Section I

Attempt Questions 1-10

All questions are equal value.
Use the multiple choice answer sheet for Questions 1-10

1 Simplify $\frac{x^{3}-1}{x^{2}-1} \times \frac{x^{2}-4 x-5}{4 x^{2}+4 x+4}$
(A) $\frac{(x-5)}{4}$
(B) $\frac{(x-1)}{4}$
(C) $\quad \frac{(x+1)}{4}$
(D) $\frac{\left(x^{2}+x+1\right)}{4}$

2 What is the solution to the equation $|x-2|=2 x-1$?
(A) $\quad x=-3$
(B) $\quad x=-1$
(C) $\quad x=1$
(D) $\quad x=3$

3 The smallest angle in the triangle below is θ.

What is the value of θ to the nearest degree?
(A) 30°
(B) 45°
(C) 53°
(D) 82°

The smallest angle in the triangle below is θ.

4 Which graph best represents $y=|x|-2$?
(A)

(C)

(B)

(D)

5 Which of these is the limiting sum of the geometric series $\frac{2}{5}-\frac{2}{15}+\frac{2}{45}-\frac{2}{135}+\ldots .$.
(A) $\frac{3}{5}$
(B) $\frac{8}{27}$
(C) 0
(D) $\frac{3}{10}$

6 If $3 \cos \theta+2=0$ and $\tan \theta>0$, what is the exact value of $\sin (\theta+180)$?
(A) $-\frac{\sqrt{5}}{3}$
(B) $-\frac{\sqrt{5}}{2}$
(C) $\frac{\sqrt{5}}{2}$
(D) $\frac{\sqrt{5}}{3}$

7 What is the centre and radius of the circle with the equation $x^{2}+y^{2}+6 x-8 y-11=0$
(A) Centre $(-3,-4)$ and radius 36
(B) Centre $(-3,4)$ and radius 36
(C) Centre $(-3,-4)$ and radius 6
(D) \quad Centre $(-3,4)$ and radius 6

8 What is the value of k if the sum of the roots of $x^{2}-(k-1) x+2 k=0$ is equal to the product of the roots?
(A) -3
(B) -2
(C) -1
(D) 1

9 Which of the following is the correct simplified expression for differentiating $f(x)=\frac{1}{x}$ from first principles?
(A) $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}$
(B) $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x+h-x}{h}$
(C) $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{x}-\frac{1}{x+h}}{h}$
(D) $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h}{x+h-x}$

10 What is the equation of the normal to the curve $f(x)=x^{2}-4 x$ at $(1,-3)$?
(A) $x+2 y-7=0$
(B) $\quad x-2 y-7=0$
(C) $\quad 2 x-y-5=0$
(D) $2 x+y+5=0$

Section II

Attempt Questions 11-14

Each question is worth 15 marks.

Answer each question in a new writing booklet. Extra booklets are available.
All necessary working should be shown in every question

Question 11 (15 Marks) Use a NEW writing booklet.
(a) Solve the following equation $x^{2}+3 x=\frac{8}{x^{2}+3 x}+2$ by using the substitution $A=x^{2}+3 x$.
(b) Find A, B and C such that:

$$
4 x^{2}-x+1 \equiv A x(x+1)+B(x+1)+C .
$$

(c) Solve

$$
x^{6}+26 x^{3}-27=0
$$

(d) Solve for x

$$
\frac{2}{x-1} \geq x .
$$

(e) What are the coordinates of the point that divides the interval joining the points $A(1,1)$ and $B(5,3)$ externally in the ratio $2: 3$?
(f) Find the equation of the straight line that passes through the point of intersection of the lines $x-2 y=5$ and $3 x-y+1=0$ and the point $(2,1)$.

Question 12 (15 Marks) Use a NEW writing booklet.
(a) State the domain of:
(i) $y=x+\frac{1}{x-2}$
(ii) $y=\sqrt{2 x^{2}-x-6}$
(b) Find the horizontal asymptote of the function $y=\frac{2 x^{2}-4 x+3}{x^{2}-5}$
(c) Find the inequalities that describe the shaded regions in the following graph.

