NEWINGTON COLLEGE

2014

Preliminary examination

Mathematics Extension 1

General Instructions:

- Date of task - Wednesday $22^{\text {nd }}$ August
- Working time - 120 mins
- Board-approved calculators may be used.
- Attempt all questions, start each question in a new booklet.
- Show all relevant mathematical reasoning and/or calculations.

Total marks - 70

Outcome	Marks
Section I - Multiple choice	$/ 10$
Section II - Q11 (Trigonometry \& Functions)	$/ 12$
Section II - Q12 (Geometry of the derivative)	$/ 12$
Section II - Q13 (Sequences and series)	$/ 12$
Section II - Q14 (Induction \& Quadratic functions)	$/ 12$
Total	$/ 70$

Section I (10 marks)

Allow about 15 minutes for this section
 Use the multiple-choice answer sheet for Questions 1-10

Question 1

The co-ordinates of the focus of the parabola $x^{2}=4 a y$ are
(a) $(0,-a)$
(b) $(0, a)$
(c) $(0,1)$
(d) $(0,4 a)$

Question 2

If α and β are the zeroes of the quadratic polynomial $y=3 x^{2}+x-9$ then
(a) $\alpha+\beta=-\frac{1}{3}$
(b) $\alpha+\beta=\frac{1}{3}$
(c) $\alpha+\beta=-3$
(d) $\alpha+\beta=3$

Question 3

The $20^{\text {th }}$ term of the arithmetic series $4+5 \frac{1}{3}+6 \frac{2}{3}$ is
(a) $4+(20-1) \times 1 \frac{1}{3}$
(b) $\frac{20}{2}\left[2 \times 4+(20-1) \times 1 \frac{1}{3}\right]$
(c) $4+20 \times 1 \frac{1}{3}$
(d) $4 \times\left(\frac{4}{3}\right)^{20-1}$

Question 4

$\sum_{r=1}^{r=5}(-3)^{r}$ is equal to
(a) 45
(b) -183
(c) -182
(d) -363

Question 5

Given $f(x)=3 x^{2}-5 x+2$, find $f(\alpha+1)$
(a) $3 \alpha^{2}-5 \alpha+3$
(b) $3 \alpha^{2}+11 \alpha$
(c) $3 \alpha^{2}+\alpha+1$
(d) $3 \alpha^{2}+\alpha$

Question 6

The perpendicular distance, in units, from $(1,0)$ to $3 x-4 y=6$ is
(a) $\frac{9}{5}$
(b) $\frac{3}{5}$
(c) $\frac{7}{5}$
(d) $-\frac{9}{5}$

Question 7

If $y=(3 x-1) \sqrt{3 x-1}$ then $\frac{d y}{d x}$ is
(a) $2 \sqrt{3 x-1}$
(b) $\frac{9}{2 \sqrt{3 x-1}}$
(c) $\frac{9}{2} \sqrt{3 x-1}$
(d) $3 \sqrt{3 x-1}-\frac{3}{\sqrt{3 x-1}}$

Question 8

The natural domain of the function $y=\sqrt{5-x^{2}}$ is
(a) $-5<x<5$
(b) $-5 \leq x \leq 5$
(c) $-\sqrt{5} \leq x \leq \sqrt{5}$
(d) $0<y<\sqrt{5}$

Question 9

The equation of the line perpendicular to $3 x+4 y-3=0$, which also passes through the point $(-1,-4)$ is
(a) $4 x-3 y+13=0$
(b) $3 x-4 y-13=0$
(c) $4 x+3 y+16=0$
(d) $4 x-3 y-8=0$

Question 10

The expression $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$ may be simplified to
(a) $2 \sec ^{2} \theta$
(b) $2 \sin ^{2} x$
(c) $2 \cos ^{2} x$
(d) $2 \operatorname{cosec}^{2} x$

Section II (60 marks)

Attempt Questions 11 - 15
 Allow about 1 hours and 45 minutes for this section

Question 11 (12 marks) - Start a new booklet

(a) Prove $(\cot \theta+\operatorname{cosec} \theta)^{2}=\frac{1+\cos \theta}{1-\cos \theta}$
(b) Solve for $0 \leq \theta \leq 360^{\circ}$:
(i) $2 \cos ^{2} \theta-\cos \theta=0, \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
(ii) $5 \sec ^{2} \theta-9 \tan \theta=7,90^{\circ} \leq \theta \leq 180^{\circ}$. Give your answer correct to the nearest minute
(c)
(i) Show that $y=\frac{2 x}{x^{2}+4}$ is an odd function.
(ii) Find any intercepts.
(iii) Find the equation of the horizontal asymptote. 1
(iv) Sketch the curve.

