

NORTH SYDNEY BOYS HIGH SCHOOL

2009 PRELIMINARY EXAMINATION

Mathematics Extension 1

Examiner: R. Lowe

General Instructions

•	Working	time	_	2 hours	and	а	half
---	---------	------	---	---------	-----	---	------

- Attempt all questions
- · Write using blue or black pen
- · Board approved calculators may be
- All necessary working should be shown in every question
- Each new Question is to be started on a new page.

Class Teacher:

(Please tick or highlight)

- O Mr Barrett
- O Mr Ireland
- O Mr Lam
- O Mr Lowe
- O Mr Rezcallah
- O Mr Trenwith
- O Mr Weiss

Sti	امر	an	4 1	N۵	m	Α.
- TI	10	en	ΤI	VIЗ	m	Ω.

Question No	1	2	3	4	5	6	7	8	9	10	11	Total	Total
Mark	10	<u></u>	12	12	<u>-</u> 5	7	13	11	<u></u>	12	13	118	100

Question 1

- a) Evaluate $\frac{3.24^2 2.1^2}{\sqrt{36 + 2.1}}$ correct to 3 significant figures.
- b) Simplify $\frac{2x^2 1}{1 2x^2}$
- c) Simplify $\frac{3^{n+2}+3^n}{3^n}$
- d) Given that $\tan \alpha = 2$ where α is an acute angle, 2 find the value of $\tan 2\alpha$ in exact form.
- e) Solve $\frac{4}{x-3} \le 2$
- f) Find correct to 2 decimal places log_312

Question 2 Start a new page

- a) Find the acute angle between the lines 4x y = 0 and y = x to the nearest degree.
- b) Solve $|15 + 4x| \le 3$
- c) Given that R(x, y) divides the interval joining P(-4, 5) and 2
 Q(-1, 9) externally in the ratio 3: 5, find the coordinates of R.
- d) Find the period and amplitude for the graph of $y = 3\sin(2\pi x)$.
- e) i) Without calculus sketch the graph $y = x^3 (2 x)$ 2 ii) Hence, or otherwise, solve the inequality $x^3 (2 - x) < 0$.

Question 3 Start a new page

d)

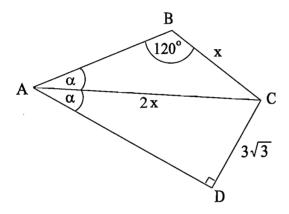
a) Write 0.12 as a fraction in simplest form

b) Simplify fully
$$\frac{5x+1}{(x+1)(x-1)} + \frac{2}{1-x} - \frac{3}{1+x}$$

2

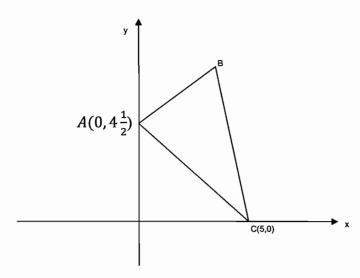
- c) i) Prove that $(\cos ec^2 x 1)\sin^2 x = \cos^2 x$
 - ii) Hence or otherwise solve: 3 $(\cos ec^2 x 1)\sin^2 x = \frac{3}{4} \quad \text{for} \quad 0 \le x \le 360^0$

In the quadrilateral ABCD shown in the diagram, $\angle BAC = \angle CAD = \alpha$. $\angle ABC = 120^{\circ}$, $\angle ADC = 90^{\circ}$, BC = x, AC = 2x, and $CD = 3\sqrt{3}$ cm



- i) Use the triangle ABC to find the value of $\sin \alpha$.
- ii) Hence, find the value of x.

Question 4 Start a new page



The lines AB and CB have equations x-2y+9=0 and 4x-y-20=0 respectively.

i) Find the coordinates of the point B.

3

ii) Show that the equation of the line AC is 9x + 10y - 45 = 0.

2

iii) Calculate the distance AC in exact form.

2

iv) Find the equation of the line perpendicular to BC which passes passes through A.

2

v) Calculate the shortest distance between the point B and the line AC.

