Name: \qquad

SCEGGS Darlinghurst

2004
 Preliminary Course
 Semester 2 Examination

Mathematics (Extension)

General Instructions

- Reading time - 5 minutes
- Working time $-1 \frac{1}{2}$ hours
- This paper has four questions
- Attempt all questions on the pad paper provided
- Write your name on every page
- Marks will be deducted for careless or badly arranged work
- Approved calculators may be used

Total marks - 60

- Attempt Question 1-4

Question	Communication	Reasoning	Total
$\mathbf{1}$	$/ 3$	$/ 3$	$/ 15$
$\mathbf{2}$	$/ 4$	$/ 5$	$/ 15$
$\mathbf{3}$	13	$/ 6$	$/ 15$
$\mathbf{4}$		$/ 11$	$/ 15$
TOTAL	$/ \mathbf{1 0}$	$/ \mathbf{2 5}$	$/ \mathbf{6 0}$

BLANK PAGE

Instructions

- Attempt all questions on the pad paper provided
- Write your name at the top of each page
- Show all necessary working
- Marks may be deducted for careless or badly arranged work
- Approved calculators may be used
- Begin each question on a new page
(a) Find the acute angle between the two lines $3 x-2 y+7=0$ and $7 x+5 y-6=0$. 3 Answer correct to the nearest minute.
(b) Give α, β and γ are the roots of the equation $2 x^{3}-3 x^{2}-5 x+1=0$, find:
(i) $\alpha+\beta+\gamma$

1
(ii) $\alpha \beta+\alpha \gamma+\beta \gamma$
(iii) $(\alpha+1)(\beta+1)(\gamma+1)$
(c) Find the co-ordinates of the point P which divides the interval joining $A(2,-3)$ and $B(4,5)$ externally in the ratio $1: 3$.
(d) Solve $\frac{3}{1-x} \leq 2$.
(e)

DE is a tangent to the circle at C .
$\angle B C E=\angle A C D$
Prove that $A B$ is parallel to $D E$.

Start a new page

Question 2 (15 marks)
Marks
(a) (i) Express $3 \sin \theta-2 \cos \theta$ in the form $A \sin (\theta-\alpha)$ where $A>0$ and α is an acute angle correct to the nearest minute.
(ii) Hence state the exact maximum value of $12-3 \sin \theta+2 \cos \theta$.
(b)

A student was given the curve $y=x^{2}-1$ as shown above. She was then asked to draw

$$
y=\frac{1}{x^{2}-1}
$$

(i) Explain why she knew that asymptotes occur at $x=-1$ and $x=1$.
(ii) Draw the curve $y=\frac{1}{x^{2}-1}$.
(c) (i) Prove that $x+1$ is a factor of $P(x)=x^{3}+3 x^{2}-x-3$.
(ii) Hence factorise $P(x)$ fully.
(iii) Solve $P(x)>0$

Question 2 continues on the next page
(d) Use the method of Mathematical Induction to prove that

$$
9^{n+2}-4^{n}
$$

is divisible by 5 for all positive integers n.

Start a new page

Question 3 (15 marks)
(a) Consider the polynomial

$$
P(x)=x^{3}-3 x^{2}-2 x+4
$$

(i) Show that it has a zero between $x=3$ and $x=4$.
(ii) Taking an initial approximation of $x=3.5$ and one application of

Newton's Method, find a more accurate approximation to the zero correct to 3 significant figures.
(b) Use the method of Mathematical Induction to prove that

$$
2+5+8+\ldots+3 n-1=\frac{n(3 n+1)}{2}
$$

for all positive integers n.
(c) (i) Find the centre and radius of the circle whose equation is:

$$
x^{2}+y^{2}-4 x+6 y-12=0
$$

(ii) Find, in terms of the constant k, the perpendicular distance from the centre to the line whose equation is $3 x+4 y=k$.
(iii) Hence find any values of k for which the line is a tangent to the circle.

