Total marks (84)
Attempt questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
a) Factorise $a^{2}-4 b^{2}+2 a+4 b$.
b) Solve $x^{2}>9 x$.
c) Solve the following inequation

$$
\begin{equation*}
\frac{x+1}{x-3} \leq 2 \tag{3}
\end{equation*}
$$

d) Using the fact that $(\sqrt{x}+\sqrt{y})^{2}=x+y+2 \sqrt{x y}$, express $11+4 \sqrt{6}$ in the form $(\sqrt{x}+\sqrt{y})^{2}$.
e) Find the values of a, b, c given that $x^{2}+x+1 \equiv a(x-1)^{2}+b(x-1)+c$.

Question 2 (12 marks) Use a SEPARATE writing booklet.
a) By drawing appropriate straight lines on the same axes as the graph of $y=2^{x}$, determine the number of solutions for each of the following equations:
(i) $2^{x}=x+2$
(ii) $2^{x}=x-2$
(iii) $2^{x}=2-x$
b) (i) Sketch the graphs of $y=\left|x^{2}-2\right|$ and $y=3$ on the same number plane. 2
(ii) Write down the inequalities that simultaneously represent the region bounded by the two graphs.
c) A parabola has the equation $x^{2}-10 x+16 y+9=0$.
(i) Express this equation in the form $(x-h)^{2}=-4 a(y-k)$.
(ii) Draw a neat sketch of the parabola indicating the coordinates of the vertex and focus.

Question 3 (12 marks) Use a SEPARATE writing booklet.
a) The line $3 x+k y-5=0$ makes an angle of 135° with the positive x axis.
(i) Show that the gradient of the line is $\frac{-3}{k}$.
(ii) Find the value of k.
b) Find the coordinates of the point that divides the join of $(-3,2)$ and $(5,7)$ externally in the ratio $1: 3$.
c) Find the perpendicular distance between the pair of parallel lines
$3 x-4 y+12=0$ and $3 x-4 y-6=0$.
[Hint: Find the coordinates of a point on one of the lines.]
d) Prove that $x^{2}+(k-3) x-k=0$ has real roots for all values of k.

Question 4 (12 marks) Use a SEPARATE writing booklet.
a) A point $P(x, y)$ moves in such a way that its distance from $A(-2,1)$ is twice its distance from the point $B(2,1)$. Determine and describe the locus of the point $P(x, y)$.
b) Consider the point $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the normal to the parabola $x^{2}=4 a y$ at the point P is given by $x+p y=2 a p+a p^{3}$.
(ii) Find the equation of the line which passes through the focus $S(0, a)$ and is perpendicular to the normal.
(iii) If the line found in part (ii) meets the normal at N, find the coordinates of N.
(iv) Show that the locus of N is a parabola and find its vertex.

Question 5 (12 marks) Use a SEPARATE writing booklet.
a) Solve $\sin 2 \theta=\frac{\sqrt{3}}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
b) If $\sin \theta=p$, where θ is acute, find expressions for $\cos \theta$ and $\tan \theta$ in terms of p.
c) Solve for $0^{\circ} \leq \theta \leq 360^{\circ}$, to the nearest degree: $4 \sec ^{2} \theta-\tan \theta=7$.
d) Solve for x :

$$
x^{2}-5 x+2+\frac{4}{5 x-x^{2}-2}=0 .
$$

Question 6 (12 marks) Use a SEPARATE writing booklet.
a)

The diagram shows the graph of $y=f(x)$.
Copy or trace this graph into your Writing Booklet.
On the same set of axes draw the graph of $y=f^{\prime}(x)$.
b) Let $y=x \sqrt{x}$.
(i) Find $\frac{d y}{d x}$, leaving your answer in surd form.
(ii) Find the coordinates of the point on the graph of $y=x \sqrt{x}$ at which the normal has a slope of $-\frac{1}{4}$.

Question 6 continued.

c) If $f(x)=\frac{x-1}{\sqrt{2 x+1}}$,
(i) show that $f^{\prime}(x)=\frac{x+2}{\sqrt{(2 x+1)^{3}}}$.
(ii) Show that $f(x)$ is an increasing function in the domain of x.

