QUESTION 1 (10 MARKS) Start this question on a new page.
(a) Simplify $\frac{1}{\sqrt{3}+2}-\frac{1}{\sqrt{3}-2}$.

2
1 same axes sketch the graph of $f(x-1)$.

(c) If $g(x)=\frac{x}{x-3}$ find the inverse function $g^{-1}(x)$.
(d) Solve the inequation $\frac{1}{x-4} \geq 2$.
(e) Define the shaded region below

QUESTION 2 (10 MARKS) Start this question on a new page.

(a) Solve $\tan 2 \theta=\sqrt{3}$ where $0 \leq \theta \leq 360^{\circ}$.

3
(b) Prove the identity $\frac{1}{1+\sin ^{2} \theta}+\frac{1}{1+\operatorname{cosec}^{2} \theta}=1$.
(c) Consider the unit circle below. Let $X \hat{O} A=\theta$ and $X \hat{O} B=\alpha$.

(i) By considering the triangle OAB , show that $\cos (\alpha-\theta)=\frac{2-A B^{2}}{2}$
(ii) Using the distance formula, show that

$$
A B^{2}=2-2 \cos \alpha \cos \theta-2 \sin \alpha \sin \theta
$$

(iii) Hence show that $\cos (\alpha-\theta)=\cos \alpha \cos \theta+\sin \alpha \sin \theta$

QUESTION 3 (10 MARKS) Start this question on a new page.

(a) The fourth term of an arithmetic sequence is 30 and the sixth term is 42 .
(i) Find the $12^{\text {th }}$ term of the sequence.
(ii) Find the sum of the first 10 terms.
(b) Evaluate $\sum_{r=1}^{5}(-1)^{r} 2 r$
(c) The sum of the first n terms of a sequence is given by $S_{n}=32-3 n^{2}$.
(i) Show that the $n^{\text {th }}$ term of this sequence is given by $T_{n}=3-6 n$.
(ii) Find the value of the first term of the sequence that is less than -100 .
(d) Prove by induction that $5^{n}+3$ is divisible by 4 for any positive integer n. 3

QUESTION 4 (12 MARKS) Start this question on a new page.

(a) If $x=t+1$ and $y=\frac{1}{t-2}$, eliminate the parameter t to find the Cartesian equation.
(b) Consider the parabola $(y-1)^{2}=8(x+2)$. Find
(i) the coordinates of the vertex
(ii) the coordinates of the focus
(c) $\quad P$ and Q are two points on the parabola 4ay $=x^{2}$ with parameters

8 p and q respectively. The tangents at P and Q meet at $T . M$ is the midpoint of $P Q$.
(i) Find the equation of the tangent at P and hence state the equation of the tangent at Q.
(ii) Show that these tangents meet at the point $T(a(p+q), a p q)$.
(iii) Find the midpoint M of the interval $P Q$.
(iv) Show that $T M$ is parallel to the axis of the parabola.
(v) Show that the point R where TM intersects the parabola is the midpoint of TM.

QUESTION 5 (12 MARKS) Start this question on a new page.
(a) If $f(x)=(2 x+1)\left(x^{3}-1\right)^{2}$ find $f^{\prime}(-1)$.

2
(b) Using the definition of the derivative $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ find $f^{\prime}(x)$ where $f(x)=x-2 x^{2}$.
(c) Consider the function $y=\frac{x^{2}}{\sqrt{2 x+1}}$.

5
(i) State the domain of the function
(ii) Show that $\frac{d y}{d x}=\frac{x(3 x+2)}{\sqrt{(2 x+1)^{3}}}$
(iii) Hence find the point or points on the curve where the function is horizontal.
(d) An equilateral triangle has sides of length scm and area $A \mathrm{~cm}^{2}$.
(i) Show that $A=\frac{\sqrt{3} s^{2}}{4}$.
(ii) If the sides are increasing at a constant rate of $2 \mathrm{~cm} /$ second, find the rate at which the area is increasing when the sides are of length 3 cm .