3

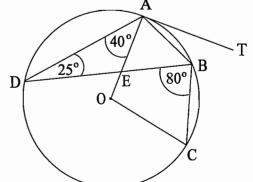
Hence find the area of the triangle ABC.

Question 5 Start a new page

A, B, C, and D are four points on a circle with centre O, such that

 \angle ADB = 25°, \angle DBC = 80° and \angle OAD = 40°.

AT is a tangent at A to the circle.



i) Show that the triangle AEB is isosceles.

ii) Show that quadrilateral OEBC is cyclic.

2

3

Question 6 Start a new page

- The first and last terms of an arithmetic series are 5 and 165 respectively, and the sum of these terms is 1785. Find the number of terms in the series.
- 2

- Write down a single expression for the sum of the first n terms of the b) i) $1 + x^2 + x^4 + x^6 + \cdots$ geometric series
- 2

ii) When does the sum to infinity exist (in terms of x^2)? 1

What is the sum to infinity when $x = \frac{1}{3}$? iii)

2

Question 7 Start a new page

Differentiate with respect to xa)

$$y = 4x^8 - \frac{1}{\sqrt{x}}$$

2

ii)
$$y = (3x^2 + 7)^8$$

2

$$y = \frac{x^3}{x^2 + 1}$$

- 2
- A particle moves in a straight line so that its position, x m, from the origin at time, b) $x = t^3 + 3t^2 - 9t$ t seconds, is given by
 - Find

3

its initial displacement, velocity and acceleration. i)

when the particle is stationary and its position at that time.

2

iii) the distance travelled in the first 2 seconds.

2

Question 8 Start a new page

ii)

- a) For the curve $y = x^3 + 3x^2 24x + 2$
 - Find the stationary points and determine their nature i)

3

Find any points of inflexion ii)

2

iii) Sketch the curve

- 2
- b) A farmer has 30m of wire fencing. He wishes to make a rectangular enclosure using the side of the barn as one wall. What is the largest area that the fenced enclosure can have? Justify your answer by using calculus.
- 4

Question 9 Start a new page

- a) If $\sin \emptyset = \frac{4}{5}$ and $\sin \alpha = \frac{5}{13}$, find $\cos (\emptyset \alpha)$ if α and \emptyset are acute
- b) Find the exact value of sin 105°. Express your answer with a rational denominator.
- c) Solve $\cos\left(2x \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ where $0 \le x \le 2\pi$
- d) A ship is sailing on a bearing of 205° from port A to port B. If port B is 70
 nautical miles west of port A, find how far the ship has sailed.

Question 10 Start a new page

- a) Consider the function y=f(x). If the point (4,8) is a maximum turning point on the function what is the value of f'(4)?
- b) On the same curve y=f(x) a tangent is drawn from the point (3,6) and this tangent has a y intercept of 10. What is the value of f'(3)?
- c) On separate axes sketch the following graphs, showing all important features, and state their domain and range

i)
$$y = 4\sin 2x$$
 $0^0 \le x \le 360^0$ 3

$$y = \sqrt{4 - x^2}$$

iii)
$$y = 4^{-x}$$

Question 11 Start a new page

a) Points A, B and C lie on horizontal ground so that ∠ACB is 90° and A and B are 200m apart. Point D is h metres vertically above C. The angles of elevation of D from A and B are 20° and 23° respectively. Draw a half page diagram to show this information and find the value of h correct to 2 significant figures.

b) Solve
$$\log_2 x - \log_2 (x - 2) = \frac{2}{3} \log_2 27$$

4

3

c) The radius of curvature R of a function y = f(x) is a measure of how sharply a curve is bending.

It is defined as
$$R = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\left|\frac{d^2y}{dx^2}\right|}$$
.

