Mrs Greenberg Mrs Israel Mrs Kerr Ms Lau Mrs Millar Mrs Squires

Name:	
Teacher:	

PRELIMINARY YEARLY EXAMINATION 2017

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using pencil for Questions 1-10.
- Write using black or blue pen for Questions 11-14. Black pen is preferred.
- Board approved calculators may be used.
- Diagrams are not drawn to scale.
- A reference sheet is provided.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total Marks – 61

Section I Pages 1-4

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Pages 5-9

Section II

51 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Mark	/61
Highest Mark	/61

Section I 10 Marks Attempt all Questions

Use the multiple-choice answer sheet for Questions 1 - 10

- 1 Which of the following is equal to $3^x \times 2^x$?
 - (A) 5^x
 - (B) 5^{2x}
 - (C) 6^{2x}
 - (D) 6^{x}
- 2 Which of the following is the correct factorisation of $10y^2 19y + 6$?
 - (A) (5y-2)(2y-3)
 - (B) (5y-3)(2y-2)
 - (C) (5y-2)(3-2y)
 - (D) (3-5y)(2-2y)
- 3 If $f(x) = \frac{x+1}{x}$, which of the following is equal to $f\left(\frac{1}{\alpha}\right)$?
 - (A) 1α

(B)
$$\frac{\alpha}{\alpha - 1}$$

(C) $1 + \alpha$
(D) $\frac{\alpha - 1}{\alpha}$

- 4 Which of the following gives the equation of the line perpendicular to y = 5 2x and passing through the point (1, -3)?
 - $(A) \quad x-2y-7=0$
 - (B) 2x + y + 1 = 0
 - $(C) \quad x-2y+5=0$
 - (D) 2y + x + 5 = 0
- 5 *ABCD* is a cyclic quadrilateral inscribed in a circle with centre *O* such that $\angle BOD = 140^{\circ}$.

What is the size of $\angle BCD$?

- (A) 100°
- (B) 110°
- (C) 120°
- (D) 130°

6 What is the value of
$$\lim_{a \to 4} \frac{a^2 - 16}{a + 4}$$
?

- (A) 0
- (B) 8
- (C) –4
- (D) 4

7 Suppose that f'(x) > 0 and f''(x) < 0 for all real values of x. Which of the following graphs best represents y = f(x)?

8 For which point on the graph below is f(x) > 0, f'(x) > 0 and f''(x) < 0?

- 9 It is known that $f''(x) = (x+4)^2(x-3)$. How many inflexion points does the graph of y = f(x) have?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3

10 The graph of the derivative y = f'(x) is drawn below.

Where does a maximum turning point occur on y = f(x)?

- (A) x = -2
- (B) x = 2
- (C) x = 4
- (D) x = 6

Section II 51 Marks

Attempt Questions 11 – 14 Allow about 1 hour and 40 minutes for this section.

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 11 (13 marks)

(a) Simplify $\frac{1}{p^2 - pq} - \frac{1}{pq - q^2}$. 2

- (b) Find, correct to the nearest degree, the acute angle between the lines 3x + y 3 = 0 and x 3y + 2 = 0.
- (c) Find the *x* coordinate of the point on the curve $y = x\sqrt{x+3}$ where 3 the tangent is parallel to the *x*-axis.
- (d) $A(8, \sqrt{200})$ and $B(1, \sqrt{72})$ are two points. Find, in simplest exact form, the coordinates of the point *P* which divides the interval *AB* in the ratio 3:1.

(e) Find the domain and range of the function $f(x) = 4\sqrt{25 - x^2}$. 2

End of Question 11

Question 12 (11 marks)

(a) Solve the inequality
$$\frac{2x-1}{x} \ge x$$
. 3

(b) Given the sequence
$$\sqrt{2}$$
, $\sqrt{18}$, $\sqrt{50}$,.....

(i) Show that the sequence is arithmetic.
(ii) Find the value of the hundredth term.
(iii) Find the value of the final data is a final data.

1

1

1

2

3

(iii) Find the sum of the first hundred terms.

(c)

CD is a tangent at *D* to the circle. AB = x, BC = 9 and CD = 12. Find the value of *x*, giving reasons.

(d) Prove by mathematical induction

$$1+5+9+\ldots+(4n-3)=n(2n-1)$$
 for $n \ge 1$.

