Mrs Greenberg
Mrs Israel
Mrs Kerr
Ms Lau
Mrs Millar
Mrs Squires

Name: \qquad
Teacher: \qquad
\qquad

Pymble Ladies' Gollege

PRELIMINARY YEARLY EXAMINATION
 2017

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time - 2 hours.
- Write using pencil for Questions 1-10.
- Write using black or blue pen for Questions 11-14. Black pen is preferred.
- Board approved calculators may be used.
- Diagrams are not drawn to scale.
- A reference sheet is provided.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total Marks - 61

Section I Pages 1-4

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Section II Pages 5-9
51 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Mark	$/ 61$
Highest Mark	$/ 61$

Section I

10 Marks

Attempt all Questions

Use the multiple-choice answer sheet for Questions 1 - 10

1 Which of the following is equal to $3^{x} \times 2^{x}$?
(A) 5^{x}
(B) $5^{2 x}$
(C) $6^{2 x}$
(D) 6^{x}

2 Which of the following is the correct factorisation of $10 y^{2}-19 y+6$?
(A) $(5 y-2)(2 y-3)$
(B) $(5 y-3)(2 y-2)$
(C) $(5 y-2)(3-2 y)$
(D) $(3-5 y)(2-2 y)$

3 If $f(x)=\frac{x+1}{x}$, which of the following is equal to $f\left(\frac{1}{\alpha}\right)$?
(A) $1-\alpha$
(B) $\frac{\alpha}{\alpha-1}$
(C) $1+\alpha$
(D) $\frac{\alpha-1}{\alpha}$

4 Which of the following gives the equation of the line perpendicular to $y=5-2 x$ and passing through the point $(1,-3)$?
(A) $x-2 y-7=0$
(B) $2 x+y+1=0$
(C) $x-2 y+5=0$
(D) $2 y+x+5=0$
$5 \quad A B C D$ is a cyclic quadrilateral inscribed in a circle with centre O such that $\angle B O D=140^{\circ}$.

What is the size of $\angle B C D$?
(A) 100°
(B) 110°
(C) 120°
(D) 130°

6 What is the value of $\lim _{a \rightarrow 4} \frac{a^{2}-16}{a+4}$?
(A) 0
(B) 8
(C) -4
(D) 4

7 Suppose that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for all real values of x. Which of the following graphs best represents $y=f(x)$?
(A)

(D)

8 For which point on the graph below is $f(x)>0, f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$?

(A) A
(B) B
(C) C
(D) D

9 It is known that $f^{\prime \prime}(x)=(x+4)^{2}(x-3)$.
How many inflexion points does the graph of $y=f(x)$ have?
(A) 0
(B) 1
(C) 2
(D) 3

10 The graph of the derivative $y=f^{\prime}(x)$ is drawn below.

Where does a maximum turning point occur on $y=f(x)$?
(A) $x=-2$
(B) $x=2$
(C) $x=4$
(D) $x=6$

Section II

51 Marks

Attempt Questions 11 - 14

Allow about 1 hour and 40 minutes for this section.
Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 11 (13 marks)
(a) Simplify $\frac{1}{p^{2}-p q}-\frac{1}{p q-q^{2}}$.
(b) Find, correct to the nearest degree, the acute angle between the lines
$2 x+y-3=0$ and $x-3 y+2=0$.
(c) Find the x coordinate of the point on the curve $y=x \sqrt{x+3}$ where the tangent is parallel to the x-axis.
(d) $A(8, \sqrt{200})$ and $B(1, \sqrt{72})$ are two points. Find, in simplest exact form, the coordinates of the point P which divides the interval $A B$ in the ratio 3:1.
(e) Find the domain and range of the function $f(x)=4 \sqrt{25-x^{2}}$.