QUESTION 6 (9 MARKS) Start this question on a new page.
(a) Solve $x^{6}-7 x^{3}-8=0$.

2
(b) Express $2 x^{2}-7 x-4$ in the form $a(x+2)^{2}+b(x+2)+c$. 3
(c) Find the values of m if the equation $x^{2}-3 m x+(m+3)=0$ has:
(i) One root double the other (hint: let the roots be α and 2α)
(ii) One root the reciprocal of the other

QUESTION 7 (10 MARKS) Start this question on a new page.
(a) If A is the point $(10,2)$ and B is the point $(-2,6)$, find the point P dividing $A B$ externally in the ratio 4:3.
(b) The perpendicular distance between the origin and the line 3 $x-2 y+k=0$ is $\sqrt{5}$. Find two possible values of k.
(c)

(i) Show that $\frac{h}{d}=\frac{b}{a+b}$, stating all reasons.
(ii) By stating a similar expression for $\frac{h}{c}$, show that $\frac{1}{c}+\frac{1}{d}=\frac{1}{h}$.

YII Ext I Prelim 2008
Queston 1
(a)

$$
\begin{aligned}
\frac{1}{\sqrt{3}+2}-\frac{1}{\sqrt{3}-2} & =\frac{(\sqrt{3}-2)-(\sqrt{3}+2)}{(\sqrt{3}+2)(\sqrt{3}-2)} \\
& =\frac{-4}{-1}=4
\end{aligned}
$$

(b)

(c). let $y=\frac{x}{x-3}$ for unvere swap x, y
ie $\quad x=\frac{y}{y-3}$

$$
\begin{gathered}
(y-3) x=y \\
x y-3 x=y . \\
x y-y=3 x . \\
y(x-1)=3 x \\
y=\frac{3 x}{x-1} \\
g^{-1}(x)=\frac{3 x}{x-1}
\end{gathered}
$$

(d)

$$
\begin{gathered}
x(x-4)^{2} \quad(x-4) \geqslant 2(x-4)^{2} \quad(x \neq 4) \\
2(x-4)^{2}-(x-4) \leq 0 \\
(x-4)[2(x-4)-1] \leq 0 \\
(x-4)(2 x-9) \leq 0 . \\
4<x \leq \frac{9}{2} .
\end{gathered}
$$

(e). $y>3, y \leqslant 3^{x}$

QUESTION 2
(a) domaia $0 \leqslant \theta \leqslant 360$

$$
0 \leqslant 2 \theta \leqslant 720 .
$$

bace 60°.
Quadrants 1,3. $\frac{s / A}{T \mid C}$

$$
\begin{aligned}
2 \theta & =60,240,420,600 \\
\theta & =30,120,210,300 . \\
\text { (b) } \angle H S & =\frac{1}{1+\sin ^{2} \theta}+\frac{1}{1+\operatorname{cosec}^{2} \theta} \\
& =\frac{1}{1+\sin ^{2} \theta}+\frac{1}{1+\frac{1}{\sin ^{2} \theta}} \\
& =\frac{1}{1+\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta+1} \\
& =\frac{1+\sin ^{2} \theta}{1+\sin ^{2} \theta}=1=\text { RHS. }
\end{aligned}
$$

$$
\begin{aligned}
(c)(i) \cos (\alpha-\theta) & =\frac{1^{2}+1^{2}-A B^{2}}{2 \times 1 \times 1} \\
& =\frac{2-A B^{2}}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A B^{2} & =(\cos \theta-\cos \alpha)^{2}+(\sin \theta-\sin \alpha)^{2} \\
& =\cos ^{2} \theta-2 \cos \theta \cos \alpha+\cos ^{2} \alpha+\sin ^{2} \theta-2 \sin \theta \cos \alpha+\sin ^{2} \alpha \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)-2 \cos \alpha \cos \theta-2 \sin \alpha \sin \theta \\
& =2-2 \cos \alpha \cos \theta-2 \sin \alpha \sin \theta \quad\left(\sin \theta \sin ^{2} x+\cos ^{2} x=1\right)
\end{aligned}
$$