Start a new page

Question 4 (15 marks)
(a)

The points P, Q, R and S lie on the circumference of a circle. $P S$ and $Q R$ are extended to W while $P Q$ and $S R$ are extended to V.

$$
\angle P W Q=\angle S V P
$$

(i) Prove that $\angle P Q R=\angle P S R$
(ii) Hence prove that $P R$ is a diameter of the circle.
(b)

The points A and B are due South and East of a hill of height $h \mathrm{~m}$ shown as $P Q$. A and B are 300 m apart. The angle of elevation of the top of the hill P from A is 30° and from B is 60°.
(i) Prove that $A Q=\sqrt{3} h$.
(ii) Hence prove that $h=30 \sqrt{30}$ metres.
(c)

$P\left(2 p, p^{2}\right)$ is a point on the parabola $4 y=x^{2}$.
(i) Prove that the equation of the normal to the parabola at P has the equation

$$
x+p y=p^{3}+2 p
$$

(ii) The normal meets the axis of the parabola at Q. Find the co-ordinates of Q.
(iii) Find the co-ordinates of R, the midpoint of $P Q$.
(iv) Show that the locus of R is a parabola and find its vertex.

End of paper

2004 Preliminary Extension 1. Yearly.
(1) a)

$$
\begin{array}{lc}
2 y=3 x+7 & 5 y=-7 x+6 \\
m_{1}=\frac{3}{2} & m_{2}=-\frac{7}{5} \\
& \tan \theta=\left|\frac{\frac{3}{2}+\frac{7}{5}}{1-\frac{3}{2} \times \frac{7}{5}}\right|^{1}=\left|\frac{29}{\frac{11}{10}}\right|=\frac{29}{11}
\end{array}
$$

$$
\theta=69^{\circ} / 4^{\prime} \text { (rearest minicte) }
$$

(reareat munute)
b) (i) $\alpha+\beta+\gamma=\frac{3}{2}$
(ii) $\alpha \beta+\delta_{\gamma}+\beta_{\gamma}=-\frac{5}{2} \quad 1 \quad \alpha \beta_{\gamma}=-\frac{1}{2}$
(iii)

$$
\begin{aligned}
(\alpha+1)(\beta+1)(\gamma+1) & =(\alpha+1)(\beta \gamma+\beta+\gamma+1) \\
& =\alpha \beta \gamma+\alpha \beta+\alpha \gamma+\beta+\alpha+\beta+\gamma+1 \\
& =-\frac{1}{2}-\frac{5}{2}+\frac{3}{2}+1 \\
& =-\frac{1}{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
(2,-3)(4,5) & -1: 3 \\
x & =\frac{2 \times 3+4 x-1}{2}=1 \\
y & =\frac{-3 \times 3+5 \times-1}{2}=-7 \\
& p \text { is }(1,-7)
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{3}{1-x} \times(1-x)^{2} \leq 2(1-x)^{2} \\
& 3(1-x) \leq 2\left(1-2 x+x^{2}\right) \\
& 3-3 x \leqslant 2-4 x+2 x^{2} \\
& \therefore 2 x^{2}-x-1 \geqslant 01 \\
&(2 x+1)(x-1) \geqslant 0
\end{aligned}
$$

$\therefore \quad x \leqslant-\frac{1}{2}, x \geqslant 1$ hut $x \neq 1$

(Reas)
$\therefore x \leqslant-\frac{1}{2}, x>1$ is molution
e). $\angle B C E=\angle B A B$ (angle whlures tangent and chan equaco angle in alteunate regment)
But $\angle B C E=\angle A C D$ (gwis)

$$
\therefore \angle A C D=\angle C A B
$$

$\therefore A B \| D E$ (alteanate angleo ane equal)
(2) a) (i) $3 \sin \theta-2 \cos \theta=A \sin \theta \cos \alpha-A \cos \theta \sin \alpha$.
$\therefore A \cos \alpha=3$ and $A \sin \alpha=2$

$$
\begin{aligned}
& \therefore \quad A=\sqrt{13} \\
& \cos \alpha=\frac{3}{\sqrt{13}} \\
& \alpha=33^{\circ} 24^{\prime} \\
& \therefore \quad 3 \sin \theta-2 \cos \theta=\sqrt{13} \sin \left(\theta-33^{\circ} 24^{\prime}\right) \quad 1
\end{aligned}
$$

$$
\text { (ii) } \quad-\sqrt{13} \leq \sqrt{13} \sin \left(\theta-33^{\circ} 24^{\prime}\right) \leq \sqrt{13}
$$