Question 7 (12 marks) Use a SEPARATE writing booklet.
a) Study the graph of $y=a x^{4}+b x^{3}+c$ shown below.

(i) Given that (1,0$)$ is a point of inflection, evaluate the constants a, b and c.
(ii) Find the co-ordinates of W (the absolute maximum of the function).
b) Given that $y=\frac{2}{(x-1)(x-3)}$,
(i) find the equations of all (horizontal and vertical) asymptotes
(ii) find the y-intercept $\mathbf{1}$
(iii) find the co-ordinates of any stationary point(s) and the nature of the stationary point(s). (You need not calculate the second derivative.)
(iv) sketch the function showing all significant information.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Q1
a) $(a-2 b)(a+2 b)+2(a+2 b)$

$$
=(a+2 b)(a-2 b+2)
$$

b)

$$
\begin{aligned}
& x^{2}>9 x \\
& x^{2}-9 x>0 \\
& x(x-9)>0
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{x+1}{x-3} \leq 2 \\
& x(x-3)^{2} \quad x(x-3)^{2} \\
& (x+1)(x-3) \leq 2(x-3)^{2} \\
& 0 \leq 2(x-3)^{2}-(x+1)(x-3) \\
& 0 \leq(x-3)(2 x-6-x-1) \\
& 0 \leq(x-3)(2 x-7)
\end{aligned}
$$

d)

$$
\begin{aligned}
& 11+4 \sqrt{6}=11+2 \sqrt{24} \quad x=8 \quad y=3 \\
& x+y=11 \quad x y=24
\end{aligned}
$$

e)

$$
x^{2}+x+1 \equiv a(x-1)^{2}+b(x-1)+c
$$

$$
\begin{equation*}
a-b=-2 \tag{1}
\end{equation*}
$$

$$
\begin{array}{lll}
\text { Let } x=0 & 1=a-b+c & a+b
\end{array}=4
$$ methord

Question 2

(1) 2
(iI) 0
(III) 1
b) 1)

$$
\begin{gathered}
y=\left|x^{2}-2\right|=3 \\
x^{2}-2=3 \\
x^{2}=5 \\
x= \pm \sqrt{5} \\
0 \leqslant y \leqslant 3 \quad-\sqrt{5} \leqslant x \leqslant \sqrt{5}
\end{gathered}
$$

(a) Marks.. if answers were given without diagrams
(1) Mark if correct diagram was given iothout answers
(3) Marks for correct answers + diagram
(1) Mark for each graph. For the graph $y=\left|x^{2}-2\right|$ $-\sqrt{2}$ and $\sqrt{2}$ had to be shown and the y-intercept
(1) Mark for each inequality
c)

$$
\begin{aligned}
& x^{2}-10 x+16 y+9=0 \\
& x^{2}-10 x+25=-16 y-9+25 \\
&(x-5)^{2}=-16 y+16 \\
&(x-5)^{2}=-16(y-1)
\end{aligned}
$$

vertex $=(5,1)$
focal length $=4$

- (1) Mark
- (1) Mark
(1) Mark for vertex
(1) Mark for \downarrow and shape
(1) Mark for vertex

2067 Yearly Preliminary

Question 3
(a) $3 x+k y-5=0$
(1) $3 x+k y-5=0$

$$
\begin{aligned}
k y & =-3 x+5 \\
y & =-\frac{3}{k} x \frac{5}{k}
\end{aligned}
$$

\therefore The gradient is $-\frac{3}{k}$
(mark) answer in gradient-inteicept
(11)

$$
\begin{aligned}
& \theta=135^{\circ} \\
& \tan \theta=m \\
& \tan 135^{\circ}=-\tan 45^{\circ} \quad 1 \\
&=-1 \quad \text { mark for } \\
& \tan 135^{\circ}=-1
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \frac{-3}{k} & =-1 \\
\therefore \quad k & =3
\end{aligned}
$$

$\checkmark\left(\sum_{\text {fork }} \operatorname{manks}\right)$
(b) $(-3,2)(5,7)$ externally $1:-3$ tank for neg valve.

