Section I 2018 Ext 1 Prelim Final Adjusted

10 marks

Attempt Questions 1-10

Allow about 10 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following expressions is equal to $\cos 5 x \cos 3 x+\sin 5 x \sin 3 x$?
(A) $\sin 2 x$
(B) $\cos 2 x$
(C) $\sin 8 x$
(D) $\cos 8 x$

2 What is the Cartesian equation of the parabola $x=4 t, y=4 t^{2}$?
(A) $x^{2}=-4 y$
(B) $x^{2}=-8 y$
(C) $x^{2}=4 y$
(D) $x^{2}=8 y$

3 Seven people are to be seated around a circular table. If two particular people must be seated together, how many seating arrangements are possible?
(A) 7 !
(B) $5!\times 2$
(C) 6 !
(D) $6!\times 2$

4 Find the values of a and b such that the graph of $y=(a x-7)(x-b)^{2}$ cuts the x-axis at $x=$ 3.5 and touches the x-axis at $x=5$.
(A) $\quad a=2, b=5$
(B) $a=5, b=2$
(C) $\quad a=3.5, b=5$
(D) $\quad a=5, b=3.5$

6 Find the derivative of $f(x)=\frac{x}{(4 x+1)^{3}}$ with respect to x.
(A) $\frac{x+1}{(4 x+1)^{4}}$
(B) $\frac{1-8 x}{(4 x+1)^{4}}$
(C) $\frac{x+1}{(4 x+1)^{2}}$
(D) $\frac{1-8 x}{(4 x+1)^{2}}$
$7 \quad$ Simplify $\frac{(n-1)!n!}{(n!)^{2}}$
(A) n
(B) $\frac{n-1}{n}$
(C) $\frac{1}{n^{2}}$
(D) $\frac{1}{n}$

8 If θ is an acute angle, where $\sin \theta=\frac{1}{\sqrt{5}}$, find the exact value of $\sin 2 \theta$.
(A) $\frac{4}{5}$
(B) $\frac{2}{\sqrt{5}}$
(C) $\frac{1}{2 \sqrt{5}}$
(D) $\frac{2}{5}$

9 The remainder when the polynomial $P(x)=x^{4}-6 x^{3}-5 x^{2}+7$ is divided by $x^{2}+1$ is $a x+13$.
What is the value of a ?
(A) -6
(B) 6
(C) -2
(D) 2

Section II

45 marks

Attempt Questions 11-13

Allow about 1 hour and 20 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-13, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) In how many ways can a committee of 3 boys and 3 girls be formed from a group of 6 boys and 8 girls?
(b) By making the substitution $t=\tan \frac{\theta}{2}$, prove that $\operatorname{cosec} \theta+\cot \theta=\cot \frac{\theta}{2} \quad 2$
(c) Solve $\frac{4}{x+1}<3$.
(d) If the roots of the equation $x^{3}-5 x^{2}+3 x-2=0$ are α, β and γ, find the value of:
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$ 1
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(f) (i) Prove that $\frac{\sin (2 \theta)}{1+\cos (2 \theta)}=\tan \theta$.
(ii) Hence, find the exact value of $\tan 22.5^{\circ}$, giving your answer 2
with a rational denominator.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the function $y=\frac{x}{2-x}$.
(i) State the equation of the vertical and horizontal asymptote.
(ii) Sketch the graph of the function, including all asymptotes 2 and intercepts where necessary.
(b) Find the number of ways the letters of the word ANGLE can be arranged in a straight line so that:
(i) No two consonants are next to each other
(ii) The three consonants are side by side 1
(iii) Exactly 2 of the 3 consonants are side by side.
(e) A man is walking on a straight, level road with his GPS and inclinometer.

At point A on the road, due east of a distant tower, he measures the angle of elevation to the top of the tower, T, to be 10°.

After walking 1000 metres on the road to point B, he measures the angle of elevation to T to be 8°.

Let O represent the base of the tower, h be the height of the tower and $\angle O A B=$ 90°.

(i) Show that $O A=\frac{h}{\tan 10^{\circ}}$ and find a similar expression for $O B . \quad 2$
(ii) Hence, find the value of h, to the nearest metre.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(c) Consider the polynomial $P(x)=x^{3}+c x^{2}-9 x+d$
(i) Find the values of c and d given that $(x-3)$ is a factor of $P(x)$ and 2 the remainder is 42 when $P(x)$ is divided by $(x-4)$.
(ii) Fully factorise the polynomial $P(x)$ as a product of linear factors. 2
(iii) Hence, sketch the graph of $P(x)$, showing any x and y-intercepts. 2

2018 Ext Adjusted

1. $\cos 5 x \cos 3 x+\sin 5 x \sin 3 x$
$=\cos (a-b)$ where $a=5 x \quad b=3 x$

$$
=\cos (5 x-3 x)
$$

$$
\begin{equation*}
=\cos 2 x \tag{B}
\end{equation*}
$$

Check by substituting values.
2. $x=4 t \quad y=4 t^{2}$
(1) $\Rightarrow \quad t=\frac{x}{4}$
sub into (2)

$$
\begin{align*}
y & =4\left(\frac{x}{4}\right)^{2} \\
& =\frac{x^{2}}{4} \\
\therefore x^{2} & =4 y \tag{c}
\end{align*}
$$