\therefore maxumuis value is $12+\sqrt{13}$.
b) (i) For the cusue $y=x^{2}-1, y=0$ at $x=\operatorname{lan} x=-1$.
\therefore For the usue $y=\frac{1}{x^{2}-1}$, y is cendefied at $x=1, x=-1$
\therefore arymptotes occus on $y=\frac{1}{x^{2}-1}$ at $x=1, x=-1$. '(comm:)
(ii)

$2(\operatorname{lom})$
c) (i) $P(-1)=(-1)^{3}+3(-1)^{2}+1-3=-1+3+1-3=0$
$\therefore x+1$ is a factas of $P(x)$
(ii)

$$
x+1 \begin{gathered}
\frac{x^{2}+2 x-3}{x^{3}+3 x^{2}-x-3} \\
\frac{x^{3}+x^{2}}{2 x^{2}-x-3} \\
\frac{2 x^{2}+2 x}{-3 x-3}
\end{gathered}
$$

$$
\begin{aligned}
\therefore \quad P(x) & =(x+1)\left(x^{2}+2 x-3\right) \\
& =(x+1)(x+3)(x-1)
\end{aligned}
$$

(iii) Graphing $y=P(x)$

$$
P(x)>0 \text { for }-3<x<-1 \text { and } x>1 \quad 1(\operatorname{lom})
$$

d) Assume true for $A=k$
is that $9^{4+2}-4^{2}$ is divisible by s.
\therefore Ascume $9^{-b+2}-4^{-k N}$ where N ion used. comides m $m+1$

$$
\begin{aligned}
9^{2+3}-4^{2+1} & =9^{2+9-4} \\
& =9\left(5 N+4^{2}\right)-4^{2+1} \\
& =45 N+9.4^{2}-4.4^{2} \\
& =45+5.4^{2} \\
& =5[9+4] \text { whet io }
\end{aligned}
$$

divisible dy 5 .
concider $n=1,9^{3}-4=729-4=725$ whie io divivele lys.

If the rtarement is there for $h=h$ it is ewo the for $A=A+1$. It is the for $n=1$ and thess is tras for $A \equiv 23 \cdot \operatorname{are}$. Thuo thus for all n posific intageso. 4 (Reas)
(3) a) (i)

$$
\begin{aligned}
P(x) & =x^{3}-3 x^{2}-2 x+4 \\
P(3) & =3^{3}-3 \times 3^{2}-2 \times 3+4 \\
& =-2<0 \\
P(4) & =4^{3}-3 \times 4^{2}-2 \times 4+4 \\
& =12>0
\end{aligned}
$$

Rerie the rigin has changed and $P(x)$ is continuois, these io a zero helween $x=3$ and $x=4$. 2 (camm)
(ii)

$$
\begin{aligned}
P(3 \cdot 5) & =3 \cdot 5-3 \times 3 \cdot 5^{2}-2 \times 3 \cdot 5+4 \\
& =3 \cdot 125 \\
P^{\prime}(3 \cdot 5) & =3 \times 3 \cdot 5^{2}-6 \times 3 \cdot 5-2 \\
& =13 \cdot 75 \\
a_{2} & =3 \cdot 5-\frac{3.125}{13.75} \\
& =3.27(35 . f)
\end{aligned}
$$

b) Arpume thes for $h=k$ is aspume $2+S+8+\cdots+3 k-1=\frac{k(3 k+1)}{2}$

Conviden $N=k+1$

$$
\begin{aligned}
h H S & =2+S+b+\cdots+3 h-1+3 h+2 \\
& =\frac{h(3 h+1)+3 h+2}{2} \\
& =\frac{3 k^{2}+h+6 h+4}{2} \\
& =\frac{3 k^{2}+7 h+4}{2}
\end{aligned}
$$

$$
\begin{aligned}
H H S & =\frac{(k+1)(3 h+4)}{2} \\
& =\frac{(k+1)(3(k+1)+1)}{2} \\
& =R H S \quad \text { if } A=A+1
\end{aligned}
$$

