\qquad
\qquad

2005

 Preliminary Course
Semester 2 Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time $-1 \frac{1}{2}$ hours
- Write your name and your teacher's name at the top of each page
- Attempt all questions and show all necessary working
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- Begin each question on a new page
- Do not attach all questions together in one bundle

Total marks - 60

- Attempt Questions 1-5

Question	Total
$\mathbf{1}$	$/ 12$
$\mathbf{2}$	$/ 12$
$\mathbf{3}$	$/ 12$
$\mathbf{4}$	$/ 12$
$\mathbf{5}$	$\mathbf{6 0}$
TOTAL	$\mathbf{\%}$

BLANK PAGE

Instructions

- Write your name and your teacher's name at the top of each page
- Attempt all questions on the pad paper provided
- Show all necessary working
- Marks may be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- Begin each question on a new page

Question 1 (12 marks)
(a) $\quad A$ and B are the points $(1,2)$ and $(5,0)$ respectively.

Find the co-ordinates of the point P which divides $A B$ in the ratio $3: 1$.
(b) A, B, C, D lie on the circumference of a circle, centre $O . D C$ is the diameter and $\angle B D C=32^{\circ}$.

Find $\angle B C D$ and $\angle B A D$ giving full reasons.

(c) Consider the polynomial $P(x)=4 x^{3}-8 x^{2}-3 x+9$.
(i) Show that -1 is a zero of $P(x)$.
(ii) Express $P(x)$ as a product of 3 linear factors.
(iii) Hence, solve the inequality $P(x) \geq 0$.
(d) Solve for x,

$$
\frac{2}{x+3} \leq 5
$$

- \quad Start a new page

Question 2 (12 marks)
Marks
(a) The polynomial $P(x)=x^{3}+a x^{2}+b x-18$ has $x+2$ as a factor and leaves a remainder of -24 when divided by $(x-1)$.

Find the values of a and b.
(b) (i) Show that the equation of the tangent to the parabola $x=2 a t, y=a t^{2}$ at the point $t=p$ is given by $y=p x-a p^{2}$.
(ii) Find the co-ordinates of the points where the tangent intersects the x and y axes.
(iii) Hence find the area of the triangle formed by the two intercepts and the origin.
(c)

A, C, D lie on the circumference of a circle. $A B$ and $C B$ are tangents at A and C respectively and $A B$ is parallel to $D C$.

Prove that $\triangle A B C||\mid \triangle D A C$.

Start a new page

Question 3 (12 marks)
Marks
(a) $\quad \alpha, \beta$ and γ are roots of the equation $x^{3}-3 x^{2}+4 x+8=0$
(i) Find the values of:
(1) $\alpha+\beta+\gamma$
(2) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(3) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) Hence write down the cubic equation with roots $2 \alpha, 2 \beta$ and 2γ.
(b) (i) The equation of the chord of contact from the point $P(-1,-2)$ to the parabola $x^{2}=4 y$ is given by $y=-\frac{x}{2}+2$. Show that the points of contact are $(-4,4)$ and $(2,1)$.
(ii) Find the gradients of the tangents at these points of contact.
(iii) Hence determine the size of the acute angle formed between the tangents (to the nearest minute).

Start a new page

Question 4 (12 marks)
Marks
(a) (i) Express $\cos x+\sin x$ in the form $R \cos (x-\alpha)$ where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence solve $\cos x+\sin x=1$ for $0^{\circ}<x \leq 360^{\circ}$.
(b) (i) Write down the expansion of $\tan 2 \theta$.
(ii) Given that $t=\tan 22.5^{\circ}$, show that $t^{2}+2 t-1=0$.
(iii) Hence show that $\tan 22 \cdot 5^{\circ}=\sqrt{2}-1$.
(c) Show by substitution that the parametric equation

$$
\begin{aligned}
& x=\sin \theta+\cos \theta \\
& y=\tan \theta+\cot \theta
\end{aligned}
$$

satisfies the cartesian equation

$$
x^{2} y=y+2 .
$$

- \quad Start a new page

Question 5 (12 marks)
Marks
(a) A knight in shining armour standing at point X observes the base of Rapunzel's tower (T) on a bearing of 035° and Rapunzel at the top of her tower (R) at an angle of elevation of 3°. The knight rides 500 m to a point Y from which the tower is on a bearing of 300° and Rapunzel is at an angle of elevation of 7°.