Use this formula to find the exact radius of curvature of the curve $y = \sqrt{x}$ at x = 1.

d) Find the domain and range of the function $f(x) = \sqrt{3 - \sqrt{x}}$

Suggested Solutions

Question 1 (Weiss)

(a) (1 mark)

$$\frac{3.24^2 - 2.1^2}{\sqrt{36 + 2.1}} = 0.986$$

(b) (1 mark)

$$\frac{2x^2 - 1}{1 - 2x^2} = -1$$

(c) (2 marks)

$$\frac{3^{n+2}+3^n}{3^n} = \frac{\mathscr{K}(3^2+1)}{\mathscr{K}}$$
$$= 9+1 = 10$$

(d) (2 marks)

$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

Substitute $\tan \alpha = 2$ results in

$$\tan 2\alpha = \frac{2 \times 2}{1 - 2^2} = -\frac{4}{3}$$

(e) (3 marks)

$$\frac{4}{x-3} \le \frac{2}{(x-3)^2}$$

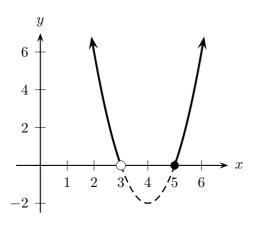
$$4(x-3) \le 2(x-3)^2$$

$$2(x-3)^2 - 4(x-3) \ge 0$$

$$2(x-3)(x-3-2) \ge 0$$

$$2(x-3)(x-5) \ge 0$$

$$x < 3 \text{ or } x \ge 5$$



(f) (1 mark)

$$\log_3 12 = \frac{\log_{10} 12}{\log_{10} 3} = 2.26$$

Question 2 (Lowe)

(a) (2 marks)

$$4x - y = 0 \Rightarrow m_1 = 4$$

$$y = x \Rightarrow m_2 = 1$$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

$$= \left| \frac{4 - 1}{1 + 4} \right| = \frac{3}{5}$$

$$\therefore \theta = \tan^{-1} \frac{3}{5} = 30^{\circ} 58'$$

(b) (2 marks)

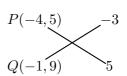
$$|15 + 4x| \le 3$$

$$-3 \le 15 + 4x \le 3$$

$$-18 \le 4x \le -12$$

$$\div 4 = -12$$

(c) (2 marks)



As R divides PQ externally,

$$R(x,y) = \left(\frac{5(-4) + -3(-1)}{-3+5}, \frac{5(5) + -3(9)}{-3+5}\right)$$
$$= \left(-\frac{17}{2}, -\frac{2}{2}\right) = \left(-8\frac{1}{2}, -1\right)$$

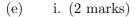
(d) (2 marks)

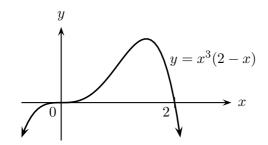
$$y = 3\sin(2\pi x)$$

- amplitude a = 3.
- period:

$$f = \frac{2\pi}{T}$$

$$f = 2\pi \quad \Rightarrow \quad T = \frac{2\pi}{2\pi} = 1$$





ii. (1 mark) $x^3(2-x)$ is below the x axis when x < 0 or x > 2.

Question 3 (Rezcallah)

(a) (2 marks)

$$x = 0.122 \cdots$$

$$10x = 1.222 \cdots$$

$$100x = 12.222 \cdots$$

$$90x = 11$$

$$\therefore x = \frac{11}{90}$$

(b) (2 marks)

$$\frac{5x+1}{(x+1)(x-1)} + \frac{2}{1-x} - \frac{3}{1+x}$$

$$= \frac{5x+1}{(x+1)(x-1)} - \frac{2}{x-1} - \frac{3}{x+1}$$

$$= \frac{(5x+1)-2(x+1)-3(x-1)}{(x+1)(x-1)}$$

$$= \frac{5x+1-2x-2-3x+3}{(x+1)(x-1)}$$

$$= \frac{2}{(x+1)(x-1)} \text{ or } -\frac{2}{(1-x)(x+1)}$$

(c) i. (2 marks) $(\csc^2 x - 1) \sin^2 x$ $= \left(\frac{1}{\sin^2 x} - 1\right) \sin^2 x$ $= 1 - \sin^2 x$ $= \cos^2 x$

ii. (3 marks)

$$(\csc^2 x - 1) \sin^2 x = \frac{3}{4}$$
$$\cos^2 x = \frac{3}{4}$$
$$\cos x = \pm \frac{\sqrt{3}}{2}$$
$$x = 30^\circ, 150^\circ, 210^\circ, 330^\circ$$