(iii) From (i) and (ii)

$$
\begin{aligned}
\cos (\alpha-\theta) & =\frac{2-[2-2 \cos \alpha \cos \theta-2 \sin \alpha \sin \theta]}{2} . \\
& =\frac{2 \cos \alpha \cos \theta-2 \sin \alpha \sin \theta}{2} \\
& =\cos \alpha \cos \theta+\sin \alpha \sin \theta
\end{aligned}
$$

Question 3
(a)

$$
\begin{aligned}
T_{4}=a+3 d & =30 \\
T_{6}=a+5 d & =42 \\
2 d & =12 \\
d & =6 \\
a & =12
\end{aligned}
$$

(i) $T_{12}=+11 x=$
(ii) $S_{\text {io }}=\frac{10}{2}(2 \times 12+11 \times 6)$.

$$
=450
$$

(b) $\sum_{r=1}^{5}(-1)^{r} 2 r=-2+4-6+8-10$

$$
=-6 .
$$

(c)(i)

$$
\begin{aligned}
T_{n} & =S_{n}-S_{n-1} \\
& =32-3 n^{2}-\left(32-3(n-1)^{2}\right) . \\
& =32-3 n^{2}-32+3\left(n^{2}-2 n+1\right) . \\
& =32-3 n^{2}-32+3 n^{2}-6 n+3 \\
& =3-6 n .
\end{aligned}
$$

(id) Find n such that $T_{n}<-100$
e

$$
\begin{aligned}
3-6 n & <-100 \\
-6 n & <-103 \\
n & >\frac{103}{6} \quad\left(17 \frac{1}{6}\right) .
\end{aligned}
$$

thus fort form <-100 is $T_{18}=3-6 \times 18$

$$
=-105
$$

(d) Prove $5^{x}+3=4 p$ (penteger).

Show have for $n=1$

$$
\begin{aligned}
\angle H S & =5^{\prime}+3 \\
& =8
\end{aligned}
$$

$$
=4 \times 2 \text { ie duristibe by } 4 \text {. }
$$

Suppose the for $1=k$
ie $5^{k}+3=4 m$ (integer)

$$
\begin{equation*}
5^{k}=4 m-3 \tag{*}
\end{equation*}
$$

Show tue for $n=k+1$

$$
\begin{aligned}
\text { CHS } & 5^{k+1}+3=4 q \\
& =5 \times 5^{k}+3 \\
& =5 \times(4 m-3)+3 \quad \text { from assumption (*). }
\end{aligned}
$$

$$
\begin{aligned}
& =20 m-15+3 \\
& =20 m-12 \\
& =4(5 m-3) \\
& =4 q \quad(q=4 m-3)
\end{aligned}
$$

Hence by mathematical induction the for all $n \geq 1$.

QUESTION 4.
(a) $x=女+1$
lien $t=x-1$.
substitute for t in $y=\frac{1}{t-2}$.

$$
\begin{aligned}
& y=\frac{1}{(x-1)-2} \\
& y=\frac{1}{x-3}
\end{aligned}
$$

(b) (i) vertex is $(-2, i)$
(ii) focal length is 2 .

(c) (i)

$$
\text { focus is }(0,1)
$$

$$
\begin{aligned}
& y=\frac{x^{2}}{4 a} \\
& \frac{d y}{d x}=\frac{2 x}{4 a}=\frac{x}{2 a}
\end{aligned}
$$