Diagram

not to
scale
(d) Shade the common region defined by:

$$
x^{2}+y^{2}<25 \text { and } 3 x-y \geq 2
$$

(e) What values of m is $-4 x^{2}+3 x+m$ a negative definite?
(f) For what values of c is the line $y=x+c$ tangent to the curve $y=2 x^{2}-7 x+4$

Question 13 (15 Marks) Use a NEW writing booklet.
(a) Evaluate $\sum_{n=0}^{20}(-2)^{n}$
(b) Find the sum of all positive integers less than 20000 which are divisible by 11 .
(c) Prove by mathematical Induction

$$
\sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)}=\frac{n}{2 n+1}
$$

(d) For the parabola $x^{2}=-16 y+32$.
(i) Give the vertex and focus of the parabola. 3
(ii) Find the equation of the tangent to the parabola at the point $(8,-2)$.

Question 14 (15 Marks) Use a NEW writing booklet.
(a) Solve $2 \cos 2 \theta=\sqrt{3}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(b) Prove the identity $\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\sec x \cdot \operatorname{cosec} x$
(c) (i) Show that $10 \sin ^{2} \beta+\cos \beta-7=(3-5 \cos \beta)(2 \cos \beta+1)$.
(ii) Hence solve $10 \sin ^{2} \beta+\cos \beta-7=0$ for $0^{\circ}<\beta<360^{\circ}$ to the nearest degree.
(d) Differentiate $\sqrt[3]{2-3 x^{2}}$, give your answer without negative or fractional indices. $\mathbf{2}$
(e) Find the value of k if $f^{\prime}(-3)=1$ where

$$
f(x)=\frac{x^{2}+k}{x^{2}-k} .
$$

END of PAPER

Yr ll Ext 1 Prelim 2012

1	A
2	C
3	B
4	B
5	D
6	D
7	D
8	C
9	A
10	B

Ext 1 Preliminary Examination 2012
Question 11
(a)

$$
\frac{x^{2}+3 x}{}=\frac{8}{x^{2}+3 x}+2
$$

let $M=x^{2}+3 x$

$$
M=\frac{8}{M}+2
$$

$$
M^{2}=8+2 M
$$

$$
\begin{aligned}
& M^{2}-2 M-8=0 \\
& (M-4)(M+2)=0 \\
& \quad M=4 \text { or }-2
\end{aligned}
$$

$$
\begin{array}{rlr}
\therefore x^{2}+3 x=4 & \text { or } & x^{2}+3 x=-2 \\
x^{2}+3 x-4=0 & x^{2}+3 x+2=0 \\
(x+4)(x-1)=0 & (x+3)(x+1)=0 \\
\therefore x=-4 \text { or } 1 \text { r } & \therefore x=-2 \text { or }-1
\end{array}
$$

$$
\begin{aligned}
\text { (b) } 4 x^{2}-x+1 & \equiv A x(x+1)+B(x+1)+C \\
& \equiv A x^{2}+A x+B x+B+C \\
& \equiv A x^{2}+(A+B) x+(B+C
\end{aligned}
$$

Method 2

$$
\therefore 4 x^{2} \equiv A x^{2}
$$

$$
\begin{aligned}
& A=4 \\
& 6 \equiv 0+0+c \\
& 6=c
\end{aligned}
$$

$\operatorname{Let} x=-1$

$$
4=A
$$

$$
-x=(A+B) x
$$

$$
-1=(4+B)
$$

$$
\therefore-5=B
$$

$$
1=B+C
$$

$$
1=-5+c
$$

$$
\begin{aligned}
& 1 \equiv 0+B+C \\
& 1 \equiv B+6 \\
& -5=B
\end{aligned}
$$

$$
6=c
$$

.i

$$
\therefore A=4, \quad B=-5, C=6 \quad 3 \text { marks }
$$

(c) $x^{6}+26 x^{3}-27=0$
let $u=x^{3}$

$$
\begin{aligned}
& u^{2}+26 u-27=0 \\
& (\mu+27)(u-1)=0 \\
& \therefore u=-27 \text { or } u=1 \\
& \therefore x^{3}=-27 \text { or } x^{3}=1 \\
& \therefore x=-3 \text { or } 1
\end{aligned}
$$

(2marts).
(d)

$$
\begin{aligned}
& \text { d) } \frac{2}{x-1} \geqslant x \geqslant x \neq 1 \\
& 2(x-1) \geqslant x(x-1)^{2} \\
& 0 \geqslant x(x-1)^{2}-2(x-1) \\
& 0 \geqslant(x-1)(x(x-1)-2) \\
& 0 \geqslant(x-1)\left(x^{2}-x-2\right) \\
& 0 \geqslant(x-1)(x-2)(x+1)
\end{aligned}
$$