(i) Show that $\angle X T Y=95^{\circ}$.
(ii) Show that the height, h, of the tower (in metres) is given by

$$
h=\frac{500}{\sqrt{\cot ^{2} 3^{\circ}+\cot ^{2} 7^{\circ}-2 \cot 3^{\circ} \cot 7^{\circ} \cos 95^{\circ}}}
$$

(iii) How long must Rapunzel's hair be to reach the base of the tower?

Question 5 (continued)
(b)

(i) Show that the x co-ordinates of the points of intersection of the line
$y=m x-1$ and the parabola $x^{2}=4 y$ satisfy the equation

$$
x^{2}-4 m x+4=0
$$

(ii) For what values of m does the line $y=m x-1$ and the parabola $x^{2}=4 y$ have one or more points of intersection?

Question 5 continues on the next page

Question 5 (continued)
(c) $\quad P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ are variable points on the parabola $x^{2}=4 y$ such that $P Q$ passes through the point $(0,-1)$.

The equation of the chord $P Q$ is given by $y=\left(\frac{p+q}{2}\right) x-p q$.
(i) Show that $p q=1$.
(ii) Show that the midpoint, M, of $P Q$ is given by

$$
\left(p+q, \frac{p^{2}+q^{2}}{2}\right)
$$

(iii) Hence find the cartesian equation of the locus of M.
(iv) Using the result from part (b), explain why the domain of the locus of M is restricted to $x \geq 2, x \leq-2$.

End of paper

Extension 1 Year ll Preliminary Exam. Semester 22005
Question 1
a)

$P=\left(\frac{3 \times 5+1 \times 1}{3+1}, \frac{3 \times 0+1 \times 2}{3+1}\right)$

$$
=\left(\frac{16}{4}, \frac{2}{4}\right)
$$

$$
=\left(4, \frac{1}{2}\right)
$$

The point $P\left(4, \frac{1}{2}\right)$ divides $A B$ in the ratio $3: 1$

- This question very well done.
c) $P(x)=4 x^{3}-8 x^{2}-3 x+9$
i)

$$
\begin{aligned}
P(-1)= & -4-8+3+9 \\
= & 0
\end{aligned}
$$

$\therefore x=-1$ is a zero
$\therefore(x+1)$ is a factor of $P(x)$
ii)

$$
\begin{array}{r}
4 x^{2}-12 x+9 \\
\frac{4 x^{3}-8 x^{2}-3 x+9}{4 x^{3}+4 x^{2}} \\
\frac{-12 x^{2}}{-12 x^{2}-12 x} \\
\frac{9 x}{0}
\end{array}
$$

$$
\begin{aligned}
P(x) & =(x+1)\left(4 x^{2}-12 x+9\right) \\
& =(x+1)(2 x-3)^{2}
\end{aligned}
$$

iii)

$$
P(x) \geqslant 0
$$

for
d)

$$
\frac{2}{x+3} \leq 5 \quad \begin{aligned}
& \text { undefined } \\
& \text { for } x=-3
\end{aligned}
$$

multiplyboth sides by $(x+3)^{2}$

$$
\begin{gathered}
\frac{2}{x+3} \times(x+3)^{2} \leq 5(x+3)^{2} \\
2(x+3) \leq 5\left(x^{2}+6 x+9\right) \\
5 x^{2}+30 x+45-2 x-6 \geq 0 \\
5 x^{2}+28 x+39 \geq 0 \\
(5 x+13)(x+3) \geq 0
\end{gathered}
$$

\therefore Solution

$$
x<-3, \quad x \geqslant-2^{3 / 5}
$$

- This part was very well done.

Note $x=-1$ is a zero
$(x+1)$ is a factor

Since $(x+1)$ is a factor, there should be no remainder. If you have a remainder, somethings gone wrong!
\checkmark one mark for correct sketch
one mark for correct solution from your sketch.