End of Question 11

(a) Solve the inequality $\frac{2 x-1}{x} \geq x$.
(b) Given the sequence $\sqrt{2}, \sqrt{18}, \sqrt{50}, \ldots \ldots$
(i) Show that the sequence is arithmetic. $\mathbf{1}$
(ii) Find the value of the hundredth term. $\mathbf{1}$
(iii) Find the sum of the first hundred terms. $\mathbf{1}$
(c) 2

$C D$ is a tangent at D to the circle. $A B=x, B C=9$ and $C D=12$.
Find the value of x, giving reasons.
(d) Prove by mathematical induction

$$
1+5+9+\ldots+(4 n-3)=n(2 n-1) \text { for } n \geq 1
$$

End of Question 12

(a) (i) Find the vertical and horizontal asymptotes of the graph $y=\frac{x-1}{3-x}$ and hence, sketch the graph of $y=\frac{x-1}{3-x}$, showing intercepts with the axes.
(ii) Hence, or otherwise, find the values of x for which $\frac{x-1}{3-x} \leq 1$.
(b)

$M N$ and $G H$ are two chords of a circle at right angles to each other, intersecting at R.
From R, a line perpendicular to $H N$ is drawn, meeting it at T. $T R$ produced meets $M G$ at V.
Prove that:
(i) $\triangle M V R$ is isosceles.
(ii) $\quad V$ is the mid-point of $M G$.

Note: You do not have to copy the diagram above. It has been reproduced for you on a separate page. Insert this extra page into your answer booklet.
(c) Prove by mathematical induction that $7^{n}-1$ is divisible by 3 for all positive integers n.

End of Question 13

(a) Solve $4 \cos \left(2 \alpha-45^{\circ}\right)-2 \sqrt{3}=0$ for the domain $0^{\circ} \leq \alpha \leq 360^{\circ}$.
(b)

$A B$ is a diameter of a semicircular piece of horizontal ground with radius r metres. $C D$ is a vertical flagpole of height h metres standing with its base C on the arc $A B$. From A and B the angles of elevation of the top D of the flagpole are 45° and 30° respectively. Show that $h=r$.
(c)

In the diagram above, the curve $y=\frac{h}{x^{2}+k}$, where h and k are constants, has a minimum turning point at $(0,-6)$ and passes through the point $(5,-1)$. A rectangle $P Q R S$ is inscribed within the curve as shown with its axis of symmetry $x=0$.
(i) Find the values of h and k.
(ii) If Q has coordinates $(\alpha, 0)$ find the coordinates of R in terms of α.
(iii) Show that the area, A, of the rectangle $P Q R S$ is $A=\frac{60 \alpha}{\alpha^{2}+5}$.
(iv) Hence, show that the maximum area of the rectangle $P Q R S$ is $6 \sqrt{5}$ square units.

Teacher's Name.

Question 13 (b)

Note: Insert this page into your answer booklet for Question 13.

Not to
Scale

2017: 11 Ext 1 yearly exam: solutions
multiple choice

1. D
2. A
3. A
4. C
5. A
6. C
7. B
8. B

-

10. C
a)

$$
\begin{aligned}
& \frac{1}{p(p-q)}-\frac{1}{q(p-q)} \\
= & \frac{(q-p)}{p q(p-q)} \\
= & \frac{-(p-q)}{p q(p-q)} \\
= & \frac{1}{p q}
\end{aligned}
$$

b)

$$
\begin{aligned}
2 x+y-3 & =0 \quad \therefore m_{1}=-\frac{a}{b}=-2 \\
x-3 y+2 & =0 \quad \therefore m_{2}=-\frac{1}{-3}=\frac{1}{3} \\
\therefore \tan \theta & =\left|\frac{-2-\frac{1}{3}}{1+(-2)\left(\frac{1}{3}\right)}\right| \\
& =|-7| \\
\therefore \tan \theta & =7 \\
\theta & =\tan ^{-17} \\
& =82^{\circ}
\end{aligned}
$$

$$
\therefore \quad \therefore \tan \theta=\left|\frac{-2-\frac{1}{3}}{1+(-2)\left(\frac{1}{3}\right)}\right|
$$

$m_{1}=-2$	
$m_{2}=\frac{1}{3}$	1
correct	
sub into	1
forunta	1
tan θ	
correct	1
son	1