3 marks

$$
\begin{array}{lll}
\therefore x & \leq-1 \text { or } 1 \leq x \leq 2 \\
\therefore x \leq-1 & \text { or } 1 & 1 \leq x \leq 2
\end{array} \quad x \neq 1
$$

(e) $A(1,1) \quad B(5,3)$

$$
k: K
$$

$$
2:-3 \text { Extenal }
$$

$$
\begin{aligned}
P(x, y) & =\left(\frac{k x_{2}+1 x_{1}}{k+1}, \frac{k y_{2}+l y_{1}}{k+1}\right) \\
& =\left(\frac{2 \times 5+-3 \times 1}{-1}, \frac{2 \times 3+-3 \times 1}{-1}\right) \\
& =\left(\frac{10-3}{-1}, \frac{6-3}{-1}\right) \\
& =(7,-3)
\end{aligned}
$$

2manks

Ext Preliminary Examination 2012
Question II Continued.
(f)

$$
\begin{aligned}
& x-2 y=5 \\
& 3 x-y+1=0 \\
& (x-2 y-5)+k(3 x-y+1)=0 \quad \text { sob in }(2,1) \\
& (2-2-5)+k(6-1+1)=0 \\
& -5+k \times 6=0
\end{aligned}
$$

$$
6 k=5
$$

$$
k=\frac{5}{6}
$$

$$
\begin{array}{r}
\therefore(x-2 y-5)+\frac{5}{6}(3 x-y+1)=0 \\
6(x-2 y-5)+5(3 x-y+1)=0 \\
6 x-12 y-30+15 x-5 y+5=0 \\
\therefore 21 x-17 y-25=0
\end{array}
$$

(2marks).
method 2 - if the equations were solve simultaneously point of intersection $\left(-\frac{7}{5}, \frac{-16}{5}\right)$
equation of line $\quad 21 x-17 y-25=0$

Quattion 12 (15) Ext 411 prelim
(a) (i) $x \in \mathbb{R}, x \neq 2$.
(ii) $\begin{aligned} 2 x^{2}-x-6 & \geqslant 0 \text {. } \\ (2 x+3)(x-2) & \geqslant 0\end{aligned}$

$$
x \leqslant-\frac{3}{2}, x \geqslant 2
$$

(b) $y=\frac{2-\frac{4}{x}+\frac{3}{x^{2}}}{1-5 / x}$

As $x \rightarrow \infty \quad y \rightarrow \frac{2}{1}$.
\therefore torizontal asyniptate is $y=2$
(c). $y \leqslant 1-x^{2}, y \leqslant|x|, y \geqslant 0$.
(d)

- brsien cirde

1 unicde sivide

1. rigut of corred bie.
(e)

$$
\begin{aligned}
& b^{2}-4 a c<0 \quad \sqrt{ } \text { (and } a<0 \text {, which it is as } a=-4 \text {) } \\
& 9-4 x-4 \times m<0 . \\
& 9+16 m<0 \text {. } \\
& 16 m<-9 \\
& m<\frac{9}{16} .
\end{aligned}
$$

(f). Solve $x+C=2 x^{2}-7 x+4$.

$$
2 x^{2}-8 x+(4-c)=0
$$

langent when $\Delta=0$.

$$
\begin{gathered}
64-4 \times 2 \times(4-c)=0 \\
64-8(4-c)=0 \\
64-32+8 c=0 \\
c=-4
\end{gathered}
$$

Url Ext 1 Prelim 2012
Section I

1. A 2.C
2. B
3. B
5.0
6.0
7.0
B.C 9.A
4. B

Section II
Question 13
a)

$$
\begin{aligned}
\sum_{n=0}^{20}(-2)^{n}=1+-2 & +4+-8+\cdots \\
a=1 n & =-2 \quad n=21 \\
S_{21} & =\frac{1\left(-2^{21}-1\right)}{-2-1} \\
& =699051
\end{aligned}
$$

b)

$$
\begin{aligned}
& 11+22+33+\cdots \\
& T_{n}=a+(n-1) d \\
& 20000>11+(n-1) 11 \\
& 20000>11+11 n-11 \\
& n<1818.18 \\
& n=1818
\end{aligned}
$$

c) $\frac{\text { Steel }}{\text { Prove true for } n=1}$

$$
\begin{aligned}
& \text { CHS }=\frac{1}{(2(1)-1)(2(1)+1}=\frac{1}{1+3}=\frac{1}{3} \\
& \text { RUS }=\frac{1}{2(1)+1}=\frac{1}{3} \\
& \text { LHS }=\text { RUS }
\end{aligned}
$$