$$
\begin{aligned}
& P(x, y)=\left(\frac{k x_{2}+h x_{1}}{k+h}, \frac{k y_{2}+h y_{1}}{k+h}\right) \\
& =\left(\frac{5+9}{-2}, \frac{7-6}{-2}\right) \\
& =\left(-7,-\frac{1}{2}\right) \\
& \text { I mark correct evaluate } \\
& \text { of year valves sob. } \\
& \text { (3mantcs) }
\end{aligned}
$$

(c) $3 x-4 y+12=0$
when $y=0 \quad x=-4$

$$
3 x-4 y-6=0
$$

\therefore passes through $(-4,0)$ Finding point on)

Perpendicular distance from $(-4,0)$ to $3 x-4 y-6=0$

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|3 x-4+-4 \times 0-6|}{\sqrt{3^{2}+(-x)^{2}}}
\end{aligned}
$$

1 mark for comect sub of your valves.

Question 3

$$
\begin{aligned}
& (c)=\frac{|-12-6|}{5} \\
& d=\frac{18}{5}
\end{aligned}
$$

1 mark correct evaluation of your valves

(d) $x^{2}+(k-3) x-k=0$

Real roots $\Delta \geqslant 0$

$$
\begin{aligned}
& \quad \therefore b^{2}-4 a c \geqslant 0 \\
& \quad(k-3)^{2}-(4 \times 1 \times-k) \geqslant 0 \\
& k^{2}-6 k+9+4 k \geqslant 0 \\
& k^{2}-2 k+9 \geqslant 0 \\
& k^{2}-2 k+1+8 \geqslant 0 \\
& (k-1)^{2}+8 \geqslant 0
\end{aligned}
$$

1 mark correct formation of perfect square.

I mark correct sob into Δ

$$
(k-1)^{2} \geqslant 0 \quad \text { For all values of } k \text {) }
$$

So $(k-1)+8 \geqslant 0$ For all salver 4
$\therefore x^{2}+(k-3) x-k=0$ has real
 roots for all valves of k.

Question 4
(a) $A(-2,1) \quad B(2,1)$

Let $P(x, y)$ be any point of the locus.
Condition of lows

$$
\begin{aligned}
& \text { * } A P=2 B P \\
& \sqrt{(x+2)^{2}+(y-1)^{2}}=2 \sqrt{(x-2)^{2}+(y-1)^{2}} \\
& 1 \text { mark correct } \\
& \text { conditions } \\
& \text { locus. } \\
& (x+2)^{2}+(y-1)^{2}=4\left((x-2)^{2}+(y-1)^{2}\right) \\
& x^{2}+4 x+4+y^{2}-2 y+1=4\left(x^{2}-4 x+4+y^{2}-2 y+1\right) \\
& x^{2}+4 x+y^{2}-2 y+5=4 x^{2}-16 x+16+4 y^{2}-8 y+4 \\
& 1 \text { mark for comet } \\
& \text { expansion + putting } \\
& \text { on lite equal tor } \\
& \begin{array}{r}
3 x^{2}-20 x+3 y^{2}-6 y+15=0 \\
x^{2}-\frac{20}{3} x+y^{2}-2 y+5=0
\end{array} \\
& x^{2}-\frac{20}{3} x+\frac{100}{9}+y^{2}-2 y+1=-5+\frac{100}{9}+1 \\
& \begin{array}{ll}
\left(x-\frac{10}{3}\right)^{2}+(y-1)^{2} & =-4+11 \frac{1}{9} \\
\left(x-\frac{10}{3}\right)^{2}+(y-1)^{2} & =7 \frac{1}{9}=\frac{64}{9}
\end{array}
\end{aligned}
$$

\therefore Circle centre $\left(\frac{10}{3}, 1\right)$ radius $=\frac{8}{3}$ 1 mark for description and details.
$(b)(1)$

$$
\begin{align*}
x^{2} & =4 a y \\
y & =\frac{x^{2}}{4 a} \tag{2}\\
\frac{d y}{d x} & =\frac{x}{2 a}
\end{align*}
$$

Gradient of tangent at $P\left(2 a p, a p^{2}\right)$

$$
\therefore m=p
$$

Gradient of normal at P
1 mark for finding correctly the gradient.

