Name: \qquad

SCEGGS Darlinghurst

Preliminary Year, 2003

 Semester 2 Examination
Mathematics (Extension)

General Instructions

- Reading time - 5 minutes
- Working time $-1 \frac{1}{2}$ hours
- This paper has 5 questions
- Attempt all questions
- Answer all questions on the pad paper provided
- Write your name on every page
- Total marks for all parts (62)
- Approved calculators may be used

Questions 1-5

Total marks (62)

- Attempt all parts of Questions 1-5

	Communication	Calculus	Reasoning	Total
Question 1	$/ 3$		$/ 2$	$/ 12$
Question 2			$/ 1$	$/ 5$
Question 3	$/ 3$	$/ 2$		$/ 12$
Question 4			$/ 9$	$/ 13$
Question 5	$/ 3$		$/ 10$	$/ 12$
TOTAL	$/ 9$	$/ 3$	$/ 26$	$/ 13$

- Answer the questions on the pad paper provided
- Clearly label each part
- Write your name on the top of each page
- START EACH QUESTION ON A NEW PAGE

Question 1 (12 Marks)

Marks

(a) Solve for x :

$$
\frac{3 x+1}{2-x} \geq 1
$$

(i) Find the co-ordinates of the point P which divides AB externally in the ratio 5:2.
(ii) If the line AB cuts the y axis at Q , find the ratio in which Q divides AB internally without finding the equations of any lines.

In the diagram, AC and BC are tangents to the circle, touching the circle at F and E respectively. $\angle A C B$ equals 50°. Copy the diagram onto your paper.

Show that $\angle C E F$ is 65° and hence find $\angle E D F$.

- START A NEW PAGE

Question 2 (12 Marks)
(a) The polynomial $P(x)=x^{3}+x^{2}+x-2$ has roots, α, β, γ.
(i) Find the value of $\alpha \beta \gamma$.
(ii) If $\alpha=1$, find the value of $\frac{1}{\beta}+\frac{1}{\gamma}$.
(b) (i) Find the gradient of the tangent to the curve $y=x^{2}+3$ at the point $(1,4)$.
(ii) Find the acute angle between the line $y=3 x+1$ and the curve $y=x^{2}+3$ at the point of intersection $(1,4)$. Give your answer to the nearest minute.
(c) The tangent $t x-y-a t^{2}=0$ at the point $P\left(2 a t, a t^{2}\right)$ on the parabola $x^{2}=4 a y$ cuts the directrix l at $T . F$ is the focus of the parabola.

(i) Find the co-ordinates of T.
(ii) Show that $T F$ is perpendicular to $P F$.

Question 2 continues on the next page

Question 2 (continued)
(d)

The figure $F G H K$ is a parallelogram. The point S lies on $F G$, and F, S, H, K lie on a circle. Copy or trace the diagram onto your answer paper.

Prove that triangle HGS is isosceles.

- START A NEW PAGE

Question 3 (13 Marks)
(a) Consider the polynomial $P(x)=6 x^{3}-5 x^{2}-2 x+1$.
(i) Show that l is a zero of $P(x)$.
(ii) Express $P(x)$ as a product of 3 linear factors.
(iii) Solve the inequality $P(x) \leq 0$.
(b) Using the substitution $\frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$ find from first principles the derivative of $y=\sqrt{x}$.
(c) (1) Express $4 \sin \theta-3 \cos \theta$ in the form $A \sin (\theta-\alpha)$ where $A>0$ and $0^{\circ}<\alpha<90^{\circ}$. Give α to the nearest degree.
(ii) Find all solutions of $4 \sin \theta-3 \cos \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Give θ to the nearest degree.

$T A$ is a tangent to a circle. Line $A B D C$ intersects the circle at B and C. Line $T D$ bisects angle BTC.

Prove $A T=A D$.