(d) i. (2 marks)

Applying the sine rule in $\triangle ABC$,

$$\frac{\sin \alpha}{x} = \frac{\sin 120^{\circ}}{2x}$$
$$\therefore \sin \alpha = \frac{\sin 120^{\circ}}{2} = \frac{\sqrt{3}}{4}$$

ii. (1 mark)

In
$$\triangle ACD$$
, $\sin \alpha = \frac{3\sqrt{3}}{2x}$

But
$$\sin \alpha = \frac{\sqrt{3}}{4}$$
,

$$\therefore \frac{\sqrt{3}}{4} = \frac{3\sqrt{3}}{2x}$$

$$\therefore x = 6$$

(a) (3 marks)

$$\begin{cases} x - 2y + 9 = 0 & (1) \\ 4x - y - 20 = 0 & (2) \\ 8x - 2y - 40 = 0 & (2') \end{cases}$$

Subtract (2') from (1),

$$-7x + 49 = 0$$

$$7x = 49$$

$$x = 7 \rightarrow (1)$$

$$7 - 2y + 9 = 0$$

$$2y = 16$$

$$y = 8$$

$$\therefore B(7, 8)$$

(b) (2 marks)

$$m_{AC} = \frac{\frac{9}{2} - 0}{0 - 5} = -\frac{9}{10}$$
$$\frac{y - \frac{9}{2}}{x - 0} = -\frac{9}{10}$$
$$y = -\frac{9}{10} + \frac{9}{2}$$
$$x_{10} = -\frac{9}{10} + \frac{9}{2}$$
$$x_{10} = -9x + 45$$
$$9x + 10y - 45 = 0$$

(c) (2 marks)

$$d_{AC} = \sqrt{5^2 + \left(\frac{9}{2}\right)^2}$$
$$= \sqrt{\frac{181}{4}}$$
$$= \frac{\sqrt{181}}{2}$$

(d) (2 marks)

$$m_{BC} = 4$$
$$y = -\frac{1}{4}x + \frac{9}{2}$$

(e) (3 marks)

Perpendicular distance from (7,8) to 9x + 10y - 45 = 0 is

$$d_{\perp} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|9(7) + 10(8) - 45|}{\sqrt{9^2 + 10^2}}$$

$$= \frac{|63 + 80 - 45|}{\sqrt{181}}$$

$$= \frac{98}{\sqrt{181}}$$

$$A = \frac{1}{2}bh$$

$$= \frac{1}{2} \times \frac{\sqrt{181}}{2} \times \frac{98}{\sqrt{181}}$$

$$= \frac{98}{4} = \frac{49}{2}$$

$$= 24.5 \text{ units}^2$$

Question 5 (Trenwith)

(a) (3 marks)

- $\angle TAB = 25^{\circ}$ (angle between a chord and a tangent is equal to the angle in the alternate segment).
- $\angle OAT = 90^{\circ}$ (angle between a tangent and a radius.
- $\angle OAB = 65^{\circ}$ (by subtraction).
- $\angle AEB = 40^{\circ} + 25^{\circ} = 65^{\circ}$. (exterior angle of $\triangle ADE$ equals the sum of the opposite interior angles).

 $\therefore \triangle AEB$ isosceles as it has 2 equal angles.

(b) (2 marks)

- $\angle ABE = 50^{\circ}$ (angle sum of $\triangle ABE$)
- $\angle ABC = 50^{\circ} + 80^{\circ} = 130^{\circ}$.

$$\therefore$$
 reflex $\angle AOC = 260^{\circ}$

(Angle at the centre is twice the angle at the circumference subtended by the same arc AC.)

- Hence $\angle AOC = 100^{\circ}$ (angle of revolution at the centre O).
- \therefore OEBC is a cyclic quadrilateral as its opposite angles $\angle COE \& \angle EBC$ are supplementary.