Question 12 (12 marks) - Start a new booklet

(a) Differentiate with respect to x :
(i) $y=\frac{1}{x^{2}}-4 \sqrt{2 x-3}$
(ii) $\quad y=\frac{x^{2}-1}{x^{2}+1} \quad$ Simplify your answer as much as possible.
(b) Find the co-ordinates of the points on the curve $y=2 x^{3}-9 x^{2}+27$ where the tangent is horizontal.
(c) Find the value of the constant a, if the normal to the curve $y=\frac{a}{x+2}$ at the point where $x=2$ has a gradient of -4 .
(d) If $f(x)=(x-4)^{2} \times \sqrt[3]{2 x+1}$, evaluate $f^{\prime}(13)$.

Marks

Question 13 (12 marks) - Start a new booklet

(a) A ball is dropped to the ground from a height of 2 metres. After each bounce it rebounds to half the height from which it fell.
(i) Find the total distance it has travelled when it strikes the ground for the $4^{\text {th }}$ time.
(ii) Using the formula for the sum of an infinite geometric progression, how far will it travel before it comes to rest?
(b) The $21^{\text {st }}$ term of an arithmetic series is zero. The sum of the first 25 terms is

2 2 100. Find the first term and the common difference.
(c) The series $1+2+4+7+8+10+11+13+14+16+\ldots+398$ was formed by omitting from the first 400 positive integers all those which are multiples of 3 or 5 . Find the sum of the series.

Question 14 (12 marks) - Start a new booklet

(a) Prove by mathematical induction that $1+x+x^{2}+x^{3}+\ldots+x^{n-1}=\frac{1-x^{n}}{1-x}$.
(b) Solve the equation $\left(x^{2}+x\right)^{2}=5 x^{2}+5 x-6$, giving your answers in exact form.
(c) If α and β are the roots of the equation $a x^{2}+b x+c=0$, express $(\alpha-2 \beta)(2 \alpha-\beta)$ in terms of a, b, and c. Hence deduce the condition for one root to be double the other.

Question 15 (12 marks) - Start a new booklet
(a) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the tangent to the parabola
at P is $y=p x-a p^{2}$.
(ii) The tangent at P and the tangent at Q intersect at T. Find the coordinates of T.
(iii) If T is a point on the directrix of the parabola $x^{2}=4 a y$, show that $P Q$ is a focal chord.
(c) $P\left(2 t, t^{2}\right)$ is a point on the parabola $x^{2}=4 y$ with focus S. The point M divides the interval SP externally in the ratio 3 : 1 .
(i) Show that the co-ordinates of M are $\left(3 t, \frac{3 t^{2}-1}{2}\right)$
(ii) Show that as P moves on the parabola $x^{2}=4 y$, the locus of M is given by the parabola $\quad x^{2}=6 y+3$.

Section I - Multiple choice answer sheet
 10 Marks

Attempt Question 1 - 10.
Allow approximately 15 minutes for this section.
Use the multiple choice answer sheet below to record your answers to Question 1 - 10.
Select the alternative: A, B, C or D that best answers the question.
Colour in the response oval completely.
Sample:
$2+4=$?
(A) 2
(B) 6
(C) 8
(D) 9

A
\bigcirc
B
C
\bigcirc
D \bigcirc
If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer
ie A
B
\%
C
\bigcirc
D O

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "correct" and draw an arrow as follows:

Year 11 Extension 1 Mathematics

Multiple Choice Answer Sheet

Student number:

Completely colour in the response oval representing the most correct answer.

1	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
2	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
3	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
4	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
5	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
6	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
7	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
8	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
9	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
10	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc

Mark: /10

Solutions

Section I

1. B
2. A
3. A
4. B
5. D
6. B
7. C
8. C
9. D
10.A

Section II

Question 11

(a) LHS $=(\cot \theta+\operatorname{cosec} \theta)^{2}$

$$
\begin{aligned}
& =\left(\frac{\cos \theta+1}{\sin \theta}\right)^{2} \\
& =\frac{(\cos \theta+1)^{2}}{\sin ^{2} \theta} \\
& =\frac{(\cos \theta+1)^{2}}{1-\cos ^{2} \theta} \\
& =\frac{(\cos \theta+1)^{2}}{(1-\cos \theta)(1+\cos \theta)} \\
& =\frac{1+\cos \theta}{1-\cos \theta}=R H S
\end{aligned}
$$