\therefore true for $n=1$
Step 2 Assume true for $n=k$
Notation must be

$$
\sum_{n=1}^{k} \frac{1}{(2 n-1)(2 n+1)}=\frac{k}{2 k+1}
$$ correct

Step 3 Prove true for $n=k+1$
Prove $\sum_{r=1}^{k+1} \frac{1}{(2 n-1)(2 r+1)}=\frac{k+1}{2(\uparrow+1)+1}$

$$
\begin{aligned}
\text { LHS } & =\sum_{r=1}^{k+1} \frac{1}{(2 r-1)(2 r+1)} \\
& =\sum_{r=1}^{k} \frac{1}{(2 n-1)(2 r+1)}+\frac{1}{(2(k+1)-1)(2(k+1)+1)} \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2(k+1)+1)} / \text { From } 2 \\
& =\frac{k(2(k+1)+1)+1}{(2 k+1)(2(k+1)+1} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2(k+1)+1)} \\
& =\frac{(k+1)(2 k+1)}{(2 k+1)(2(k+1)+1)} \\
& =\frac{k+1}{2(k+1)+1}
\end{aligned}
$$

\therefore true for $n=k+1$
Step 4
d) i) $x^{2}=-16 y+32$

$$
\begin{aligned}
& x^{2}=-16(y-2) \\
& a=4 \quad \text { vertex }(0,2) \\
& \quad \text { focus }(0,-2)
\end{aligned}
$$

ii)

$$
\begin{gathered}
-16 y=x^{2}-32 \\
y=\frac{-1}{16} x^{2}+2 \\
y^{\prime}=-1 / 8 x \\
x=8 \quad m=-1 \\
y--2=-1(x-8) \\
y+2=-x+8 \\
y=-x+6
\end{gathered}
$$

Solutions Ext 1 yearll 2012 Prelim.
Q 14 (a) $\cos 2 \theta=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
2 \theta & =30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ} \\
\theta & =15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ}
\end{aligned}
$$

(b)

$$
\begin{align*}
L H S & =\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \\
& =\frac{\sin ^{2} x+\cos ^{2} x}{\cos x \sin x} \tag{1}\\
& =\frac{1}{\cos x \sin x} \tag{1}\\
& =\sec x \operatorname{cosec} x \\
& =\text { RHS }
\end{align*}
$$

$$
\begin{align*}
\text { (c) } & (i) 10\left(1-\cos ^{2} \beta\right)+\cos \beta-7 \\
= & 10\left(1-x^{2}\right)+x-7, x=\cos \beta \\
= & -\left(10 x^{2}-x-3\right) \tag{2}\\
= & -(5 x-3)(2 x+1) \\
= & (3-5 x)(2 x+1), x=\cos \beta \\
= & \gamma=\cos \beta
\end{align*}
$$

(ii) $(3-5 x)(2 x+1)=0, x=\cos \beta$

$$
x=\frac{3}{5} \text { or }-\frac{1}{2}
$$

(1) 1 correct
(2) 2
(3) All
(1) $1-\cos ^{2} \beta$
(1)

$$
\cos \beta=\frac{3}{5} \text { or }-\frac{1}{2}
$$

(1) 2 solutions

$$
\begin{equation*}
\beta=\underbrace{53,307^{\circ}}_{\text {nearest degree }}, 120^{\circ}, 240^{\circ} \tag{1}
\end{equation*}
$$

(1) All "
(e)

$$
\begin{align*}
f(x)= & \frac{x^{2}+k}{x^{2}-k} \\
f^{\prime}(x)= & \frac{\left(x^{2}-k\right) \cdot 2 x-\left(x^{2}+k\right) \cdot 2 x}{\left(x^{2}-k\right)^{2}} \tag{1}\\
= & \frac{-4 k x}{\left(x^{2}-k\right)^{2}} \\
f(-3)= & \frac{12 k}{(9-k)^{2}}=1 \tag{1}\\
& 12 k=(9-k)^{2}=81-18 k+k^{2} \\
& k^{2}-30 k+81=0 \\
& (k-3)(k-27)=0, k=3 \text { or } 27 \tag{1}
\end{align*}
$$