End of Question 12

Question 13 (13 marks)

- (a) (i) Find the vertical and horizontal asymptotes of the graph $y = \frac{x-1}{3-x}$ and hence, sketch the graph of $y = \frac{x-1}{3-x}$, showing intercepts with the axes.
 - (ii) Hence, or otherwise, find the values of x for which $\frac{x-1}{3-x} \le 1$. 2

4

3

(b)

MN and *GH* are two chords of a circle at right angles to each other, intersecting at *R*. From *R*, a line perpendicular to *HN* is drawn, meeting it at *T*. *TR* produced meets *MG* at *V*. Prove that:

(i)	ΔMVR is isosceles.	2
(ii)	V is the mid-point of MG.	2
Note	e: You do not have to copy the diagram above. It has been reproduced for you on a separate page. Insert this extra page into your answer booklet.	

(c) Prove by mathematical induction that $7^n - 1$ is divisible by 3 for all positive integers *n*.

End of Question 13

(b)

(a) Solve $4\cos(2\alpha - 45^\circ) - 2\sqrt{3} = 0$ for the domain $0^\circ \le \alpha \le 360^\circ$.

$$B$$
 $2r$ A Not to Scale

AB is a diameter of a semicircular piece of horizontal ground with radius *r* metres. *CD* is a vertical flagpole of height *h* metres standing with its base *C* on the arc *AB*. From *A* and *B* the angles of elevation of the top *D* of the flagpole are 45° and 30° respectively. Show that h = r.

Question 14 continues on page 9

4

3

In the diagram above, the curve $y = \frac{h}{x^2 + k}$, where *h* and *k* are constants, has a minimum turning point at (0, -6) and passes through the point (5, -1). A rectangle *PQRS* is inscribed within the curve as shown with its axis of symmetry x = 0.

(i) Find the values of *h* and *k*.

2

- (ii) If Q has coordinates $(\alpha, 0)$ find the coordinates of R in terms of α . 1
- (iii) Show that the area, A, of the rectangle PQRS is $A = \frac{60\alpha}{\alpha^2 + 5}$. 1
- (iv) Hence, show that the maximum area of the rectangle *PQRS* is $6\sqrt{5}$ square units. 3

End of Paper

Blank Page

Name.....

Teacher's Name.....

Question 13 (b)

Note: Insert this page into your answer booklet for Question 13.

2017: 11 Ext 1 yearly exam: Solutions multiple choice D 6. A. 1. 7. D. A 2 8. C 3 C 10 9. B A. 4 B 10. C 5. 11 a) 9(p-q) P(P-9) factorises 2 denomo (q - p)conect pq (p-q) som - (P-9) pq(p-q)Pg 2x+y-3=0 : $M_1 = -\frac{4}{3} = -2$ x-3y+2=0 : $M_2 = -\frac{1}{-3} = \frac{1}{3}$ b) 3 $M_1 = -2$ M2=3 1-2-3 : tang = 1+(-2)(方) correct sub into = 1-71 formula tano : tan 0 = 7 contect $\theta = \tan^{-1} \varphi$ Solu 1. 82°

2 Question II c) $y = x \sqrt{x+3}$ 1=x uses prod rule. to reach u'=1 3 $\frac{dy}{dx} = \sqrt{x+3} + \frac{x}{2\sqrt{x+3}}$ $V = \sqrt{\chi + 3}$ $\frac{dy}{dx} = \sqrt{z+3} + \frac{z}{\sqrt{z+3}}$ $\vee = \pm (\pi + 3)^{\frac{1}{2}}$ sumplifies to VI=______ $= 2(\chi+3)+\chi$ dy 3x+6 dn = 3x+6 2 2 52+3 $= \frac{3x+b}{2\sqrt{x+3}}$ correct som 3 tang 11 to x-axis: grad = 0 Û : 3x+6=0 x = -2 $(8, \sqrt{200})$ $(1, \sqrt{72})$ d) $\chi = 8(1)+3(1)$ 3 3:1 y= 1200(1)+3.72 $\chi = \frac{8(1) + 3(1)}{4} \quad y = \sqrt{200}(1) + 3\sqrt{72}$ 4 correct_ $y = 10\sqrt{2} + 18\sqrt{2}$ 4 = 11 suprified SOM $y = 28\sqrt{2}$ 4-P is $(\mu, 7\sqrt{2})$ e) $f(x) = 4\sqrt{25-x^2}$ $D: \frac{25-\chi^2}{5+\chi} = \frac{-5}{5-\chi} = \frac{-5}{5}$ 2 D:-95255 R: 054520 5 5 2 5 5 R: 054520