- START A NEW PAGE

Question 4 (12 Marks)
Marks
(a) (i) Using the $\sin (A-B)$ formula, with $A=60^{\circ}$ and $B=45^{\circ}$ (or otherwise), find the value of $\sin 15^{\circ}$ in surd form.
(ii) Prove the identity:

$$
\tan \alpha=\operatorname{cosec} 2 \alpha-\cot 2 \alpha
$$

(iii) Using the results in part (ii), find a value (in surd form) for $\tan 15^{\circ}$.
(iv) Using the results in parts (i), (ii) and (iii), (or otherwise) show that:.

$$
\tan 7 \frac{1}{2}^{\circ}=\sqrt{6}+\sqrt{2}-\sqrt{3}-2
$$

(b) The remainder when $x^{3}+a x+b$ is divided by $(x-2)(x+3)$ is $2 x+1$.

[^0]
- START A NEW PAGE

Question 5 (13 Marks)

Marks

(a) On the same set of axes, draw the graphs of $y=|x-2|$ and $y=x+1$.

For what values of x is $|x-2|<x+1$?
(b) Anna (A) is standing due south of Phillip (P) who is assisting an injured bushwalker. A rescue helicopter (H) is hovering directly over P and lowering a stretcher. Anna measures the angle of elevation of the helicopter to be 60° from her position.
Belinda (B) is 1 kilometre due east of A and measures the angle of elevation of the helicopter to be 30°. The height of the helicopter above P is x metres.

(i) Write expressions for both AP and BP in terms of x.
(ii) Hence or otherwise, find the height of the helicopter (x), correct to the nearest m .
(c) $\quad P\left(2 a p, a p^{2}\right)$ is a variable point on a parabola $x^{2}=4 a y$. The line $P R$ is perpendicular to the directrix of the parabola with R on the directrix. The tangent to the parabola at P meets the y-axis at T. If M is the midpoint of the interval $R T$:
(i) find the locus of M.
(ii) show that the directrix of the locus of M is the x-axis.

End of Paper

Extension 1 Mathematics Prelim. Year
(1) a) $\frac{3 x+1}{2-x} \geqslant 1$
undefined when $x=2$
Multiply both sides by $(2-x)^{2}$

$$
\begin{gather*}
\frac{3 x+1}{2-x} \times(2-x)^{2} \geqslant 1 \times(2-x)^{2} \\
(3 x+1)(2-x) \geqslant(2-x)^{2} \\
6 x-3 x^{2}+2-x \geqslant 4-4 x+x^{2} \\
0 \geqslant 4 x^{2}-9 x+2 \\
4 x^{2}-9 x+2 \\
(4 x-1)(x-2) \leqslant 0 \\
\frac{1}{4} \leqslant x<2
\end{gather*}
$$

b) External division 5:-2

$$
\begin{aligned}
& A(-1,3) \quad \stackrel{B}{5}(2,0) \\
& x=\frac{-2 \times-1+5 \times 2}{5-2} \quad y \\
&=\frac{2+2 \times 3+5 \times 0}{5-2} \\
&=\frac{12}{3} \\
&=4 \\
& \therefore P(4,-2)
\end{aligned}
$$

By observation
Q divides $A B$ internally in the ratio $1: 2$
c)

$$
C F=C E
$$

Since tangents from an exterior point are equal.
$\therefore \triangle C F E$ is isosceles.

$$
\begin{aligned}
\therefore \angle C E F & =\frac{1}{2}\left(180^{\circ}-50^{\circ}\right) \\
& =\frac{1}{2} \times 130^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\angle E D F & =\angle C E F \\
& =65^{\circ}
\end{aligned}
$$

(Angles in the ate nate segments are equal.)
$\operatorname{Com} / 3$
d)

$$
\begin{aligned}
\text { LHS } & =\frac{1-\tan ^{2} A}{1+\tan ^{2} A} \\
& =\frac{1-\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\sin ^{2} A}{\cos ^{2} A}} \\
& =\frac{\frac{\cos ^{2} A-\sin ^{2} A}{\cos ^{2} A}}{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}} \\
& =\frac{\frac{\cos ^{2} A-\sin ^{2} A}{\cos ^{2} A}}{\frac{1}{\cos ^{2} A}}
\end{aligned}
$$