$$
\therefore m=\frac{-1}{p}
$$

Question 4
Imerk for gradient
(b) (ii) equation line through $s(0, a) \quad m=p$

$$
\begin{aligned}
& y-a=p(x-0) \\
& \therefore y=p x+q
\end{aligned}
$$

(iii) Solve simultanearsly

$$
\begin{align*}
& y=p x+a \\
& x+p y=2 a p+a p^{3} \tag{2}
\end{align*}
$$

sub (1) into (2)

$$
\begin{align*}
x+p(p x+a) & =2 a p+a p^{3} \\
x+p^{2} x+p a & =2 a p+a p^{3} \\
\left.x+p^{2}\right) & =a p^{3}+a p \tag{2}\\
x & =\frac{a p\left(p^{2}+1\right)}{\left(1+p^{2}\right)} \\
\therefore x & =a p
\end{align*}
$$

Sob (3) in (1)

$$
\begin{aligned}
& y=p(a p)+a \\
& y=a p^{2}+a
\end{aligned}
$$

check in (2)

$$
\begin{aligned}
& a p+p\left(a p^{2}+a\right) \\
& =a p+a p^{3}+a p
\end{aligned}
$$

1 mark for y valve bot t y had to be simplified.
$\therefore N$ has te coordinates ($a p, a p^{2}+q$)
N Locus of N (ap, $\left.a p^{2}+a\right)$...Imark for

$$
\begin{array}{rlrl}
\therefore x & =a p & y & =a p^{2}+a \\
p & =\frac{x}{a} & y & =a\left(\frac{x}{a}\right)^{2}+a \\
a & =\frac{x}{p} & y & =\frac{x^{2}}{a}+a
\end{array}
$$ the equation of to locus.

\therefore The locus is a parabola.
The vertex is $(0, a)$

1 mark for the vertex.

Q5
a)

$$
2 \theta=60,120,420,480
$$

$$
\therefore \theta=30,60,210,
$$

b)

$$
\sin \theta=\rho \quad \cos \theta=\sqrt{1-\rho^{2}}
$$

$$
\tan \theta=\frac{\rho}{\sqrt{1-\rho^{2}}}
$$

$$
\begin{array}{cll}
\sin ^{2} \theta+\cos ^{2} \theta=1 & \sqrt{1-\rho^{2}} & \tan \theta=\frac{-3}{4} \\
\tan ^{2} \theta+1=\sec ^{2} \theta & 4 \sec ^{2} \theta-\tan \theta=7 & \\
c) & & \theta=143^{\circ} \text { or } 323^{\circ} \\
& 4\left(\tan ^{2} \theta+1\right)-\tan \theta-7=0 \\
& 4 \tan ^{2} \theta-\tan \theta-3=0 & \\
& (4 \tan \theta+3)(\tan \theta-1)=0 & \theta=1
\end{array}
$$

d) Let $u=x^{2}-5 x+2$

$$
\begin{gathered}
u+\frac{4}{-u}=0 \\
-u^{2}+4=0 \\
u^{2}-4=0 \\
u= \pm 2
\end{gathered}
$$

$$
\begin{gathered}
x^{2}-5 x+2=2 \\
x^{2}-5 x=0 \\
x(x-5)=0 \\
x=0 \text { or } 5 \\
x^{2}-5 x+2=-2 \\
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
x=4 \text { or } 1
\end{gathered}
$$

$26(a)$

(b) (i)

$$
\begin{aligned}
y & =x \sqrt{x} \\
& =x^{3 / 2} \\
\frac{d y}{d x} & =\frac{3}{2} x^{\frac{1}{2}} \\
& =\frac{3 \sqrt{x}}{2}
\end{aligned}
$$