- Don't forget that the original is undefined when $x=-3$.
(This is an easy mark.)
$\left\{\begin{array}{l}\sqrt{V} \\ \sqrt{V}\end{array}\right.$
one mark $x \neq-3$
correct quadratic
correct solution of your quadratic.

Question 2

Calk 12 Teas $/ 4$
(a) $(x+2)$ is a factor $\Rightarrow P(-2)=0$

$$
\begin{array}{r}
(-2)^{3}+a(-2)^{2}+b(-2)-18=0 \\
-8+4 a-2 b-18=0 \\
4 a-2 b=26 \\
2 a-b=13 \tag{1}
\end{array}
$$

$(x-1)$ leaves rem. of $-24 \Rightarrow P(1)=-24$

$$
\begin{align*}
1^{3}+a \times 1^{2}+b \times 1-18 & =-24 \\
1+a+b-18 & =-24 \\
a+b & =-7 \tag{2}
\end{align*}
$$

Solve simult.
(1)
$+(2)$

$$
\left.\begin{array}{rl}
\Rightarrow \quad 3 a & =6 \\
a & =2 \\
(2) \Rightarrow b & =-9
\end{array}\right\}
$$

sub in (2) $\Rightarrow b=-9$
(b) (i) $x=2 a t \quad y=a t^{2}$
$p t: t=p \therefore p\left(2 a p, a p^{2}\right)$
Gradient:

$$
\begin{gathered}
\text { nt: } \underbrace{2 a}_{\frac{d y}{\frac{d x}{d t}=2 a \quad \frac{d y}{d t}=2 a t}}=t \\
\therefore m_{\tau}=P \quad \text { talc } 2
\end{gathered}
$$

Eqn tang: $y-a p^{2}=p(x-2 a p) V$

$$
\begin{gathered}
y-a p^{2}=p x-2 a p^{2} \\
y=p x-a p^{2}
\end{gathered}
$$

(ii) x int: $y=0$

$$
\begin{align*}
& 0=p x-a p^{2} \tag{ap,0}\\
& x=a p
\end{align*}
$$

y int: $x=0$

$$
\begin{aligned}
& x=0 \\
& y=p \times 0-a p^{2}
\end{aligned}
$$

$$
y=-q p^{2}
$$

- Generally people knew the factor/rem. theorems or they didn't.
If you are someone who doesn't know it - learn it!
(iii)

$$
\text { Area } \begin{aligned}
\Delta & =\left\lvert\, \frac{1}{2} \times\right. \text { base } \times \text { height } \mid \\
& =\left|\frac{1}{2} \times a p \times a p^{2}\right| \\
& =\left|\frac{a^{2} p^{3}}{2}\right|
\end{aligned}
$$

(c)

let $\angle B A C=x$
$A B=B C$ (tang. from an ext. pt. are $=$)
$\therefore \triangle A B C$ is sos.
$\therefore \angle B A C=x=\angle B C A$ ($\angle s$ opp.

$$
=\text { sides of isos } \Delta=)
$$

$\angle B A C=x=\angle A C D$ (alt. Ls on
$/ /$ lines $A B \& D C=) V$
$\angle B A C=x=\angle A D C$ (\angle bet. tang.

$\&$

$\therefore \triangle A B C \| \triangle D A C$
(equiangular)

- Technically you need the absolute value signs for the area. ' p ' can certainly be -ve.
\qquad
- There are various ways to prove this question
you need to be careful with the alternate segment theorem eg. $\angle B C A \neq \angle D A C$!

You also need to be careful when naming angles - one incorrect letter can mean a world of difference.

Question 3
a) $x^{3}-3 x^{2}+4 x+8=0$
i) 1)

$$
\begin{aligned}
\alpha+\beta+\gamma & =-b / a \\
& =--3 / 1 \\
& =3
\end{aligned}
$$

(ג)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
& =\frac{\frac{c}{a}}{-\alpha / a} \\
& =\frac{4 / 1}{-8 / 1} \\
& =-\frac{1}{2}
\end{aligned}
$$

(3) $\alpha^{2}+\beta^{2}+\gamma^{2}$

Note

$$
\begin{aligned}
\therefore \alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =3^{2}-2 \times 4 \\
& =9-8 \\
& =1
\end{aligned}
$$

ii) The equation has the form

$$
\begin{aligned}
& a x^{3}+b x^{2}+c x+d=0 \\
& x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a} x
\end{aligned}
$$