$$
=\frac{\cos ^{2} A-\sin ^{2} A}{\cos ^{2} A} \times \frac{\cos ^{2} A}{1}
$$

$$
=\cos ^{2} A-\sin ^{2} A
$$

$$
=\cos 2 A
$$

(2) $P(x)=x^{3}+x^{2}+x-2$

Roots α, β, γ
i) Product of roots

$$
\begin{aligned}
\alpha \beta \gamma & =-\frac{d}{a} \\
& =--2 / 1 \\
& =2
\end{aligned}
$$

ii) Sum of Roots

$$
\begin{aligned}
\alpha+\beta+\gamma & =-b / a \\
& =-1
\end{aligned}
$$

Sum two at a time

$$
\begin{aligned}
\alpha \beta+\alpha \gamma+\beta \gamma & =c / a \\
& =1
\end{aligned}
$$

$$
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}
$$

put $\alpha=1$

$$
\begin{aligned}
1+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{1}{2} \\
\frac{1}{\beta}+\frac{1}{\gamma} & =-\frac{1}{2}
\end{aligned}
$$

b) (i)

$$
\begin{aligned}
& y=x^{2}+3 \\
& y=2 x
\end{aligned}
$$

At (1,4) gradient tangent

$$
m_{1}=2
$$

Calculus T
ii)

$$
\begin{aligned}
& y=3 x+1 \\
& m_{2}=3
\end{aligned}
$$

Acute angle

$$
\begin{aligned}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{2-3}{1+2 \times 3}\right| \\
& =\left|\frac{-1}{7}\right| \\
& =\frac{1}{7} \\
\theta & =8^{\circ} 8^{\prime} \text { (to nearest minute) }
\end{aligned}
$$

c)

Tangent at $P\left(2 a t, a t^{2}\right)$

$$
t x-y-a t^{2}=0
$$

cuts the directrix \& at T
directrix is $\quad y=-a$

Solve simultaneously

$$
\begin{equation*}
t x-y-a t^{2}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y=-a \tag{2}
\end{equation*}
$$

Substitute (2) into (1)

$$
\begin{aligned}
& t x+a-a t^{2}=0 \\
& t x=a t^{2}-a \\
& x=\frac{a\left(t^{2}-1\right)}{t}
\end{aligned}
$$

Thus coordiriates

$$
\left(\frac{a\left(t^{2}-1\right)}{t},-a\right)
$$

ii) Focus $F(0, a)$

$$
P\left(2 a t, a t^{2}\right)
$$

Gradient TF

$$
\begin{aligned}
m_{1} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-a-a}{\frac{a\left(t^{2}-1\right)}{t}-0} \\
& =\frac{-2 \alpha}{\frac{\alpha\left(t^{2}-1\right)}{t}} \\
& =\frac{-2 t}{t^{2}-1}
\end{aligned}
$$

Gradient PF

$$
\begin{aligned}
m_{2} & =\frac{a t^{2}-a}{2 a t-0} \\
& =\frac{\alpha\left(t^{2}-1\right)}{2 \alpha t} \\
& =\frac{t^{2}-1}{2 t}
\end{aligned}
$$

Since $m_{1} \times m_{2}=\frac{-2 t}{t^{2}-1} \times \frac{t^{2}-1}{2 t}$

$$
=-1
$$

\therefore TF $\perp P F$
Leas 3
d)

FGHK is a parallelogram

$$
\begin{aligned}
& \therefore \angle F K H=\angle F G H \quad \text { (opposite } \angle s= \\
& \text { in a parm.) } \\
&=x
\end{aligned}
$$

F, S, H, K lie on a circle
\therefore FSttK is a cyclic quadrilateral

$$
\therefore \angle F K H+\angle F S H=180^{\circ}
$$

(opp. Ls in a cyclic quad. are supplementary)

$$
\begin{aligned}
\angle F S H & =180^{\circ}-\angle F K H \\
& =180^{\circ}-x
\end{aligned}
$$

$$
\begin{aligned}
& \angle G S H=180^{\circ}-\angle F S H \quad(\angle \text { sum straight } \\
&\left.=180^{\circ}-\left(180^{\circ}-x\right) \quad \angle=180^{\circ}\right) \\
&=x \\
& \therefore \angle S G H=\angle G S H=x
\end{aligned}
$$

\therefore AHGS is isosceles since it has 2 equal angles.