Seat the 2 people $=2$ ways
Remaining $=5$! ways

$$
\begin{equation*}
\therefore 2 \times 5! \tag{B}
\end{equation*}
$$

A. $y=(a x-7)(x-b)^{2}$

Given cut x at $x=3.5$ ie $(3.5,0)$
ctouches at $x=5$ is $(5,0)$

Could a) substitute paints, and solve simultaneously or
b) think about the factors
$(a x-7)$ linear factor \therefore
$\frac{7}{a}$ is where it, cuts

$$
\therefore a=2
$$

$(x-b)^{2}$ quadratic factor
$\therefore b$ is where it tovehes

$$
\begin{equation*}
\therefore b=5 \tag{A}
\end{equation*}
$$

6. $f(x)=\frac{x}{(4 x+1)^{3}}$

$$
\begin{aligned}
u=x \quad u^{\prime} & =1 \\
v=(4 x+1)^{3} \quad v^{\prime} & =3 \times 4 \times(4 x+1)^{2} \\
& =12(4 x+1)^{2}
\end{aligned}
$$

$$
\begin{align*}
\frac{d y}{d x} & =\frac{(4 x+1)^{3} \times 1-x \cdot 12(4 x+1)^{2}}{(4 x+1)^{4}} \\
& =\frac{(4 x+1)^{2}[4 x+1-12 x]}{(4 x+1)^{4}} \\
& =\frac{1-8 x}{(4 x+1)^{2}} \tag{D}
\end{align*}
$$

$$
\text { 7. } \begin{align*}
& \frac{(n-1)!n!}{(n!)^{2}} \\
= & \frac{(n-1)!\times n!}{n!\times n!} \\
= & \frac{(n-1)!}{n!} \\
= & \frac{(n-1)!}{n \times(n-1)!} \\
= & \frac{1}{n} \tag{D}
\end{align*}
$$

split fractions

$$
8 \quad \sin \theta=\frac{1}{\sqrt{5}}
$$

$$
\therefore \cos \theta=\frac{2}{\sqrt{5}}
$$

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

$$
=2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}}
$$

$$
\begin{equation*}
=\frac{4}{5} \tag{A}
\end{equation*}
$$

9. $\quad P(x)=x^{4}-6 x^{3}-5 x^{2}+7$

$$
\begin{gathered}
x ^ { 2 } + 1 \longdiv { \frac { x ^ { 2 } - 6 x - 6 } { x ^ { 4 } - 6 x ^ { 3 } - 5 x ^ { 2 } + 7 } + x ^ { 2 } } \\
\frac{x^{4}}{-6 x^{3}-6 x^{2}+7 \quad \text { oops- }} \begin{array}{c}
\text { Rear } \\
\frac{-6 x^{3}-6 x}{-6 x^{2}+6 x+7} \\
\frac{-6 x^{2}-6}{6 x+13} \\
\therefore a=6
\end{array} \quad \text { (B) }
\end{gathered}
$$

QUESTION II
a) ${ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{3}=$

$$
\text { b) } \begin{aligned}
t & =\tan \frac{\theta}{2} \\
\text { LHS } & =\operatorname{cosec} \theta+\cot \theta \\
& =\frac{1}{\sin \theta}+\frac{1}{\tan \theta} \\
& =\frac{1+t^{2}}{2 t}+\frac{1-t^{2}}{2 t} \\
& =\frac{1+t^{2}+1-t^{2}}{2 t} \\
& =\frac{2}{2 t} \\
& =\frac{1}{t} \\
& =\cot \frac{\theta}{2} \text { as required }
\end{aligned}
$$

Reference sheet for t ratios.
c) $\frac{4}{x+1}<3$
(1) $x \neq-1$
(2) equality

$$
\begin{aligned}
\frac{4}{x+1} & =3 \\
4 & =3 x+3 \\
x & =1 / 3 \\
& \text { octal... }
\end{aligned}
$$

test regions:
(A) $x=-2$ LIS $=\frac{4}{-1}=-4<3$
(B) $\quad x=0 \quad$ IHS $=\frac{4}{1}=4 \nless 3$
(2)

$$
\begin{aligned}
& x=1 \quad \text { LIS }=\frac{4}{2}=2<3 \\
& \therefore x<-1 \text { or } x>\frac{1}{3}
\end{aligned}
$$

d)

$$
\begin{aligned}
& x^{3}-5 x^{2}+3 x+2=0 \\
& \text { i. } \alpha+\beta+\gamma=\frac{-b}{a}=-(-5) \\
& \text { ii. } \alpha \beta+\beta \gamma+\beta \alpha \gamma=\frac{c}{a}=3 \\
& \text { iii. } \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2} \\
& -2(\alpha \beta+\beta \gamma+\alpha \gamma) \\
& =5^{2}-2 \times 3 \\
& =19
\end{aligned}
$$