Question 6 (Barrett)

(a) (2 marks)

$$a = 5 \qquad \ell = a + (n-1)d = 165$$

$$S_n = 1785$$

$$1785 = \frac{n}{2}(a+\ell)$$

$$3570 = n(5+165)$$

$$n = \frac{3570}{170} = 21$$

(b) i. (2 marks)

$$a = 1 r = x^{2}$$

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$$

$$= \frac{(x^{2})^{n} - 1}{x^{2} - 1}$$

$$= \frac{x^{2n} - 1}{x^{2} - 1}$$

ii. (1 mark)

$$|r| < 1$$

$$|x^2| < 1$$

$$\therefore 0 \le x^2 < 1$$

$$\therefore -1 < x < 1$$

iii. (2 marks)

$$S = \frac{a}{1-r} = \frac{a}{1-x^2}$$
$$= \frac{1}{1-\left(\frac{1}{3}\right)^2} = \frac{1}{1-\frac{1}{9}} = \frac{9}{8}$$

Question 7 (Barrett)

(a) i. (2 marks)

$$y = 4x^8 - x^{-\frac{1}{2}}$$
$$\frac{dy}{dx} = 32x^7 + \frac{1}{2}x^{-\frac{3}{2}}$$

ii. (2 marks)

$$y = (3x^{2} + 7)^{8}$$
$$\frac{dy}{dx} = 8 \times 6x (3x^{2} + 7)^{7}$$
$$= 48x (3x^{2} + 7)^{7}$$

iii. (2 marks)

$$y = \frac{x^3}{x^2 + 1}$$

$$u = x^3 \quad v = x^2 + 1$$

$$u' = 3x^2 \quad v' = 2x$$

$$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$

$$= \frac{(3x^2)(x^2 + 1) - (2x)(x^3)}{(x^2 + 1)^2}$$

$$= \frac{3x^4 + 3x^2 - 2x^4}{(x^2 + 1)^2}$$

$$= \frac{x^4 + 3x^2}{(x^2 + 1)^2}$$

(b) i. (3 marks)

$$x(t) = t^{3} + 3t^{2} - 9t$$

$$v(t) = 3t^{2} + 6t - 9$$

$$a(t) = 6t + 6$$

$$x(0) = 0 v(0) = -9 a(0) = 6$$

ii. (2 marks) Particle is stationary when v(t) = 0.

$$3t^{2} + 6t - 9 = 0$$
$$t^{2} + 2t - 3 = 0$$
$$(t+3)(t-1) = 0$$

As t > 0,

$$t = 1$$
$$x(1) = 1 + 3 - 9 = -5$$

The particle is 5 units to the left of the origin when it is stationary.

iii. (2 marks)

$$x(0) = 0$$

$$x(1) = 1 + 3 - 9 = -5$$

$$x(2) = 8 + 12 - 18 = 2$$

The particle travels -5 units between t=0 and t=1, then from t=1 to t=2 travels from -5 to 2 (7 units). Total distance travelled: 5+7=12 units.

Question 8 (Trenwith)

(a) i. (3 marks)

$$y = x^{3} + 3x^{2} - 24x + 2$$
$$y' = 3x^{2} + 6x - 24$$
$$y'' = 6x + 6$$

Stationary pts occur when y' = 0,

$$3x^{2} + 6x - 24 = 0$$

$$x^{2} + 2x - 8 = 0$$

$$(x+4)(x-2) = 0$$

$$\therefore x = -4, 2$$

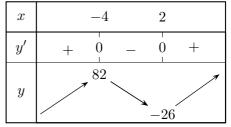
$$y'' = 6x + 6\Big|_{x=-4}$$

$$= 6(-4) + 6 < 0$$

$$y'' = 6x + 6\Big|_{x=2}$$

$$= 6(2) + 6 > 0$$

Hence x = -4 is a local maximum and x = 2 is a local minimum.



ii. (2 marks)

Points of inflexion occur when y'' = 0 with a change in concavity:

$$y'' = 6x + 6 = 0$$
$$6x + 6 = 0$$
$$6x = -6$$
$$x = -1$$

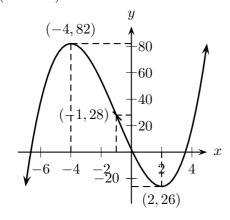
$$y'' = 6x + 6 \Big|_{x=-2}$$
 $y'' = 6x + 6 \Big|_{x=0}$ > 0

Concavity changes x = -1.

