find $\frac{dy}{dx}$, leaving your answer in surd form.
 - (ii) Find the coordinates of the point on the graph of $y = x\sqrt{x}$ at which the **3** normal has a slope of $-\frac{1}{4}$.

Newington College

Marks

3

Question 6 continued.

c) If
$$f(x) = \frac{x-1}{\sqrt{2x+1}}$$
,
(i) show that $f'(x) = \frac{x+2}{\sqrt{(2x+1)^3}}$. 2

(ii) Show that
$$f(x)$$
 is an increasing function in the domain of x.

Question 7 (12 marks) Use a SEPARATE writing booklet.

a) Study the graph of $y = ax^4 + bx^3 + c$ shown below.

	(i)	Given	that $(1, 0)$ is a point of inflection, evaluate the constants a, b and c .	3			
	(ii)	Find t	he co-ordinates of W (the absolute maximum of the function).	2			
b)	Given that $y = \frac{2}{(x-1)(x-3)}$,						
		(i)	find the equations of all (horizontal and vertical) asymptotes	2			
		(ii)	find the y-intercept	1			
		(iii)	find the co-ordinates of any stationary point(s) and the nature of the stationary point(s). (You need not calculate the second derivative.)	2			
		(iv)	sketch the function showing all significant information.	2			

End of Examination

STANDARD INTEGRALS

 $\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x , \qquad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$ $\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

Note $\ln x = \log_e x, x > 0$

@1

Yr11 Ert1 2007

a)
$$(a-2b)(a+2b) + 2(a+2b) \vee$$

 $= (a+2b)(a-2b+2) \vee$
b) $\chi^{2} = 9\chi \qquad \chi \ge 0, \qquad \chi \ge 9 \vee$
 $\chi^{2} - 9\chi \ge 0 \vee$
 $\chi(\chi-9) \ge 0 \vee$
c) $\frac{\chi+1}{\chi^{-3}} \le 2$
 $\chi(\chi-3)^{2} \times (\chi-3)^{2}$
 $(\chi+1)(\chi-3) \le 2(\chi-3)^{2}$
 $0 \le 2(\chi-3)^{2} - (\chi+1)(\chi-3)$
 $0 \le (\chi-3)(2\chi-4\xi-\chi-1)$
 $0 \le (\chi-3)(2\chi-4\xi-\chi-1)$
 $0 \le (\chi-3)(2\chi-4\xi-\chi-1)$
 $0 \le (\chi-3)(2\chi-4\xi-\chi-1)$
 $d)$ $11 + 4\sqrt{6} = 11 + 2\sqrt{24} \qquad \chi = 8 \qquad y = 3 \vee$
 $\chi+y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi = 24 \vee$
 $x + y = 11 \qquad \chi$

- Marks i if answers were given without diagrams
- D Mark if correct diagram was given without answers
- 3 Marks for correct answers + diagram

6))

$$y = |x^{2} - 2| = 3$$

$$x^{2} - 2 = 3$$

$$x^{2} = 5$$

$$x = \pm \sqrt{5}$$

06763 -286262

D Mark for each graph. For the graph y= |x2-2] -JE and JE had to be shown and the y-intercept

D Mark for each inequality

c) $x^2 = 10x + 16y + 9 = 0$ $x^2 - 10x + 25 = -16y - 9 + 25$ - D Mark $(\infty-5)^2 = -1by+1b$ $(\infty - 5)^2 = -16(y-1)$ - D Mark vertex = (5, 1)() Mark for vertex focal length = 4 Mark for Ч \bigcirc shape (5,1) D Mark for vertes 0