(ii) If Nomalinos $m=-\frac{1}{4}$

Tanget hos $m=4$
\therefore let $\frac{3 \sqrt{x}}{2}=4$

$$
\sqrt{2}=\frac{8}{3}
$$

$$
x=\frac{64}{9}
$$

\therefore Cordinds are $\left(\frac{64}{9}, \frac{512}{27}\right)$
(18.90)
(e)
(i)

$$
\begin{aligned}
f(x) & =\frac{x-1}{\sqrt{2 x+1}} u \\
f^{\prime}(x) & =\frac{\sqrt{2 x+1} \cdot 1-(x-1) \cdot \frac{1}{\sqrt{2 x+1}}}{(\sqrt{2(1+1)})^{2}}-(x-1) \\
& =\frac{(2 x+1)}{(2 x+1) \sqrt{2 x+1}} \\
& =\frac{x+2}{\sqrt{(2 x+1)^{3}}}
\end{aligned}
$$

(ii) Show that $f^{\prime}(x)>0$ in the domain of x

Domain $2 x+1>0$ Now as $x+2>0$ if $x>-\frac{1}{2}$

Noto: Mouks were

$$
\begin{aligned}
& 2 x+1>0 \quad y x>-\frac{1}{2} \\
\therefore & f^{\prime}(x)=\frac{\sqrt{x}+2}{(x+1)^{3}}
\end{aligned}
$$

avareded if sitidento comectly atempted to find Stat ath i nature.

Ta) $y=a x^{4}+b x^{3}+c$
(i)

$$
\begin{aligned}
& \frac{d y}{d x}=4 a x^{3}+3 b x^{2} \\
& \frac{d^{2} y}{d x^{2}}=12 a x^{2}+6 b x
\end{aligned}
$$

Let $\frac{d^{2} y}{d x^{2}}=0$ for Ptof inflestoin

$$
\begin{aligned}
& 12 a x^{2}+6 b x=0 \\
& 6 x(2 a x+6 b)=0 \\
& x=-\frac{b}{2 a} \\
& \text { let } x=1 \quad \therefore 2 a=-b \quad \text { or } b=-2 a
\end{aligned}
$$

as $c=-1 \quad$ (from graph)
$\therefore P(1,0)$ ratifies $y=a x^{4}+b x^{3}+c$

If $(2,0)$ is used
then $c=-1, a=-\frac{7}{8}, b=\frac{15}{8}$

$$
\begin{gathered}
0=a+b-1 \\
\therefore a+b=1
\end{gathered}
$$

$$
\therefore a-2 a=1
$$

(ii) \&t $\frac{d y}{d x}=0$ $a=-1$

$$
4 a x^{3}+3 b x^{2}=0
$$

$$
b=2
$$

$$
\begin{gathered}
\therefore-4 x^{3}+6 x^{2}=0 \\
-2 x^{2}(2 x-3)=0 \\
\therefore x=0,3 / 2 \quad \text { Take } \\
\therefore W\left(3 / 2, \frac{11}{16}\right)
\end{gathered}
$$

$$
c=-1_{k}
$$

$$
\begin{aligned}
& (2 x-3)=0 \\
& \therefore x=0,3 / 2 \quad \text { Take } x=3 / 2 \\
& \therefore y=
\end{aligned}
$$

$$
\begin{aligned}
& x=3 / 2 \\
& \therefore y=-(3 / 2)^{4}+2(3 / 2)^{3}-1 \\
&=-\frac{81}{16}+\frac{27}{4}-1
\end{aligned}
$$

Tb) $y=\frac{2}{(x-1)(x-3)}$
(i) Vential aryaplates: $x=1, x=3 \quad(B, t)$

Horingatel asymplote: $y=0$
(ii) y int occurs wher $x=0$

$$
\begin{aligned}
y & =\frac{2}{-1 x-3} \\
& =\frac{2}{3}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(x-1)(x-3) \cdot 0-2[(x-1) \cdot 1+(x-3) \cdot 1]}{(x-1)^{2}(x-3)^{2}} \\
& =\frac{-2[2 x-4]}{(x-1)^{2}(x-3)^{2}} \\
& =\frac{-4[x-2]}{(x-1)^{2}(x-3)^{2}}
\end{aligned}
$$

Tust:
Stpts oceur when $\frac{d x}{x x}=0 \quad \therefore x=2$

$$
\therefore \text { Coordiates }(2,-2)
$$

$$
\therefore \operatorname{MaxT} P
$$

x	1.9	2	2.1
$\frac{d y}{d x}$	+1	0	-
$/$			