(b) (i) $\cos \theta(2 \cos \theta-1)=0$
$\cos \theta=0$ or $\cos \theta=\frac{1}{2}$
$\theta=90^{\circ}, 270^{\circ}, 60^{\circ}$ or 300°.
(ii) $5\left(1+\tan ^{2} \theta\right)-9 \tan \theta=7$

Let $x=\tan \theta$
$5+5 x^{2}-9 x=7$
$5 x^{2}-9 x-2=0$
$(5 x+1)(x-2)=0$
$x=-\frac{1}{5}$ or 2
$\tan \theta=-\frac{1}{5}$ or 2 . But $90^{\circ} \leq \theta \leq 180^{\circ}$.
$\theta=168^{\circ} 41^{\prime}$
(c) (i) $f(-a)=\frac{-2 a}{(-a)^{2}+4}$

$$
\begin{aligned}
& =\frac{-2 a}{a^{2}+4} \\
& =-f(a)
\end{aligned}
$$

(ii) $(0,0)$
(iii) $y=0$
(iv)

Question12

(a)

$$
\begin{aligned}
\text { (i) } \quad \begin{aligned}
y^{\prime} & =\frac{-2}{x^{3}}-4 \times \frac{1}{2}(2 x-3)^{-\frac{1}{2}} \times 2 \\
& =\frac{-2}{x^{3}}-\frac{4}{\sqrt{2 x-3}} \\
\text { (ii) } \quad y^{\prime} & =\frac{\left(x^{2}+1\right) 2 x-\left(x^{2}-1\right) 2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{aligned} \text { }
\end{aligned}
$$

(b) $y=2 x^{3}-9 x^{2}+27$

$$
\begin{aligned}
& y^{\prime}=6 x^{2}-18 x=0 \\
& 6 x(x-3)=0 \\
& x=0, x=3
\end{aligned}
$$

Hence, co-ordinates are $(0,27)$ or $(3,0)$
(c) $y=\frac{a}{x+2}$

Gradient of normal $=-4$. Hence, gradient of tangent is $\frac{1}{4}$.

$$
\begin{aligned}
& y^{\prime}=\frac{-a}{(x+2)^{2}}=\frac{1}{4} \text { when } x=2 \\
& \frac{-a}{(2+2)^{2}}=\frac{1}{4} \\
& a=-4
\end{aligned}
$$

(d) $\quad f(x)=(x-4)^{2} \times \sqrt[3]{2 x+1}=(x-4)^{2} \times(2 x+1)^{1 / 3}$

$$
\begin{aligned}
f^{\prime}(x) & =(x-4)^{2} \times \frac{2}{3}(2 x+1)^{-2 / 3}+(2 x+1)^{1 / 3} \times 2(x-4) \\
f^{\prime}(13) & =(9)^{2} \times \frac{2}{3}(27)^{-2 / 3}+(27)^{1 / 3} \times 2(9) \\
& =60
\end{aligned}
$$

Question 13

(a) (i) $2+1+1+0.5+0.5+0.25+0.25=5.5$ metres
(ii) $=2+2\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right)$
$=2+2\left(\frac{a}{1-r}\right)$, where $a=1, r=\frac{1}{2}$
$=2+2\left(\frac{1}{1-\frac{1}{2}}\right)=6$ metres
(b) Solve simultaneously:
$a+20 d=0 ~ 1 ~ w h e r e ~ a=11^{\text {st }}$ term and $d=$ common difference
$\frac{25}{2}(2 a+24 d)=100 \ldots .2$
$a=10, d=-\frac{1}{2}$
(c) $1+2+4+7+8+11+13+14+16+\ldots+398$
$=$ sum of $1^{\text {st }} 400$ positive integers - multiples of 3 - multiples of $5+$ multiples of 15
$=\frac{400}{2}[2 \times 1+(400-1) 1]-\frac{133}{2}[2 \times 3+(133-1) 3]-\frac{80}{2}[2 \times 5+(80-1) 5]+\frac{26}{2}[2 \times 15+(26-1) 15$
$=200 \times 401-133 \times 201-40 \times 405+13 \times 405$
$=42532$

Question 14
(a) Prove $1+x+x^{2}+x^{3}+\ldots+x^{n-1}=\frac{1-x^{n}}{1-x}$

Step 1 - Prove result true for $n=1$
LHS $=x^{1-1}=1$
RHS $=\frac{1-x^{1}}{1-x}=1$
LHS = RHS
Step 2 - Assume result true for $n=k$, where k is a positive integer.
i.e. $1+x+x^{2}+x^{3}+\ldots+x^{k-1}=\frac{1-x^{k}}{1-x}$