Reference sheet
f) 1. RTP $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta$

$$
\begin{align*}
\text { LHS } & =\frac{2 \sin \theta \cos \theta}{1+\cos ^{2} \theta-\sin ^{2} \theta}\left\{\begin{array}{l}
\text { double } \\
\text { angles }
\end{array}\right. \\
& =\frac{2 \sin \theta \cos \theta}{1+\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)} \tag{Pythagoras}
\end{align*}
$$

$$
=\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta}
$$

$$
=\frac{\sin \theta}{\cos \theta}
$$

$=\tan \theta$ as required
ii. $\tan 22.5=\frac{\sin 45}{1+\cos 45}$

$$
=\frac{1 / \sqrt{2}}{1+1 / \sqrt{2}}
$$

$$
=\frac{1 / \sqrt{2}}{\frac{\sqrt{2}+1}{\sqrt{2}}}
$$

$$
=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}+1}
$$

$$
=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}
$$

$$
=\frac{\sqrt{2}-1}{1}
$$

$$
=\sqrt{2}-1
$$

Use the previous question and then exact triangle values

Question 12
a) $y=\frac{x}{2-x}$
i. $y=\frac{-(2-x)+2}{2-x}$

$$
=\frac{2}{2-x}-1
$$

vertical asymptote.

$$
\begin{aligned}
& 2-x \neq 0 \\
\therefore & x=2
\end{aligned}
$$

horizontal asymptote

$$
y=-1
$$

ii)

b) i. ie each separated by a vowel
consonants $=3!$ ways
rowels $\quad 2$! ways
$\therefore 2 \times 3!=12$ ways
ii. 3 consonants side by side

$$
\begin{aligned}
\therefore & 3 \times 3!\times 2! \\
& =36 \text { ways }
\end{aligned}
$$

iii. 2 consonants side by side

- 4 possible positions for ${ }^{3} C_{2}$
$\operatorname{eg} \frac{\text { कर्यराया1 }}{n}$
Need to consicler all possible layouts
OR

Consonants can be separate, side by side (2t) or all together

$$
\begin{aligned}
& \therefore \text { In } 2 \text { 's } \\
& =\text { all possible arrangements (5!) } \\
& \text { - ways separately (12) } \\
& \text { - ways } 3 \text { together }(36) \\
& =5!-(12+36) \\
& =120-48 \\
& =72 \text { ways }
\end{aligned}
$$

e)

a) $\ln \triangle A O T$

$$
\begin{aligned}
& \angle O A T=90^{\circ} \\
& \frac{h}{O A}=\tan 10^{\circ} \\
& \frac{O A}{h}=\frac{1}{\tan 10^{\circ}} \\
& \therefore O A=\frac{h}{\tan 10^{\circ}}
\end{aligned}
$$

Always draw the simplified diagrams.
b) $\operatorname{In} \triangle B O T$

$$
\begin{aligned}
& \angle B O T=90^{\circ} \\
& \frac{h}{O B}=\tan 8^{\circ} \\
& \therefore O B=\frac{h}{\tan 8^{\circ}}
\end{aligned}
$$

$\ln \triangle O B A$

$$
\begin{aligned}
1000^{2} & =O B^{2}-O A^{2} \text { Pythagoras } \\
1000^{2} & =\frac{h^{2}}{\tan ^{2} 8}+\frac{h^{2}}{\tan ^{2} 10} \\
h^{2} & =1000^{2} \div\left(\frac{1}{\tan ^{2} 8}-\frac{1}{\tan ^{2} 10}\right) \\
& =1000^{2} \div\left(50^{8: 428504821)}\right. \\
& =54156 \cdot 36917 \\
h & =232.7 \div 233 \mathrm{~m}\binom{\text { nears }}{m}
\end{aligned}
$$

QUESTION 13
c) $\quad P(x)=x^{3}+c x^{2}-9 x+d$
i. $(x-3)$ a factor $\Rightarrow P(3)=0$ rem 42 when $(x-4) \therefore P(4)=42$
Sub $x=3$:

$$
\begin{array}{r}
27+9 x-27+d=0 \\
9 c+d=0 \\
d=-9 c \tag{1}
\end{array}
$$

Sub $x=4$

$$
\begin{gathered}
64+16 x-36+d=42 \\
28+16 x-9 c=42 \quad \text { sub } 11 \\
7 c=14 \\
c=4472 \\
\therefore d=-18
\end{gathered}
$$

$$
\text { ii. } \begin{aligned}
P(x) & =x^{3}+2 x^{2}-9 x-18 \\
P(2) & =8+8-18-18 \neq 0 \\
P(-2) & =-8+8+18-18=0 \\
P(x) & =(x+3)(x+2)(x+3)
\end{aligned}
$$

iII.

At $x=0 \quad P(0)=-18$
$A \in y=0, x=3,-2,-3$