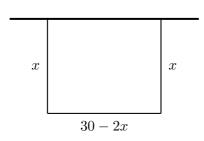
$$y = x^{3} + 3x^{2} - 24x + 2 \Big|_{x=-1}$$
$$= -1 + 3 + 24 + 2 = 28$$

(-1,28) is a point of inflexion.

iii. (2 marks)



(b) (4 marks)



$$A = x(30 - 2x)$$
$$= 30x - 2x^{2}$$
$$\frac{dA}{dx} = 30 - 4x$$
$$\frac{d^{2}A}{dx^{2}} = -4$$

Maximum area occurs when $\frac{dA}{dx} = 0$

$$30 - 4x = 0$$

$$4x = 30$$

$$4x = \frac{30}{2}$$

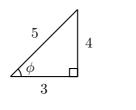
$$x = \frac{15}{2}$$

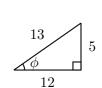
: maximum area is

$$A = x(30 - 2x) \Big|_{x = \frac{15}{2}}$$
$$= \left(\frac{15}{2}\right) (30 - 15)$$
$$= \frac{225}{2} \text{ m}^2$$

Question 9 (Lowe)

(a) (3 marks)





$$\sin \phi = \frac{4}{5} \qquad \sin \alpha = \frac{5}{13}$$

$$\Rightarrow \cos \phi = \frac{3}{5} \qquad \cos \alpha = \frac{12}{13}$$

$$\cos(\phi - \alpha) = \cos \phi \cos \alpha + \sin \phi \sin \alpha$$

$$= \left(\frac{3}{5} \times \frac{12}{13}\right) + \left(\frac{4}{5} \times \frac{5}{13}\right)$$

$$= \frac{36 + 20}{65} = \frac{56}{65}$$

(b) (3 marks)

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ})$$

$$= \sin 60^{\circ} \cos 45^{\circ} + \sin 45^{\circ} \cos 60^{\circ}$$

$$= \left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} \times \frac{1}{2}\right)$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

(c) (3 marks)

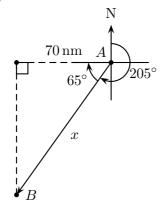
$$\cos\left(2x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$
$$2x - \frac{\pi}{6} = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

As $x \in [0, 2\pi]$, then $2x \in [0, 4\pi]$.

$$2x - \frac{\pi}{6} = \frac{\pi}{6}, \left(2\pi - \frac{\pi}{6}\right)$$
$$\left(2\pi + \frac{\pi}{6}\right), \left(4\pi - \frac{\pi}{6}\right)$$
$$2x = \frac{\pi}{3}, 2\pi, \frac{14\pi}{6}, 4\pi$$
$$x = 0, \frac{\pi}{6}, \pi, \frac{7\pi}{6}, 2\pi$$

x=0 is inserted as $x=2\pi$ is also a solution and $x\in[0,2\pi]$.

(d) (3 marks)



$$\cos 65^{\circ} = \frac{70}{x}$$

$$x = \frac{70}{\cos 65^{\circ}} = 165.6 \,\text{nm}$$

Question 10 (Weiss)

(a) (1 mark)

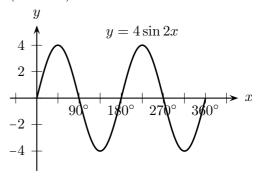
$$f'(4) = 0$$

(b) (2 marks)

$$f'(3) = \frac{6-10}{3-0} = -\frac{4}{3}$$

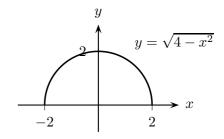
i. (3 marks)

(c)