Sum 8 roots

$$
\begin{gathered}
2 \alpha+2 \beta+2 \gamma=-\frac{b}{a} \\
2(\alpha+\beta+\gamma)=-\frac{b}{a} \\
2 \times 3=-\frac{b}{a} \\
\because \frac{b}{a}=-6
\end{gathered}
$$

Sum two at a time $2 \alpha \cdot 2 \beta+2 \alpha \cdot 2 \gamma+2 \beta .2 \gamma=\frac{c}{a}$ $4(\alpha \beta+\alpha \gamma+\beta \gamma)=\frac{c}{a}$

$$
4 \times 4=\frac{c}{a}
$$

$$
\therefore \frac{c}{a}=16
$$

Product.

$$
\begin{gathered}
2 \alpha .2 \beta .2 \gamma=-\frac{d}{a} \\
8 \alpha \beta \gamma=-\frac{d}{a} \\
8 x-8=-\frac{d}{a} \\
\therefore \frac{d}{a}=64
\end{gathered}
$$

Learn the rules!!!

$$
\begin{gathered}
a x^{3}+b x^{2}+c x+d=0 \\
\alpha+\beta+\gamma=-\frac{b}{a} \\
\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \\
\alpha \beta \gamma=-\frac{d}{a}
\end{gathered}
$$

This question was well done as almost everyone knew their rules. \ddot{u}

These results came from part (a)

$$
\left.\begin{array}{r}
\alpha+\beta+\gamma=-\frac{b}{a}=3 \\
\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=4 \\
\alpha \beta \gamma=-\frac{d}{a}=-8
\end{array}\right\} \begin{aligned}
& \text { use these values } \\
& \text { in part (ii) }
\end{aligned}
$$

- Another method is to write the equation as

$$
(x-2 \alpha)(x-2 \beta)(x-2 \gamma)=0
$$

Then expand and collect like terms. then substitute the values for sum, product etc. found in part (a).

- part(ii) was a bit tricky.

It had to be perfectly correct to gain one mark.
\therefore Equation of cubic equation

$$
x^{3}-6 x^{2}+16 x+64=0
$$

b) i)

$\left.\begin{array}{l}\text { (1) } y=-\frac{x}{2}+2 \\ \text { (2) } x^{2}=4 y\end{array}\right\}$ solve simultaneously
substitute (1) into (2)

$$
\begin{aligned}
& x^{2}=4\left(-\frac{x}{2}+2\right) \\
& x^{2}=-2 x+8 \\
& x^{2}+2 x-8=0 \\
& (x+4)(x-2)=0 \\
& x=-4 \quad x=2 \\
& y=\frac{4}{2}+2 \quad y=-1+2 \\
& =4 \\
& (-4,4) \quad(2,1) \quad \text { points of } \\
& \begin{array}{ll}
\text { contact }
\end{array}
\end{aligned}
$$

in

$$
\begin{aligned}
& x^{2}=4 y \\
& y=\frac{x^{2}}{4} \\
& \frac{d y}{d x}=\frac{2 x}{4} \\
& \\
& =\frac{x}{2}
\end{aligned}
$$

At ($-4,4$) gradient tangent

$$
\begin{aligned}
m_{1} & =-\frac{4}{2} \\
& =-2
\end{aligned}
$$

iii)

$$
\begin{aligned}
j \tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{-2-1}{1-2 x_{1}}\right| \\
& =\left|\frac{-3}{-1}\right| \\
& =3 \\
\therefore \theta & =71^{\circ} 34^{\prime}
\end{aligned}
$$

$$
\begin{align*}
m_{2} & =\frac{2}{2} \\
& =1 \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \tag{Cake}\\
& =\left|\frac{-2-1}{1-2 x_{1}}\right|
\end{align*}
$$

At $(2,1)$ gradient tangent

- It is not sufficient to substitute the points $(-4,4)$ and $(2,1)$ into $y=-\frac{x}{2}+2$. This shows only that the points satisfy this line's equation.
- Another method is to firid gradients using two end points

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

If yours going to use a formula make sure you know it and you get the signs correct !!!!