Question 11
c) $y=x \sqrt{x+3}$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\sqrt{x+3}+\frac{x}{2 \sqrt{x+3}} \\
& =\frac{2(x+3)+x}{2 \sqrt{x+3}} \\
& =\frac{3 x+6}{2 \sqrt{x+3}}
\end{aligned}
$$

tang 11 to x-axis: grad $=0$

$$
\begin{aligned}
\therefore 3 x+6 & =0 \\
x & =-2
\end{aligned}
$$

d) $(8, \sqrt{200}) \quad(1, \sqrt{72})$

$$
\begin{aligned}
x=\frac{8(1)+3(1)}{4} & y=\frac{\sqrt{200}(1)+3 \sqrt{72}}{4} \\
=\frac{11}{4} & y=\frac{10 \sqrt{2}+18 \sqrt{2}}{4} \\
& y=\frac{28 \sqrt{2}}{4}
\end{aligned}
$$

$$
\therefore P \text { is }\left(\frac{11}{4}, 7 \sqrt{2}\right)
$$

e) $f(x)=4 \sqrt{25-x^{2}}$
D :

$$
\begin{aligned}
& 25-x^{2} \geqslant 0-5 \nrightarrow 5 \\
& (5+x)(5-x) \geqslant 0 \\
& \therefore-5 \leqslant x \leqslant 5
\end{aligned}
$$

$R: \quad 0 \leqslant y \leqslant 20$

Question 12
a) $\frac{2 x-1}{x} \geqslant x \quad, x \neq 0$
$x x^{2}$

$$
\begin{aligned}
& x(2 x-1) \geqslant x^{3} \\
& x(2 x-1)-x^{3} \geqslant 0 \\
& x\left[2 x-1-x^{2}\right] \geqslant 0 \\
& x\left(-x^{2}+2 x-1\right) \geqslant 0 \\
& x\left(x^{2}-2 x+1\right) \leq 0 \\
& x(x-1)^{2} \leqslant 0 \quad 1
\end{aligned}
$$

$$
\div-1 \quad x\left(x^{2}-2 x+1\right) \leq 0
$$

$$
x \leqslant 0, x=1 \text { but } x \neq 0
$$

C Son: $\quad \therefore<0, x=1$
b) sene $=\sqrt{2}+3 \sqrt{2}+5 \sqrt{2}+\ldots$.
i)

$$
\begin{aligned}
& T_{2}-T_{1}=3 \sqrt{2}-\sqrt{2}=2 \sqrt{2} \\
& T_{3}-T_{2}=5 \sqrt{2}-3 \sqrt{2}=2 \sqrt{2} \\
& \therefore \quad A P \text { with } a=\sqrt{2}, \quad d=2 \sqrt{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
T_{100} & =\sqrt{2}+99(2 \sqrt{2}) \\
& =199 \sqrt{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[a+l] \\
& =\frac{100}{2}[\sqrt{2}+199 \sqrt{2}] \\
& =50(200 \sqrt{2}) \\
& =10000 \sqrt{2}
\end{aligned}
$$

c)

$$
\begin{array}{r}
84+9 x=144 \\
x=7
\end{array}
$$

d) Let $S(n)$ be the statement

$$
1+5+9+\cdots+(4 n-3)=n(2 n-1), \quad n \geqslant 1
$$

STEP 1: For $n=1$, VHS $=1$ RHS $=1(2(1)-1)$

$$
\therefore \angle H S=\text { RHS }
$$

$\therefore S(1)$ is true
STEP 2: Assume true for $S(k)$

$$
\text { i.e } 1+5+\ldots+(4 k-3)=k(2 k-1) k \geqslant 1
$$

STEP 3: Prove true for $S(k+1)$

$$
\begin{aligned}
& \text { ie RTP: } \\
& \left.\begin{aligned}
& 1+5+.+(4 k-3)+(4 k+1)=(k+1)(2 k+1) \\
& \begin{aligned}
\text { LH } & =1+5+\cdots+(4 k-3)+(4 k+1) \\
& =k(2 k-1)+(4 k+1) \text { by induction pypotresin } 11 \\
& =2 k^{2}-k+4 k+1 \\
& =2 k^{2}+3 k+1 \\
& =(k+1)(2 k+1) \\
& =\text { RHS }
\end{aligned} \\
&
\end{aligned} \right\rvert\,
\end{aligned}
$$

STEP 4: \therefore if $s(k)$ is true, then $s(k+1)$ is true since $s(1)$ is true, it follows by mathematical induction that $S(n)$ is true for $n \geqslant 1$. QED.