Step 3 - Prove result true for $n=k+1$.
i.e. Prove $1+x+x^{2}+x^{3}+\ldots+x^{k+1-1}=\frac{1-x^{k+1}}{1-x}$

Now, LHS $=1+x+x^{2}+x^{3}+\ldots+x^{k+1-1}$
$=1+x+x^{2}+x^{3}+\ldots+x^{k-1}+x^{k}$
$=\frac{1-x^{k}}{1-x}+x^{k}$, from step 2 .
$=\frac{1-x^{k}+x^{k}(1-x)}{1-x}$
$=\frac{1-x^{k}+x^{k}(1-x)}{1-x}$
$=\frac{1-x^{k}+x^{k}-x^{k+1}}{1-x}$
$=\frac{1-x^{k+1}}{1-x}$

$$
=\text { RHS }
$$

Step 4 - By the principle of mathematical induction, the result has been proved tru for all positive integers n.
(b)

Let $y=x^{2}+x$
Hence, $y^{2}=5 y-6$

$$
\begin{aligned}
& \therefore y^{2}-5 y+6=0 \\
& (y-2)(y-3)=0 \\
& y=2 \text { or } y=3 \\
& \therefore x^{2}+x=2 \text { or } x^{2}+x=3 \\
& \therefore x^{2}+x-2=0 \text { or } x^{2}+x-3=0 \\
& (x+2)(x-1)=0 \text { or } x=\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times(-3)}}{2} \\
& \therefore x=-2,1, \frac{-1 \pm \sqrt{13}}{2}
\end{aligned}
$$

(c) $\quad a x^{2}+b x+c=0$

$$
\begin{aligned}
& \alpha+\beta=\frac{-b}{a} \quad \alpha \beta=\frac{c}{a} \\
& (\alpha-2 \beta)(2 \alpha-\beta)=2 \alpha^{2}-5 \alpha \beta+2 \beta^{2} \\
& =2\left(\alpha^{2}+\beta^{2}\right)-5 \alpha \beta \\
& =2\left(\alpha^{2}+2 \alpha \beta+\beta^{2}\right)-9 \alpha \beta \\
& =2(\alpha+\beta)^{2}-9 \alpha \beta \\
& =2\left(\frac{-b}{a}\right)^{2}-9 \cdot \frac{c}{a} \\
& =\frac{2 b^{2}-9 a c}{a^{2}}
\end{aligned}
$$

Now, if $\alpha=2 \beta$ or $\beta=2 \alpha$ then $(\alpha-2 \beta)(2 \alpha-\beta)=0$
Hence $2 b^{2}=9 a c$

Question 15

(a) (i) $\quad x^{2}=4 a y$

$$
\begin{aligned}
& 2 x=4 a \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{x}{2 a} \text { at } x=2 a p
\end{aligned}
$$

$\frac{d y}{d x}=p$
The equation of the tangent at p is:
$y-a p^{2}=p(x-2 a p)$
$=p x-2 a p^{2}$
$\therefore y=p x-a p^{2}$
(ii) Tangent at P: $\therefore y=p x-a p^{2} \ldots1$

Tangent at $Q: \quad \therefore y=q x-a q^{2} \ldots2$
Sub 1 into 2
$p x-a p^{2}=q x-a q^{2}$
$x(p-q)=a p^{2}-a q^{2}$
$x=\frac{a\left(p^{2}-q^{2}\right)}{p-q}=a(p+q)$
Sub into 1.
$y=p \cdot a(p+q)-a p^{2}=a p q$
Hence, $T(a(p+q), a p q)$
(iii) $\quad T$ on directrix $\rightarrow a p q=-a$. Hence, $p q=-1$.

But p is the gradient of $P T$ and q is the gradient of $Q T$. Hence the tangents are perpendicular. Hence, $\angle P T Q=90^{\circ}$.
(b) (i)

(i) 3:1 externally
$x=\frac{3 \times 2 t-1 \times 0}{3-1}=3 t$
$y=\frac{3 \times t^{2}-1 \times 1}{3-1}=\frac{3 t^{2}-1}{2}$
Coordinates are $\left(3 t, \frac{3 t^{2}-1}{2}\right)$
(ii)

$$
\begin{aligned}
& t=\frac{x}{3} . \text { Hence, } y=\frac{3\left(\frac{x}{3}\right)^{2}-1}{2} \\
& 2 y=\frac{x^{2}}{3}-1 \\
& x^{2}=6 y+3
\end{aligned}
$$