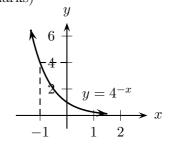
$$D = \{x : 0^{\circ} \le x \le 360^{\circ}\}$$
$$R = \{y : -4 \le y \le 4\}$$

ii. (3 marks)



$$D = \{x : -2 \le x \le 2\}$$
$$R = \{y : 0 \le y \le 2\}$$

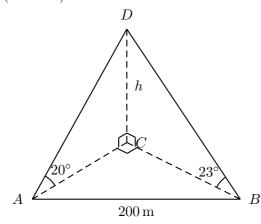
iii. (3 marks)



$$D = \{x : x \in \mathbb{R}\}$$
$$R = \{y : y > 0\}$$

Question 11 (Ireland)

(a) (4 marks)



$$\tan 20^{\circ} = \frac{h}{AC}$$

$$AC = \frac{h}{\tan 20^{\circ}}$$

$$\tan 23^{\circ} = \frac{h}{BC}$$

$$BC = \frac{h}{\tan 23^{\circ}}$$

Using Pythagoras' Theorem in $\triangle ABC$,

$$AC^{2} + BC^{2} = 200^{2}$$

$$\frac{h^{2}}{\tan^{2} 20^{\circ}} + \frac{h^{2}}{\tan^{2} 23^{\circ}} = 200^{2}$$

$$\frac{h^{2} \left(\tan^{2} 20^{\circ} + \tan^{2} 23^{\circ}\right)}{\tan^{2} 20^{\circ} \tan^{2} 23^{\circ}} = 200^{2}$$

$$\times \tan^{2} 20^{\circ} \tan^{2} 23^{\circ}$$

$$h^{2} \left(\tan^{2} 20^{\circ} + \tan^{2} 23^{\circ}\right)$$

$$= 200^{2} \left(\tan^{2} 20^{\circ} \tan^{2} 23^{\circ}\right)$$

$$= 200^{2} \left(\tan^{2} 20^{\circ} \tan^{2} 23^{\circ}\right)$$

$$h^{2} = \frac{200^{2} \left(\tan^{2} 20^{\circ} \tan^{2} 23^{\circ}\right)}{\tan^{2} 20^{\circ} + \tan^{2} 23^{\circ}}$$

$$h = \frac{200 \left(\tan 20^{\circ} \tan 23^{\circ}\right)}{\sqrt{\tan^{2} 20^{\circ} + \tan^{2} 23^{\circ}}}$$

$$= 55.26$$

$$= 55 \text{ m } (2 \text{ s.f.})$$

(b) (3 marks)

(c) (3 marks)

$$y = x^{2} x = 1$$

$$y' = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

$$y'' = -\frac{1}{4}x^{-\frac{3}{2}}$$

$$R = \frac{\left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{\frac{3}{2}}}{\left|\frac{d^{2}y}{dx^{2}}\right|}$$

$$= \frac{\left(1 + \left(\frac{1}{2\sqrt{x}}\right)^{2}\right)^{\frac{3}{2}}}{\left|-\frac{1}{4}x^{-\frac{3}{2}}\right|}$$

$$= \frac{\left(1 + \frac{1}{4x}\right)^{\frac{3}{2}}}{\left|-\frac{1}{4}x^{-\frac{3}{2}}\right|}\Big|_{x=1}$$

$$= \frac{\left(\frac{5}{4}\right)^{\frac{3}{2}}}{\frac{1}{4}} = \frac{\frac{5\sqrt{5}}{8}}{\frac{1}{4}}$$

$$= \frac{5\sqrt{5}}{2}$$

(d) (3 marks)

$$f(x) = \sqrt{3 - \sqrt{x}}$$

As the expression within the radical is ≥ 0

$$3 - \sqrt{x} \ge 0$$

$$3 \ge \sqrt{x}$$

$$0 \le x \le 9$$

$$D = \{x : x \in [0, 9]\}$$

$$f(0) = \sqrt{3} \qquad f(9) = 0$$

$$R = \{y : y \in [0, \sqrt{3}]\}$$