2007 Yearl Preliminary

Question 3 (a) 3x+ky-5=0 (1) 3x + ky - 5 = 0ky = -3x + 5 $y = \frac{-3}{12}x + \frac{5}{12}$ (Imark) answer in gradient - intercept i tegradientis - 3 R ϕ $\phi = 135^{\circ}$ tan ϕ = m (n) $\tan 135^\circ = -\tan 45^\circ$ | mark for = -1 / tan 135°=-1 $\frac{-3}{12} = -1$ ~ (2marks) (b) (-3,2) (5,7) externally 1: -3 / for neg value. $P(x,y) = \begin{pmatrix} kx_2 + kz_1 \\ k+k \end{pmatrix} \begin{pmatrix} ky_2 + ky_1 \\ k+k \end{pmatrix} \qquad \text{imark} \\ \text{correct sub}.$ $= \left(\frac{1\times5+-3\times-3}{1+-3}, \frac{1\times7+-3\times2}{1+-3}\right) \vee$ $=\left(\frac{5+9}{-7},\frac{7-6}{-7}\right)$ I mark correct evaluate of your values sub. $= (-7, -\frac{1}{2})$ (3 martes) (c) 3x - 4y + 12 = 0 3x - 4y - 6 = 0when y=0 = -4 Finding grount on 1 is passed through (-4, 0) (a line (c) 3x - 4y + 12 = 0when y=0 = -4Perpendicular distance from (-4,0) to 3x-4y-6=0 $d = \left[\frac{ax_1 + by_1 + c}{1 - 2 - 1 - 2} \right]$ $\sqrt{a^2+b^2}$ I mark for correct sub of your values. = |3x - 4 + -4x0 - 6|32+(-+)2-

I mark correct evaluation of your values Question 3 (Bmanles) $\binom{c}{d} = \frac{1-12-6}{5}$ d = 18 (d) $x^2 + (k-3) = k = 0$ (3 marks) Real roots A 20 1. b2-4ac ≥0 Imark correct sob into (K-3)2-(4×1×-12) >0 V K2-6K+9+4K =0 k2-2k+9 20 k²-2k+1 +8 ≥0 I mark correct formation $(k-1)^2 + 8 \ge 0$ of perfect square. (K-1)2 >0 For all values of K So (k-1) + 8 ≥0 For all values of the 1 mark correct 1 2 2 + (K-3) 2 - K=0 has real conclusion roots for all values of K.

)

$$\begin{array}{c} (1) & (1-2) \\ (2) & (1-2) \\ (2) & (2+1) \\ (2+1$$

)

)

Yall Ext 1 Final 2007

d) Let
$$u = x^2 - 5x + 2$$

 $u + \frac{4}{-u} = 0$
 $-u^2 + 4 = 0$
 $u^2 - 4 = 0$
 $u = \pm 2$

$$\chi^{2} - 5\chi + 2 = 2$$

 $\chi^{2} - 5\chi = 0$
 $\chi(\chi - 5) = 0$
 $\chi = 0 \text{ or } 5$

$$\chi^{2} - 5\chi + 2 = -2$$

$$\chi^{2} - 5\chi + 4 = 0$$

$$(\chi - 4)(\chi - 1) = 0$$

$$\chi = 4 \text{ or } 1$$

Q6 (a)

$$T(z) = ax^{q} + bx^{3} + c$$
(i) $\frac{dy}{dx} = 4ax^{3} + 3b^{2}$

$$\frac{d^{2}y}{dx^{2}} = 12ax^{2} + 6bx$$

$$\frac{d^{2}y}{dx^{2}} = 0 \quad \text{for } fd = j \text{ infloating}$$

$$12ax^{2} + 6bx = 0$$

$$6x(2ax + 6b) = 0$$

$$x = -\frac{b}{2a}$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$6x(2ax + 6b) = 0$$

$$x = -\frac{b}{2a}$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$6x(2ax + 6b) = 0$$

$$x = -\frac{b}{2a}$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$6x(2ax + 6b) = 0$$

$$x = -\frac{b}{2a}$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$6x(2ax + 6b) = 0$$

$$x = -\frac{b}{2a}$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$6x(2ax + 6b) = 0$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$6x(2ax + 6b) = 0$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = 1 \quad 2a = -b \quad \text{or } b = -2a$$

$$(dx = -1)x$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i) (dx = 0 \quad 2a = -b \quad \text{or } b = -2a$$

$$(i$$