J

Occestion 12 $\frac{2\chi-1}{\chi}$, $\chi \neq 0$ a) mult by 22 $\chi(2\chi-1) = \chi^3 = 1$ reaches $\chi(2\chi-1)=\chi^3 70$ $\chi(\chi-1)^2 \leq 0$ 1 3 or equivalent x 2x-1-x2 70 correct $\chi^{-}(-\chi^{2}+2\chi-1)70$ som -1 $\chi (\chi^2 - 2\chi + 1) \leq 0$ $\chi (\chi - 1)^2 \leq 0$ * Alternate sol'a $\chi \leq 0$, $\chi = 1$ but $\chi \neq 0$ using critical point C : Sol'a: x < 0, x = 1 O x by x. B Egin to find 2 solu Test O correct sol b) series = \(\sigma + 3\)\(\sigma + 9\)\(\sigma + * Wrong if straight to decimal i) $T_2 - T_1 = 3\sqrt{2} - \sqrt{2} = 2\sqrt{2}$ -> Leave in exact form. $T_3 - T_2 = 5J_2 - 3J_2 = 2J_2$: AP with $a = \sqrt{2}$, $d = 2\sqrt{2}$ R/W_ $ii) T_n = a + (n - i)d$ $T_{100} = \sqrt{2} + 99(2\sqrt{2})$ = 199/2 1 R/W iii) Sn = $\frac{1}{2}[a+l]$ $=\frac{100}{2}\left[\sqrt{2}+199\sqrt{2}\right]$ = 50 (20052) 1 R/W =10 000 12 -()

 \mathcal{C} $9(9+x) = 12^{2}$ 9 2 9(9-x)=144 (product of intercepts of secant equals reason tangent squared) $81 + 9\chi = 144$ * Reason must. X=7 include underlined words or equivalent let S(n) be the statement **d**) 1+5+9+..+(4n-3)=n(2n-1), n-71s(1) the 1 STEP 1: FOV N=1, 145=1 RHS=1(2(1)-1) S(K) and s(K+1) statements : LHS = RHS correct : S(1) IS the conect proof Assume the for S(K) STEP2: i.e 1+5+.. + (4K-3) = K(2K-1) KN1 I logical MÌ Statement STEP 3: Prove true for S(K+TI) (be v. ie RTP: and there generous 1+5+.. + (4K-3)+ (4K+1)= (K+1)(2K+1) LHS = 1+5+ ... + (4K-3) + (4K+1) = K(2K-1) + (4K+1) by induction hypothesis [] $= 2K^2 - K + 4K + 1$ =2 K2 + 3 K+1 = (K+1)(2K+1) = RHS TEP4: if 5(r) is true, then S(k+1) is true sice 5(1) is true, it follows by mathematical induction that S(n) is the far N7,1. OED.

5 question 13 a) |y = x - l3-2 vert.assymptote X=3 Zerocs: x=1 y=-1 honz discontinities: x=3 ass with correct limit notation 1 :vertical assymptote at x=3 $y = \frac{1 - \frac{1}{2}}{\frac{3}{2} - 1}$ as x - 700, y÷ X 1y-int z-int x=3 is horizontal assymp. 4=-1 y=-11 x=3 comect y-int イン トろ shape & conject quads + point on lower arm 1/3 ろ 4=-1 (4,-3) -3 soln: 2 x-1 3-x $x \leq 2$ ١ $\chi - | = 3 - \chi$ 273 2x=4x=2 : from graph : soln: 1262, 273

Name.....

Teacher's Name.....

Question 13 (b)

Note: Insert this page into your answer booklet for Question 13.

6

(1) Let
$$LGMN = d$$

 $LGHN = LGMN$ (angles at circumference standing
 $= d$ on same arc GN) (1)
 $LRHT = LGHN = d$ (common)
 $LVMR = LGMN = d$ (common)
 $LVMR = LGMN = d$ (common)
 $LHTR^{-} = 90^{\circ}$ ($RT \perp HN$)
 $LHRT + d + 90^{\circ} = 180^{\circ}$ (angle sum of ΔHRT)
 $LHRT = 90^{\circ} - d$
 $LGRV = LHRT$ (vertically offossile)
 $= 90^{\circ} - d$
 $LVRM + (90^{\circ} - d) = 90^{\circ}$ (adjacent complementary
 $angles$ where $LMRG = 90^{\circ}$)
 $LVRM = d$
 $\therefore LVMR = LVRM = d$
 $\therefore \Delta MVR$ is isosceles (two equal angles)

136)(11) In SYRG (LGRV = 90° - 2 (from (i)) LGVR = 2+2 (exterior angle of SMVR) = 2x [VGR + 2x + (90°-x)=180° (angle sum of SVRG) : LVGR = 90° - 2 $\frac{1}{2} LVGR = 46^{\circ} - \chi$ $\frac{1}{2} LVGR = LGRV = 90^{\circ} - \chi$ $\frac{1}{2} VR = VG \quad (sides opposite equal angles)$ In AMVR VR = VM (sides opposite equal angles) : VM = VG : V is midpoint of MG \mathbf{C} $\overline{\mathbf{C}}$