Question 13
a) i) $y=\frac{x-1}{3-x}$
zeroes: $x=1$
discontumitiès: $x=3$
\therefore vertical assymptore at $x=3$

$$
\div x: y=\frac{1-\frac{1}{x}}{\frac{3}{x}-1} \text { as } x \rightarrow \infty, y \rightarrow-1
$$

$\therefore y=-1$ is horizontal assynup.

ii) soln:

$$
\begin{aligned}
\frac{x-1}{3-x} & =1 \\
x-1 & =3-x \\
2 x & =4
\end{aligned}
$$

$$
x=2 \quad \therefore \text { from graph }
$$

$$
\therefore \text { sole: } x \leqslant 2, x>3
$$

vert. asymptote	1
$x=3$	
$y=-1$ hoviz	
ass with	
correct limit	1
notation	
$y-$ int	
$x-$ int	1
$x=3$	1
$y=-1$	
correct	
shape	1
correct	1
quads	
o point on	
lower arm	

$x \leqslant 2$	1
$x>3$	1

Name. \qquad

Teacher's Name. \qquad
Question 13 (b)
Note: Insert this page into your answer booklet for Question 13.

Not to
Scale
(1) Let $\operatorname{LGMN}=\alpha$
$\begin{aligned} \angle G H N & =\angle G M N \quad(\text { angus at circumference standing } \\ & =\alpha \quad \text { on same arc } a N)\end{aligned}$
$\angle R H T=\angle G H N=\alpha$ (common)
$\angle V M R=\angle G M N=\alpha$ (common)
$\angle H T R^{\circ}=90^{\circ}$ (RTLHN)
$\angle H R T+\alpha+90^{\circ}=180^{\circ} \quad$ (angle sum of $\triangle H R T$)
$\angle H R T=90^{\circ}-\alpha$

$$
\angle H R T=90^{\circ}-\alpha
$$

(1)

$$
\begin{aligned}
& \angle G R V= \angle H R T \quad \text { (Vertically opposite) } \\
&= 90^{\circ}-\alpha \\
& \angle V R M\left.+190^{\circ}-\alpha\right)=90^{\circ} \quad \text { (adjacent complementary } \\
& \angle V R M=\alpha \\
& \text { angles where } \angle M R G= \\
& \therefore \quad \angle V M R=\angle V R M=\alpha
\end{aligned}
$$

$\therefore \Delta m V R$ is Bosceles (two equal angles)

13b)(ii) In $\triangle r R G$

$$
\left\{\begin{aligned}
\angle G R V & =90^{\circ}-\alpha & & \text { (fam (i)) } \\
\angle G V R & =\alpha+\alpha & & \text { (exterior angle of } \triangle M V R) \\
& =2 \alpha & &
\end{aligned}\right.
$$

(1) $\angle V a R+2 \alpha+\left(90^{\circ}-\alpha\right)=180^{\circ}$ (argue sum of $\left.\triangle V R G\right)$
$\therefore \angle V G R=90^{\circ}-\alpha$

$$
\begin{array}{ll}
\therefore \quad \angle V G R=\angle G R V & =90^{\circ}-\alpha \\
\quad V R=V G
\end{array} \text { Lidos }
$$

$\therefore V R=V G$ (sides opposite equal angles)
(1) $\left\{\begin{array}{c}\ln \triangle m V R \\ V R=V M \quad \text { (sides opposite equal angles) } \\ \therefore \quad V m=V a \\ \therefore V \text { is midparit of } m a .\end{array}\right.$

Question 13
c) Let the statement be
$7^{7}-1$ is divisible by 3 for integer $n \geqslant 1$