Question 4
Rear. 17
(a) (i) $\cos x+\sin x$
$R \cos (x-\alpha)$

$$
=R \cos x \cos \alpha+R \sin x \sin \alpha
$$

$$
\left.\therefore \quad \begin{array}{ll}
R \cos \alpha=1 & \text { (1) } \\
R \sin \alpha=1 & \text { (2) }
\end{array}\right] \text { Solve }
$$

$$
\begin{aligned}
& \frac{(2)}{(1)} \Rightarrow \tan \alpha=1 \\
& \alpha=45^{\circ} \\
& \left(1^{2}+(2)^{2} \Rightarrow R=\sqrt{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& (1)^{2}+(2)^{2} \Rightarrow R=\sqrt{2} \\
& \therefore \cos x+\sin x \equiv \sqrt{2} \cos \left(x-45^{\circ}\right)
\end{aligned}
$$

(ii) Instead, solve

$$
\begin{gathered}
\sqrt{2} \cos \left(x-45^{\circ}\right)=1 \\
\cos \left(x-45^{\circ}\right)=1 / \sqrt{2} \\
\}_{1}^{A_{c}^{r}} \\
\\
\left(x-45^{\circ}\right)=45^{\circ}, 315^{\circ} \\
x=90^{\circ}, 360^{\circ} \\
\sqrt{ }
\end{gathered}
$$

(b) (i) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$$
\text { (ii) } \begin{aligned}
\text { let } \theta & =22.5^{\circ} \text { above } \\
\Rightarrow \quad \tan 45^{\circ} & =\frac{2 \tan 22.5^{\circ}}{1-\tan ^{2} 22.5^{\circ}} \\
1 & =\frac{2 t}{1-t^{2}} \\
1-t^{2} & =2 t \\
t^{2}+2 t & -1=0
\end{aligned}
$$

(iii)

$$
\begin{aligned}
t & =\frac{-2 \pm \sqrt{2^{2}-4 \times 1 \times-1}}{2 \times 1} \quad \text { Reas } \\
& =\frac{-2 \pm \sqrt{8}}{2}=-1 \pm \sqrt{2}
\end{aligned}
$$

$\therefore \tan 22.5^{\circ}=-1+\sqrt{2}$ or $-1-\sqrt{2}$ since 22.5° is in $1 s t$ quad. $\tan 22.5^{\circ}=-1+\sqrt{2}$

- Auxiliary angle method is a standard method for solving trig equations \& one you need to know!
- Surprising is how many of you knew how to solve the equation (ii) but didn't understand now to answer port (i).
- Watch the domain - there was actually no trick this time, but people assumed there was. $0^{\circ}<x \leqslant 360^{\circ}$.
\qquad
(i) is a GIVEAWAY! A ridiculous \# of people got it wrong.
- They wouldn't give you such earmark for part (i) unless they wanted you to use it. so use it!
- (iii) is doable even if you got lost previously. When you get lost you must scan down to see where you can pick up the question again.
(c)

$$
\begin{aligned}
& x=\sin \theta+\cos \theta \\
& y=\tan \theta+\cot \theta
\end{aligned}
$$

Prove $x^{2} y=y+2$

$$
\begin{aligned}
\text { LIS } & =(\sin \theta+\cos \theta)^{2} \times y \\
& =\left(\sin 2 \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta\right) y \\
& =(1+2 \sin \theta \cos \theta) y \\
& =y+2 \sin \theta \cos \theta y \\
& =y+2 \sin \theta \cos \theta\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\
& =y+2 \sin ^{2} \theta+2 \cos ^{2} \theta \\
& =y+2\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =y+2 \quad \text { Leas } 3 \\
& =\text { RUS } \quad \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& x \neq x^{2} \not \sin ^{2} \theta+\cos ^{2} \theta! \\
& x^{2}=(\sin \theta+\cos \theta)^{2} \\
& =\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta
\end{aligned}
$$

- Writing up such proofs are easier if you use LHS /RHS - type setting out.