At $x=\frac{d y}{d x}=p$.
Equation of lancet at P is $y-a p^{2}=p(x-2 a p)$.
Hence tangent ot Q \& $\quad y=p x-a p^{2}$.
(ii) there meet when

$$
\begin{aligned}
& p x-a p^{2}=q x^{2}-a q^{2} \\
& p x-q x=a p^{2}-a q^{2} . \\
& x(p-q)=a(p+q)(p-q) \\
& x=a(p+q) .
\end{aligned}
$$

sub in (*) $\quad y=p \cdot a(p+q)-a p^{2}$

$$
y=a p q
$$

Hence point of intersection is $T(a(p r y), a p q)$
(iii) Midpoint of $P_{Q} \quad M=\left(\frac{2 a p+2 a q,}{2}, \frac{a p^{2}+a q^{2}}{2}\right)$.

$$
=\left(a(p+q), \frac{a\left(p^{2}+q^{2}\right)}{2}\right) .
$$

(iv) Since x-value of M and T ore the same equation of MT is $x=a(p+q)$ ie parallel to $=0$ to axis of to parabola.
(v) Midpoint of MT is $R=\left(a(p+q), \frac{2 a p q+a p^{2}+a q^{2}}{4}\right)$.

$$
=\left(a(p+q), \frac{a(p+q)^{2}}{4}\right)
$$

If R lies on parabola it must satisfy $x^{2}=4 a y$.

$$
\begin{aligned}
\text { LHS } & =a^{2}(p+q)^{2} \\
R H S & =\frac{4 a \times a(p+q)^{2}}{4} \\
& =a^{2}(p+q)^{2}
\end{aligned}
$$

sure $\angle H S=$ RMS R lies on MT.

Questions
(a)

$$
\begin{aligned}
f(x) & =(2 x+1)\left(x^{3}-1\right)^{2} \\
f^{\prime}(x) & =(2 x+1) 2\left(x^{3}-1\right) 3 x^{2}+\left(x^{3}-1\right)^{2} \times 2 \\
f^{\prime}(-1) & =-1 \times 2 \times-2 \times 3 \times 1+(-2)^{2} \times 2 \\
& =20
\end{aligned}
$$

(b)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)-2(x+h)^{2}-\left(x-2 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h-2\left(x^{2}+2 x h+h^{2}\right)-x+2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h-2 x^{2}-4 x h-2 h^{2}-x+2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(1-4 x-2 h)}{h} \\
& =1-4 x .
\end{aligned}
$$

(c) (i) domain is $x>-\frac{1}{2}$
(ii)

$$
\begin{aligned}
y=\frac{x^{2}}{(2 x+1)^{\frac{1}{2}}} \quad \frac{d y}{d x} & =\frac{x(2 x+1)^{\frac{1}{2}} \times 2 x-x^{2} \times \frac{1}{2}(2 x+1)^{-\frac{1}{2}} \times 2}{(2 x+1)} \times \frac{(2 x+1)^{\frac{1}{2}}}{(2 x+1)^{2}} \\
& =\frac{(2 x+1) 2 x-x^{2}}{(2 x+1)^{3 / 2}} \\
& =\frac{4 x^{2}+2 x-x^{2}}{(2 x+1)^{3 / 2}} \\
& =\frac{3 x^{2}+2 x}{(2 x+1)^{3 / 2}} \\
& =\frac{x(3 x+2)}{(2 x+1)^{3 / 2}} \text { as required }
\end{aligned}
$$

(iii) curve is horizontal when $\frac{d y}{d x}=0$

$$
\text { ie } \quad x(3 x+2)=0 \quad 2
$$

$$
x=0 \quad x=-\frac{2}{3}
$$

but since domain is $x>-\frac{1}{2} \quad x=0 \quad$ is only solution.
(d) (i)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 5 \times 5 \times \sin 60 \\
& =\frac{1}{2} 5^{2} \times \frac{\sqrt{3}}{2} . \\
& =\frac{\sqrt{3} 5^{2}}{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& A=\frac{\sqrt{3} s^{2}}{4} \quad \frac{d A}{d s}=\frac{\sqrt{3} s}{2} \\
& \frac{d A}{d t}=\frac{d A}{d s} \times \frac{d s}{d t} \\
& \frac{d A}{d t}=\frac{\sqrt{3} s}{2} \times 2 \\
&=\sqrt{3} s
\end{aligned}
$$

when $s=3$.