Question 13 c) Let the statement be 7⁷-1 is divisible by 3 for integer n>1 statement true for n=1 -() correctly states k hypothesis and k+1 statement 2 Prove statement true for n=1 carrect solution 3 7' - 1 = 6= 3×2 which is divisible by 3 : true for n=1 Assume statement true for n = k, for integr $k \gg 1$ ie assume $7^{k} - 1 = 3P$ for integer Pie $7^{k} = 3P + 1$ -(Prove statement true for n=k+1 re prove 7k+1-1=3Q for integer Q 70 $\frac{7^{k+1}}{-1} = \frac{7 \times 7^{k}}{-1}$ $= \frac{7 \times (3P+1)}{-1} \qquad (by assumption)$ = 21P + 7 - 1= 21P + 6 -() = 3(7P+2)= 30 where Q = 7P+2 is an integer if P is an integer If statements is true for n=k, then it is also true for n=k+1 Since statement is true for n=1, then it is also true for n=1+1=2, n=2+1=3, and so on for all integers n>1

9 question 14 $4\cos(2a-45)=2\sqrt{3}$ a) recognises domains $\cos(2a-45) = \sqrt{3}$ $0^{\circ} \le a \le 360^{\circ}$ -45°5 4 5 675 -45° = 2a-49 = 675 (3) let u= 2a-49° related angle : -45° ≤ U ≤ 675° √ COSU = 530° correct Som Ł related u = 30° • 30°; 390° ·poorly done. · few did necessary domain 330; - 30° amendment : 2a-49= - 30°; 30°; 330°; 390 375; 435 75 2a = 15;7.5° · 37.5°; 187.5°; 217.5° a= D D C b) h h (4) BC=J3h 30 or \square_{C} Ac = hC 2rA LACB = 90° B + readon $\frac{BC}{h} = tan 60$ in Δ BDC : realises egn BC = h tan 60 $BA^2 = BC^2 + AC^2$ N uses cos MADCA: DC = AC (sides opposite equal : angles: isosceles A, rule correctly-: AC=h_ corr som in AABC: LBCA=90° (angle in semiarde) $(2r)^2 = (\sqrt{3}h)^2 + (h^2)$ 1v2 = 3h2 + h2 $r^2 = h^2$ 1 since 170, r70 r = h

10 Question 14 0 (5,1) 2 $y = \frac{h}{\chi^2 + K}$ sub (0,-6) substs either i)_ TMK (0,-6) or (5,-1) h = -6k --① (II) $\frac{1}{2} - 6 = \frac{h}{k}$ correct Soly 2 Sub (5,-1) : $-1 = \frac{h}{25+k}$: h = -25-k — -12 51721 - 6K= -25-K -5k = -25k=5 h = -6(5)h=-30 Q(9,0) : R(9,4) $\frac{y}{2^2+5}$ 11 subst x=a into equ = -30 $q^{2}+5$ R $\left(\begin{array}{c} q \\ q \end{array}, -\frac{30}{q^2+5} \right)$ $QR = \frac{30}{q^2 + 5}$ 7ii) $PQ = a\alpha$, 30 \$2+9 $area = 2d. \left(\frac{30}{d^2 + 5}\right)$ 60d as regid = area $d^{2}+5$

11 opertion 14 candidates are encouraged to state these ÎV. $\frac{d^2}{d^2+5}$ conditions 3 ニ gets dA = 300-60x2 m 7 da (279)2 dA = 0, $da^2 = 40$ For max area solves da = 0 . A = 15 2M N = 60dsay why we want u' = 60shows max dA = to zero and subst. $V = a^{2} + 5$ into area 3 to ger A=6V5 v' = 2d $\frac{dA}{dA} = \frac{60(a^2+5) - 120a^2}{a^2}$ $(d^2+5)^2$ $dA = 300 - 60d^2$ dø $(d^{2}+5)^{2}$ $: 60d^2 = 300$ for dA $q^2 = 5$ x = 15 a710 dAsugn of đà Jused difA V5 3 2. $\frac{d^{2}A}{da^{2}} = \frac{-120a(a^{2}+5)^{2}-4a(a^{2}+5)(300-60a^{2})}{(a^{2}+5)(a^{2}$ 60 49 dA 20 27 0 dA = - 2.6832815.... when a=va <0 since grad changes from pos : d= 15 gives max area to neg : a= 15 gives must explain max area how d= JE gives a ., A = 60 15 max area $(\sqrt{5})^2 + 5$ sign line <u>d</u>24 da 6055 A 655 "as required