Question 5
a) Bird's Eye View

$$
\begin{aligned}
\text { is } \angle X Y T & =300^{\circ}-270^{\circ} \\
& =30^{\circ} \\
\angle T X Y & =90^{\circ}-35^{\circ} \quad\left(\text { right } \angle=90^{\circ}\right) \\
& =55^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \angle X T Y & =180^{\circ}-\left(30^{\circ}+55^{\circ}\right) \quad\left(\angle \text { sum } \Delta=180^{\circ}\right) \\
& =95^{\circ}
\end{aligned}
$$

ii)

$$
\tan 3^{\circ}=\frac{h}{x T}
$$

$$
\tan 7^{\circ}=\frac{h}{T Y}
$$

$$
T Y=\frac{h}{\tan 7^{\circ}}
$$

$$
=h \cot 7^{\circ} .
$$

using the cosine rule in $\Delta x+y$

$$
\begin{aligned}
& 500^{2}=X T^{2}+T Y^{2}-2 X T \cdot 7 Y \cdot \cos 95^{\circ} \\
& 250000=\left(h \cot 3^{\circ}\right)^{2}+\left(h \cos 77^{\circ}\right)^{2}-2 h \cot 3^{\circ} \cdot \cot 7^{\circ} \cdot \cos 8 \\
& \left(\text { factorise } h^{2}\right) \\
& 500^{2}=h^{2}\left(\cot ^{2} 3^{\circ}+\cot ^{2} 7^{\circ}-2 \cot 3^{\circ} \cot 7^{\circ} \cos 99^{\circ}\right) \\
& \therefore h^{2}=\frac{500^{2}}{\cot ^{2} 3^{\circ}+\cot ^{2} 7^{\circ}-2 \cot ^{3} \cot 7^{\circ} \cdot \cos 9^{\circ}} \\
& h=\frac{500}{\sqrt{\cot ^{2} 3^{\circ}+\cot ^{2} 7^{\circ}-2 \cot 3^{\circ} \cdot \cot 7^{\circ} \cdot \cos 99^{\circ}}} \\
& \therefore 23.38 m
\end{aligned}
$$

Calculator step.
worth practising! (I mark)
b) i) Solve simultaneously

$$
\begin{align*}
y & =m x-1 \tag{0}\\
x^{2} & =4 y \tag{2}
\end{align*}
$$

most students managed this part of part b).

Substitute (1) indite (2)

$$
\begin{aligned}
& x^{2}=4(m x-1) \\
& x^{2}=4 m x-4 \\
& x^{2}-4 m x+4=0 .
\end{aligned}
$$

ii) One or more points of intersection means that this quadratic equation has one or more solutions.
$\therefore \Delta \geqslant 0$

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(-4 m)^{2}-4 \cdot 1 \cdot 4 \\
& =16 m^{2}-16
\end{aligned}
$$

Solve $\Delta \geqslant 0$

$$
\begin{aligned}
& 16 m^{2}-16 \geqslant 0 \\
& 16\left(m^{2}-1\right) \geqslant 0 \\
& 16(m-1)(m+1) \geqslant 0
\end{aligned}
$$

$$
m \leq-1, m>1
$$

for these values of the gradient, the line and the parabola have one or none points of intersection.

Meas 2

Applications of the Discriminant
For points of intersection between line and a parabola.
Solve simultaneously and then apply to the quadratic equation formed.
$\Delta \geqslant 0$ one or more solutions
$\Delta>0$ more than one solution $\Delta=0$ one solution \rightarrow line is' a tangent
$\Delta<0$ no solutions
\rightarrow line and curve have no intersection.