QB
a) $P(x)=6 x^{3}-5 x^{2}-2 x+1$
i)

$$
\begin{aligned}
P(1) & =6-5-2+1 \\
& =0
\end{aligned}
$$

$\therefore x=1$ is a zero of $P(x)$
$\therefore(x-1)$ is a factor of $P(x)$
ii)

$$
\begin{array}{r}
\frac{6 x^{2}+x-1}{x - 1 \longdiv { 6 x ^ { 3 } - 5 x ^ { 2 } - 2 x + 1 }} \\
\frac{6 x^{3}-6 x^{2}}{x^{2}} \\
\frac{x^{2}-x}{-x} \\
\frac{-x+1}{0}
\end{array}
$$

$$
\begin{aligned}
\therefore P(x) & =(x-1)\left(6 x^{2}+x-1\right) \\
& =(x-1)(3 x-1)(2 x+1)
\end{aligned}
$$

iii)

$$
P(x) \leq 0
$$

for

$$
x \leqslant-\frac{1}{2}, \frac{1}{3} \leqslant x \leqslant 1
$$

b)

$$
\begin{aligned}
& y=\sqrt{x} \\
& f(x)=\sqrt{x} \\
& f(x+h)=\sqrt{x+h}
\end{aligned}
$$

Using first principles

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
\end{aligned}
$$

using the given substitution

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x+0}+\sqrt{x}} \quad \text { Cal }
\end{aligned}
$$

$$
=\frac{1}{2 \sqrt{x}}
$$

c) i) $4 \sin \theta-3 \cos \theta$
$=A \sin (\theta-\alpha)$
$=A \sin \theta \cos \alpha-A \cos \theta \sin \alpha$

Match parts

$$
\begin{align*}
& A \cos \alpha=4 \tag{1}\\
& A \sin \alpha=3 \tag{2}
\end{align*}
$$

Find A

$$
\begin{aligned}
A^{2} & =4^{2}+3^{2} \\
A & =\sqrt{16+9} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

Find α divide (2)/(1)

$$
\tan \alpha=\frac{3}{4}
$$

$$
\therefore \alpha \vdots 37^{\circ}
$$

$$
\begin{aligned}
& \therefore 4 \sin \theta-3 \cos \theta \\
& =5 \sin \left(\theta-37^{\circ}\right)
\end{aligned}
$$

ii) $4 \sin \theta-3 \cos \theta=1$

$$
\begin{aligned}
& 5 \sin \left(\theta-37^{\circ}\right)=1 \\
& \sin \left(\theta-37^{\circ}\right)=\frac{1}{5} \\
& \therefore \theta-37^{\circ}=11^{\circ} 32^{\circ} \text { or } 168^{\circ} 28^{\prime} \\
& \therefore \theta \doteq 48^{\circ} \text { or } 205^{\circ}
\end{aligned}
$$

d)

$$
\begin{aligned}
\angle C T D=\angle B, T D \quad & \text { (given) } \\
\angle A T B=\angle T C D \quad(& \angle \text { i- the alt segment }= \\
& \angle \text { between chard }+ \text { tangent })
\end{aligned}
$$

$$
\begin{aligned}
& \angle T D S=\angle C T D+\angle T C D \quad(\text { ext. } \angle i n) \\
& \therefore \angle A T D=\angle A D T \\
& \therefore A T=A D \quad\left(\begin{array}{l}
\text { sides opp }=\angle \text { in a } \\
\text { isosceles } \Delta=)
\end{array}\right.
\end{aligned}
$$