Prove statement true for $n=1$

$$
7^{\prime}-1=6
$$

$$
=3 \times 2 \text { which is divisible by } 3
$$

\therefore true for $n=1$
Assume statement true for $n=k$, for integer $k \geq 1$ ie assume $7^{k}-1=3 p$ for integer p

$$
\text { ie } \quad 7^{k}=3 p+1
$$

Prove statement true for $n=k+1$
re prove $7^{k+1}-1=3 Q$ for integer Q

$$
\begin{aligned}
7^{k+1}-1 & =7 \times 7^{k}-1 \\
& =7 \times(3 p+1)-1 \quad \text { (by assumption) } \\
& =21 p+7-1 \\
& =21 p+6 \\
& =3(7 p+2) \\
& =3 Q
\end{aligned}
$$

where $Q=7 P+2$ is an integer if P is an integer
If statement is true for $n=k$, then it is also true for $n=k+1$

Since statement is true for $n=1$, then it is a bo true for $n=1+1=2, n=2+1=3$, and so on for all integers $n \geqslant 1$

Question 14
a)

$$
\begin{array}{ll|}
\hline 4 \cos (2 a-45)=2 \sqrt{3} & \\
\cos (2 a-45)=\frac{\sqrt{3}}{2} & 0^{\circ} \leq d \leq 360^{\circ} \\
\text { let } u=2 a-45^{\circ} & -45^{\circ} \leq 2 a-45 \leq 675 \\
\cos u=\frac{\sqrt{3}}{2} & \therefore-45^{\circ} \leq u \leq 675^{\circ} \mathrm{V} \\
\text { related } u=30^{\circ} \mathrm{V} & 30^{\circ} \div 390^{\circ}
\end{array}
$$

$$
\begin{aligned}
\therefore 2 a-45 & =-30^{\circ} ; 30^{\circ} ; 330^{\circ} ; 390 \\
2 a & =15 ; 75 ; 375 ; 435 \\
\therefore a & =7.5^{\circ} ; 37.5^{\circ} ; 187.5^{\circ} ; 217.5^{\circ}
\end{aligned}
$$

b)

in $\triangle B D C: \frac{B C}{h}=\tan 60$

$$
\begin{aligned}
& B C=h \tan 60 \\
& B C=\sqrt{3} h
\end{aligned}
$$

in $\triangle D C A: \quad D C=A C \quad$ (sidesosposite equal $\begin{array}{ll}\text { angres : isosceles } \triangle)\end{array}$

$$
\therefore A C=h \quad-2
$$

(4)

$B C=\sqrt{3} h$	1
$A C=h$	
$\angle A C B=90^{\circ}$	1
+reasen	
realisessegn	
$B N^{2}=B C^{2}+A C^{2}$	
ases cos	1
rule	
Correcths	
corr soln	1

Question 14

i) $y=\frac{h}{x^{2}+k} \quad \operatorname{sub}(0,-b)$

$$
\therefore-6=\frac{h}{K} \quad \therefore \quad h=-6 k
$$

$\operatorname{sub}(5,-1) \quad \therefore-1=\frac{h}{25+k}$

$$
\therefore h=-25-k-2
$$

C $(\$ 1)$

$$
\begin{aligned}
& -6 k=-25-k \\
& -5 k=-25 \\
& k=5 \\
\therefore h= & -6(5) \\
& h=-30
\end{aligned}
$$

ii)

$$
\begin{gathered}
y=\frac{-30}{x^{2}+5}: R(\alpha, 0) \\
y=\frac{-30}{\alpha^{2}+5} \\
\therefore R\left(\alpha, \frac{-30}{\alpha^{2}+5}\right)
\end{gathered}
$$

iii)

$$
\begin{aligned}
& P Q=2 \alpha, \quad Q R=\frac{30}{\alpha^{2}+5} \\
& \therefore \text { area }=2 \alpha \cdot\left(\frac{30}{\alpha^{2}+5}\right)^{2} \\
& \text { area }=\frac{60 \alpha}{\alpha^{2}+5} \text { as req'd }
\end{aligned}
$$

substs eitwer $(0,-6)$ or (5) $(5)-1)$	
coredter	
soln	2

Question 14
iv)

$$
A=\frac{60 d}{d^{2}+5}
$$

candidates are encouraged
to state these

For max area, $\frac{d A}{d \alpha}=0, \frac{d^{2} A}{d \alpha^{2}}<0$