It is always a good idea to be aware of these applications. The use of the discriminant is a technique that appears frequently in harder questions in both the $2 U$ and Ext (1) exams.
c)

Chord $P Q, y=\left(\frac{p+q}{2}\right) x-p q$
il Chord $P Q$ passes through the point $(0,-1)$
Substitute this point into $P Q$

$$
\begin{aligned}
& y=\left(\frac{p+q}{2}\right) x-p q \\
& -1=0-p q \\
& \therefore p q=1
\end{aligned}
$$

ii) $P\left(2 p, p^{2}\right) Q\left(2 q, q^{2}\right)$
midpoint $M=\left(\frac{2 p+2 q}{2}, \frac{p^{2}+q^{2}}{2}\right)$

- Easy one mark here.
- Very wen done by everyone who attempted it.

$$
=\left(p+q, p^{2}+q^{2}\right)
$$

iii) Locus of M

$$
\begin{aligned}
x & =p+q \\
y & =\frac{1}{2}\left(p^{2}+q^{2}\right) \\
& =\frac{1}{2}\left((p+q)^{2}-2 p q\right) \\
& =\frac{1}{2}\left(x^{2}-2 \times 1\right) \\
& =\frac{1}{2}\left(x^{2}-2\right) \\
2 y & =x^{2}-2 \\
x^{2} & =2 y+2 \\
x^{2} & =2(y+1) \\
x^{2} & =4 \cdot \frac{1}{2}(y+1)
\end{aligned}
$$

The locus of M is a parabola.

Draw a sketch. It helps sort out the logic in this question.
(1)
iv) Sirice the locus of μ is formed by a chord on the parabola $x^{2}=4 y$, this chord has one or more points of intersection when

$$
m \leq-1, m \geq 1 \quad(\text { from part (b) })
$$

Since the chord has equation

$$
\begin{aligned}
y= & \left(\frac{p+q}{2}\right) x-p q \\
& (\text { substitute } p q=1) \\
= & \left(\frac{p+q}{2}\right) x-1
\end{aligned}
$$

This matches the unis's equation given in part (b)

$$
y=m x-1
$$

$\frac{\text { matching the gradients }}{p+q}$

$$
\begin{array}{cc}
\frac{p+q}{2}=m & \\
m \leq-1 & , m \geqslant 1 \\
p+q \leq-1 & , p+q \geqslant 1 \\
p+q \leq-2 & , p+q \geqslant 2 \\
\text { Since } x=p+q & \text { for } p \text { in } M \\
x \leq-2 & , x \geqslant 2
\end{array}
$$

2) Outside the parabola, there is no chord and hence no midpoint.

The chord only exists inside or on the parabola $x^{2}=4 y$.
The region inside the parabola is described by $x^{2} \leqslant 4 y$

The locus of M

$$
\begin{aligned}
& x^{2}=2 y+2 \\
& 2 y=x^{2}-2
\end{aligned}
$$

substitute this locus into the region

$$
\begin{gathered}
x^{2} \leq 4 y \\
x^{2} \leq 2 \cdot 2 y \\
x^{2} \leq 2 \cdot\left(x^{2}-2\right) \\
x^{2} \leq 2 x^{2}-4 \\
-x^{2} \leq-4 \\
x^{2} \geq 4 \\
(x-2)(x+2) \geq 0 \\
\frac{1}{-2} \frac{1}{2} \\
x \leq-2, \quad x>2
\end{gathered}
$$

the locus of M lies within the parabola for this domain.
$\begin{aligned} \text { (3) Parabola } x^{2} & =4 y, y=\frac{x^{2}}{4} \\ \text { chord } & y\end{aligned}$
$\frac{\text { points of intersection }}{\text { Solve simultaneously }}$

$$
\begin{aligned}
& \frac{x^{2}}{4}=(p+a) x-1 \\
& x^{2}=2(p+q) x-4 \\
& x^{2}-2(p+q) x+4=0 \\
& \Delta=b^{2}-4 a c \\
& =(2(p+q))^{2}-4.1 .4 \\
& =4(p+q)^{2}-16
\end{aligned}
$$

for the chord and parabola to have one or more points of intersection

$$
\Delta \geqslant 0
$$

$$
\begin{gathered}
4(p+q)^{2}-16 \geqslant 0 \\
(p+q)^{2}-4 \geqslant 0 \\
(p+q-2)(p+q+2) \geqslant 0
\end{gathered}
$$

for the locus of $M \quad x=p+q$

$$
\begin{gathered}
(x-2)(x+2) \geqslant 0 \\
-\frac{1}{2} \frac{y}{2} \\
x \leq-2, \quad x>2 .
\end{gathered}
$$

Note: This method is using the same logic as in part (b) just a bit more complicated algebra.