(4) a) is $\sin (A-B)$

$$
=\sin A \cos B-\cos A \sin B
$$

$$
\begin{aligned}
\sin 15^{\circ} & =\sin \left(45^{\circ}-30^{\circ}\right) \\
& =\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

ii) Prove $\tan \alpha=\operatorname{cosec} 2 \alpha-\cot 2 \alpha$

$$
\begin{aligned}
\text { RUS } & =\operatorname{cosec} 2 \alpha-\cot 2 \alpha \\
& =\frac{1}{\sin 2 \alpha}-\frac{\cos 2 \alpha}{\sin 2 \alpha} \\
& =\frac{1-\cos 2 \alpha}{\sin 2 \alpha} \\
& =\frac{1-\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)}{2 \sin \alpha \cos \alpha} \\
& =\frac{1-\cos ^{2} \alpha+\sin ^{2} \alpha}{2 \sin \alpha \cos \alpha}
\end{aligned}
$$

Substituting $1-\cos ^{2} \alpha=\sin ^{2} \alpha$

$$
\begin{aligned}
& =\frac{\sin ^{2} \alpha+\sin ^{2} \alpha}{2 \sin \alpha \cos \alpha} \\
& =\frac{2 \sin \alpha \alpha}{7 \sin ^{2} \alpha \cos \alpha} \\
& =\frac{\sin \alpha}{\cos \alpha} \\
& =\tan \alpha \\
& =\text { LHS }
\end{aligned}
$$

iii) $\tan 15^{\circ}=\operatorname{cosec} 30^{\circ}-\cot 30^{\circ}$

$$
\begin{aligned}
& =\frac{1}{\sin 30^{\circ}}-\frac{1}{\tan 30^{\circ}} \\
& =\frac{1}{\frac{1}{2}}-\frac{1}{\frac{1}{\sqrt{3}}} \\
& =2-\sqrt{3}
\end{aligned}
$$

iv)

$$
\begin{aligned}
\tan 7 \frac{1}{2}^{\circ} & =\operatorname{cosec} 15^{\circ}-\cot 15^{\circ} \\
& =\frac{1}{\sin 15^{\circ}}-\frac{1}{\tan 15^{\circ}} \\
& =\frac{1}{\frac{\sqrt{6}-\sqrt{2}}{4}}-\frac{1}{2-\sqrt{3}} \\
& =\frac{4}{\sqrt{6}-\sqrt{2}}-\frac{1}{2-\sqrt{3}}
\end{aligned}
$$

Rationalise each denominator

$$
\left\{\begin{aligned}
\frac{4}{\sqrt{6}-\sqrt{2}} \times \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}} & =\frac{4(\sqrt{6}+\sqrt{2})}{6-2} \\
& =\sqrt{6}+\sqrt{2} \\
\frac{1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} & =\frac{2+\sqrt{3}}{4-3} \\
& =2+\sqrt{3} \\
\therefore \quad & =\sqrt{6}+\sqrt{2}-(2+\sqrt{3}) \\
& =\sqrt{6}+\sqrt{2}-\sqrt{3}-2
\end{aligned}\right.
$$

b) $P(x)=A(x) \cdot Q(x)+R(x)$

$$
x^{3}+a x+b=(x-2)(x+3) \cdot Q(x)+2 x+1
$$

Substitute $x=2$

$$
\begin{align*}
8+a+b & =0+4+1 \\
a+b & =-3 \tag{1}
\end{align*}
$$

Substitute $x=-3$

$$
\begin{align*}
-27-3 a+b & =0-6+1 \\
-3 a+b & =22 \tag{2}
\end{align*}
$$

Solve simultaneously

$$
\begin{gather*}
a+b=-3 \tag{1}\\
-3 a+b=22 \tag{2}
\end{gather*}
$$

Subtract

$$
\begin{aligned}
4 a & =-25 \\
a & =-25 / 4 \\
a & =-61 / 4
\end{aligned}
$$

subset. into (1)