$I+N=1 \quad \angle H S=2$

$$
\text { R.HS }=\quad=2
$$

\therefore If ture for $A=f$, the Atatemenc is ass true for $N=A+1$ ICio twe for $N=1$ an Nhen io true po $N=3,3 \cdots$ \therefore Tue for all n posilisie integen. I (lom)
c) (i)

$$
\begin{aligned}
& x^{2}-4 x+4+y^{2}+6 y+9=12+4+9 \\
& (x-2)^{2}+(y+3)^{2}=25
\end{aligned}
$$

cenise is $(2,3)$ tadius is sunits.
(ii)

$$
\begin{aligned}
\text { Aistance } & =\left|\frac{3 \times 2+4 x-3-k}{5}\right| \\
& =\left|\frac{-6-h}{5}\right| \text { unis. }
\end{aligned}
$$

(iii) if $\left|\frac{-6-k}{5}\right|=s$.

$$
\begin{array}{ccc}
-b-k=25 & \text { or } & b+k=25 \\
h=-31 & \text { a } & k=19 .
\end{array}
$$

$$
\frac{2}{(R e a s)}
$$

(4) a)

(i) $\quad \angle A R V=\angle S R W$ (Veatically opponite angleo equal)
$\angle S W R=\angle R V Q$ (gwie).
$\therefore \quad \triangle S W R I I I \Delta R Q V$ (equangulan)
$\therefore \quad \angle R Q V=\angle W S R$ (angles isimiear $\Delta^{\prime} \Delta$ are equal)
$\angle P Q R=180^{\circ}-\angle R Q V$ (straight angle is 180°)

$$
\therefore \quad \angle P Q R=\angle P S R .
$$

(ii) $\quad \angle P Q R+\angle P S R=180^{\circ}$ (opp. angleo in a uycic qualuioteral au rupplementany)

$$
\begin{aligned}
\therefore \quad 2 \angle P S R & =180^{\circ} \\
\angle P S R & =90^{\circ}
\end{aligned}
$$

$\therefore P R$ is a dramiles (if the angle is 90° it munt be a name evile)
(Reas) 5 .
b) (i)

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{h}{A Q} \\
& \therefore A Q=\frac{h}{\frac{1}{3}}=\sqrt{3} h .
\end{aligned}
$$

(Reas) :
(ii)

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{h}{B Q} \\
B Q & =\frac{h}{\sqrt{3}}
\end{aligned}
$$

useng Pythagonan' Reonem,

$$
300^{2}=3 h^{2}+\frac{h^{2}}{3}
$$

$$
\begin{aligned}
90000 & =\frac{10 h^{2}}{3} \\
h^{2} & =27000 \\
h & =\sqrt{27000}=\sqrt{900 \times 30} \\
& =30 \sqrt{30} m
\end{aligned}
$$

3 Reas
c)

$$
\begin{aligned}
\text { (i) } y & =\frac{x^{2}}{4} \\
y^{\prime} & =\frac{2 x}{4}=\frac{x}{2} \\
\text { if } x=2 p, \quad y^{\prime} & =\frac{2 p}{2}=p
\end{aligned}
$$

Equation of Lomal: $\quad y-p^{2}=-t(x-2 p)$

$$
\begin{align*}
& p y-p^{3}=-x+2 p \\
& x+p y=p^{3}+2 p \tag{2}
\end{align*}
$$

(ii) if $x=0$,

$$
\begin{align*}
& p y=p^{3}+2 p \\
& y=p^{2}+2 \tag{1}
\end{align*}
$$

$\therefore \quad \theta i o\left(0, p^{2}+2\right)$
(iii) mapait: $\left(p, \frac{2 p^{2}+2}{2}\right)$ which is $\left(p, p^{2}+1\right)$
(iv) Let $x=p, \quad y=p^{2}+1$

$$
\therefore y=x^{2}+1
$$

Which is of the foum of a parabola verlen $(0,1)$ 2 (Reno)