$$
\begin{equation*}
\frac{d A}{d t}=3 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{sec} \tag{3}
\end{equation*}
$$

Question 6
(a)

$$
\begin{aligned}
& \left(x^{3}\right)^{2}-7 x^{3}-8=0 \\
& \left(x^{3}+1\right)\left(x^{3}-8\right)=0 \\
& x^{3}=-1 \quad x^{3}=8 \\
& x=-1,2
\end{aligned}
$$

(b) $2 x^{2}-7 x-4 \equiv a(x+2)^{2}+b(x+2)+c$.

Equationg crefficien of $x^{2} \quad a=2$.
Substituking $x=-2 \quad c=\cdots$.

$$
\begin{aligned}
& \text { substituing } x=0 \quad-4=4 a+2 b+c \\
&-4=8+2 b+18 \\
& 2 b=-30 \\
& b=-15 \\
& \therefore \quad 2 x^{2}-7 x-4 \equiv 2(x+2)^{2}-15(x+2)+18
\end{aligned}
$$

(c) (i) let roots be x and $2 x$.
lte $\quad x+2 x=3 \mathrm{~m}$

$$
3 \alpha=3 M
$$

$$
\alpha=m
$$

and

$$
\begin{gathered}
\alpha \times 2 \alpha=m+3 \\
2 \alpha^{2}=m+3 \\
2 m^{2}=m+3 \\
2 m^{2}-m-3=0 \\
(2 m-3)(m+1)=0 \\
m=\frac{3}{2} m=-1
\end{gathered}
$$

$$
\text { foom * } 2 m^{2}=m+3
$$

(ii) let roots be α and $\frac{1}{\alpha}$.
then $\alpha \times \frac{1}{\alpha}=m+3$.

$$
\begin{aligned}
m+3 & =1 \\
m & =-2
\end{aligned}
$$

QUESTION 7
(a) $P=\left(\frac{k x_{2}+l x_{1}}{k+1}, \frac{k y_{2}+l y_{i}}{k+l}\right)$
where $k: l$ is $4^{:-3} \quad\left(x_{1}, y_{1}\right)$ is $(10,2)$ and $\left(x_{2}, y_{i}\right)$ is $(-2,6)$

$$
\begin{aligned}
& =\left(\frac{4 \times-2+-3 \times 10}{4-3}, \frac{4 \times 6-3 \times 2}{4-3}\right) \\
& =(-38,18)
\end{aligned}
$$

(b) ift perp distence between $x-2 y+k=0$ and $(0,0)$

$$
\begin{array}{r}
d=\frac{|0-2 \times 0+k|}{\sqrt{1+(-2)^{2}}} \\
\frac{|k|}{\sqrt{5}}=\sqrt{5} \\
|k|=5 \\
k= \pm 5
\end{array}
$$

(c) Most ukely solution by smular Δs (could be dove witt interept huevem).
(i) Show $\triangle A B C$ III $\triangle E F C$

$$
\begin{aligned}
& \angle A B C=\angle E F C=90^{\circ} \text { (given). } \\
& \angle A C B=\angle E C F \text { (common) }
\end{aligned}
$$

$\therefore \triangle A B C I I I \triangle E F C$ (Equiangular).
$\therefore \frac{h}{d}=\frac{b}{a+b}$ (1ratio of correspondiug sides in congment trangles).
(ii) $\triangle D C B \| \triangle \triangle E F B$ (similerly'to part (i)).

$$
\therefore \quad \frac{h}{c}=\frac{a}{a+b}
$$

from (1) 4 (2)

$$
\begin{aligned}
\frac{h}{c}+\frac{h}{d} & =\frac{a}{a+b}+\frac{b}{a+b} \\
h\left(\frac{1}{c}+\frac{1}{d}\right) & =\frac{a+b}{a+b} . \\
\frac{1}{c}+\frac{1}{d} & =\frac{1}{h} \text { as required. }
\end{aligned}
$$