$$
\begin{aligned}
-6 \frac{1}{4}+b & =-3 \\
b & =31 / 4
\end{aligned}
$$

Solution

$$
\begin{aligned}
\therefore a & =-6^{1 / 4} \\
b & =3^{1 / 4}
\end{aligned}
$$

One point of intersection only when $x+1=-(x-2)$

$$
x+1=-x+2
$$

$$
2 x=1
$$

$$
x=1 / 2
$$

$$
\left(\frac{1}{2}, 11 / 2\right)
$$

from the graph

$$
|x-2|<x+1
$$

for $x>\frac{1}{2}$

$$
\tan 60^{\circ}=\frac{x}{A P}
$$

$$
A P=\frac{x}{\tan 60^{\circ}}
$$

or $A \cdot P=x \tan 30^{\circ}$

$\tan 30^{\circ}=\frac{x}{B P}$

$$
B P=\frac{x}{\tan 30^{\circ}}
$$

or $B P=x \tan 60^{\circ}$

Using Pythagoras rule

$$
\begin{aligned}
& B P^{2}=A P^{2}+A B^{2} \\
& x^{2} \tan ^{2} 60^{\circ}=x^{2} \tan ^{2} 30^{\circ}+1^{2} \\
& x^{2} \tan ^{2} 60^{\circ}-x^{2} \tan ^{2} 30^{\circ}=1 \\
& x^{2}\left(\tan ^{2} 60^{\circ}-\tan ^{2} 30^{\circ}\right)=1 \\
& x^{2}=\frac{1}{\tan ^{2} 60^{\circ}-\tan ^{2} 30^{\circ}} \\
& x=\sqrt{\frac{1}{\tan ^{2} 60^{\circ}-\tan ^{2} 30^{\circ}}} \\
& \doteq \sqrt{\frac{1}{3} 1 / 3} \\
&=\sqrt{\frac{3}{8}} \\
& \vdots 0 \cdot 612372 \cdots
\end{aligned}
$$

(to nearest metre)
c)

$$
x^{2}=4 a y
$$

directrix $y=-a$

Coordinates of R

$$
(2 a p,-a)
$$

Equation of tangent at P

$$
\begin{aligned}
y & =\frac{x^{2}}{4 a} \\
y^{\prime} & =\frac{2 x}{4 a} \\
& =\frac{x}{2 a}
\end{aligned}
$$

At $p\left(2 a p, a p^{2}\right)$
tangent

$$
\text { nt } \begin{aligned}
m_{1} & =\frac{2 a p}{2 a} \\
& =p \\
y-y_{1}= & m\left(x-x_{1}\right) \\
y-a p^{2} & =p(x-2 a p) \\
y-a p^{2} & =p x-2 a p^{2} \\
y & =p x-a p^{2}
\end{aligned}
$$

Coordinates of T
Tangent cuts yaxis when $x=0$

$$
\begin{aligned}
& y=p x-a p^{2} \\
& y=0-a p^{2} \\
& y=-a p^{2} \\
& \therefore T\left(0,-a p^{2}\right)
\end{aligned}
$$

midpoint of TR

$$
\begin{array}{r}
T\left(0,-a p^{2}\right) R(2 a p,-a) \\
m=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
=\left(\frac{0+2 a p}{2}, \frac{-a p^{2}-a}{2}\right) \\
=\left(a p, \frac{-a\left(p^{2}+1\right)}{2}\right)
\end{array}
$$

Locus of m.

$$
\left\{\begin{array}{l}
x=a p \\
y=-\frac{a}{2}\left(p^{2}+1\right)
\end{array}\right.
$$

substitute $p=x / a$ into y

$$
\begin{aligned}
& y=-\frac{a}{2}\left(\left(\frac{x}{a}\right)^{2}+1\right) \\
& y=-\frac{a}{2}\left(\frac{x^{2}}{a^{2}}+1\right) \\
& y=-\frac{x^{2}}{2 a}-\frac{a}{2}
\end{aligned}
$$

The locus is a parabola. 2
($\times 2 a$)

$$
\begin{aligned}
2 a y & =-x^{2}-a^{2} \\
x^{2} & =-2 a y-a^{2} \\
x^{2} & =-2 a\left(y+\frac{1}{2} a\right) \\
x^{2} & =-4 \cdot \frac{1}{2} a\left(y+\frac{1}{2} a\right)
\end{aligned}
$$

The locus is a parabola.
Vertex ($0,-\frac{1}{2} a$)
Focal length $=\frac{1}{2} a$

Directrix $y=0$
\therefore The directrix is the x-axis.

[^0]: Find the values of a and b.

