Name:

Teacher:

SCEGGS Darlinghurst

2005 Preliminary Course Semester 2 Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time $-1\frac{1}{2}$ hours
- Write your name and your teacher's name at the top of each page
- Attempt **all** questions and show all necessary working
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- Begin each question on a new page
- **Do not** attach all questions together in one bundle

Total marks – 60

• Attempt Questions 1–5

Question	Total
1	/12
2	/12
3	/12
4	/12
5	/12
TOTAL	60
	%

BLANK PAGE

Instructions

- Write your name and your teacher's name at the top of each page
- Attempt all questions on the pad paper provided
- Show all necessary working
- Marks may be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- Begin each question on a new page

Question 1 (12 marks)

- (a) A and B are the points (1, 2) and (5, 0) respectively. Find the co-ordinates of the point P which divides AB in the ratio 3:1.
- (b) A, B, C, D lie on the circumference of a circle, centre O. DC is the diameter 2 and $\angle BDC = 32^{\circ}$.

Find $\angle BCD$ and $\angle BAD$ giving full reasons.

- (c) Consider the polynomial $P(x) = 4x^3 8x^2 3x + 9$.
 - (i) Show that -1 is a zero of P(x). 1
 - (ii) Express P(x) as a product of 3 linear factors. 2
 - (iii) Hence, solve the inequality $P(x) \ge 0$. 2

(d) Solve for x,

$$\frac{2}{x+3} \le 5$$

Preliminary Course Semester 2 Examination, 2005 Mathematics Extension 1 3

Marks

2

Question 2 (12 marks) Ma				
(a)		The polynomial $P(x) = x^3 + ax^2 + bx - 18$ has $x + 2$ as a factor and leaves a emainder of -24 when divided by $(x - 1)$.		
	Find	the values of <i>a</i> and <i>b</i> .		
(b)	(i)	Show that the equation of the tangent to the parabola $x = 2at$, $y = at^2$ at the point $t = p$ is given by $y = px - ap^2$.	2	
	(ii)	Find the co-ordinates of the points where the tangent intersects the x and y axes.	2	
	(iii)	Hence find the area of the triangle formed by the two intercepts and the origin.	1	

A, C, D lie on the circumference of a circle. AB and CB are tangents at A and C 4 respectively and AB is parallel to DC.

Prove that $\triangle ABC \parallel \mid \triangle DAC$.

Question 3 (12 marks)

(a) α , β and γ are roots of the equation $x^3 - 3x^2 + 4x + 8 = 0$

- (i) Find the values of:
 - (1) $\alpha + \beta + \gamma$ 1

(2)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 2

- (ii) Hence write down the cubic equation with roots 2α , 2β and 2γ . 1
- (b) (i) The equation of the chord of contact from the point P(-1, -2) to the parabola $x^2 = 4y$ is given by $y = -\frac{x}{2} + 2$. Show that the points of contact are (-4, 4) and (2, 1).
 - (ii) Find the gradients of the tangents at these points of contact. 2
 - (iii) Hence determine the size of the acute angle formed between the tangents (to the nearest minute).

Marks

Question 4 (12 marks)			Marks
(a)	(i)	Express $\cos x + \sin x$ in the form $R \cos (x - \alpha)$ where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$.	2
	(ii)	Hence solve $\cos x + \sin x = 1$ for $0^\circ < x \le 360^\circ$.	2
(b)	(i)	Write down the expansion of $\tan 2\theta$.	1
	(ii)	Given that $t = \tan 22.5^{\circ}$, show that $t^{2} + 2t - 1 = 0$.	2
	(iii)	Hence show that $\tan 22.5^\circ = \sqrt{2} - 1$.	2
(c)	Show	w by substitution that the parametric equation $x = \sin \theta + \cos \theta$	3

$$x = \sin \theta + \cos \theta$$
$$y = \tan \theta + \cot \theta$$

satisfies the cartesian equation

$$x^2 y = y + 2.$$

■ Start a new page

Question 5 (12 marks)

(a) A knight in shining armour standing at point *X* observes the base of Rapunzel's tower (*T*) on a bearing of 035° and Rapunzel at the top of her tower (*R*) at an angle of elevation of 3° . The knight rides 500m to a point *Y* from which the tower is on a bearing of 300° and Rapunzel is at an angle of elevation of 7° .

(i) Show that $\angle XTY = 95^{\circ}$.

(ii) Show that the height, *h*, of the tower (in metres) is given by

$$h = \frac{500}{\sqrt{\cot^2 3^\circ + \cot^2 7^\circ - 2 \cot 3^\circ \cot 7^\circ \cos 95^\circ}}$$

(iii) How long must Rapunzel's hair be to reach the base of the tower? 1

Question 5 continues on the next page

1

2

Marks

Question 5 (continued)

(i) Show that the *x* co-ordinates of the points of intersection of the line y = mx - 1 and the parabola $x^2 = 4y$ satisfy the equation 1

$$x^2 - 4mx + 4 = 0$$

(ii) For what values of *m* does the line y = mx - 1 and the parabola $x^2 = 4y$ **2** have one or more points of intersection?

Question 5 continues on the next page

Question 5 (continued)

(c) $P(2p, p^2)$ and $Q(2q, q^2)$ are variable points on the parabola $x^2 = 4y$ such that *PQ* passes through the point (0, -1).

The equation of the chord PQ is given by $y = \left(\frac{p+q}{2}\right) x - pq$.

- (i) Show that pq = 1.
- (ii) Show that the midpoint, M, of PQ is given by

$$\left(p+q, \frac{p^2+q^2}{2}\right)$$

- (iii) Hence find the cartesian equation of the locus of M. 2
- (iv) Using the result from part (b), explain why the domain of the locus of *M* is restricted to $x \ge 2$, $x \le -2$.

End of paper

1

1

Extension 1 Year II Preliminary Pxam. Semester 2 2005
Superficini
9)
$$\frac{1}{2}^{3}$$

• This question very well done.
• This ques

e)
$$P(x) = 4x^3 - 8x^2 - 3x + 9$$

i) $P(1) = -4 - 8 + 3 + 9$
 $= 0$
 $\therefore x = -1$ is a zero
 $(x + 1)$ is a factor of $P(x)$
ii) $\frac{4x^2 - 12x + 9}{12x^2 - 12x + 9}$
 $\frac{12x^2 - 12x}{4x}$
 $-12x^2 - 12x$
 $\frac{4x}{9}$
 $P(x) = (x + 1)(4x^2 - 12x + 9)$
 $\frac{4x^3 + 4x^2}{4x}$
 $-12x^2 - 12x$
 $\frac{4x}{9}$
 $\frac{4x}{9} + \frac{1}{9}x^{2}$
 $\frac{1}{2}x^{2} - 12x + 9$
 $\frac{1}{2}x^{2} - 12x^{2} - 12x$
 $\frac{1}{2}x^{2} - 12x^{2} - 12x$
 $\frac{1}{2}x^{2} - 12x^{2} - 12x + 9$
 $\frac{1}{2}x^{2} - 12x^{2} -$

.

$$\begin{array}{cccc} \underline{\operatorname{Questriom 2}} & \operatorname{Calc}^{2} & \operatorname{Res}^{2} &$$

n,

(iii)(ap, 0) (0,-ap2) Area $\Delta = \frac{1}{2} \times base \times height$ $= \left| \frac{1}{2} \times ap \times ap^2 \right|$ ·Technically you need the absolute value signs for the area. 'p' can certainly be -ve. $= \left| \frac{a^2 p^3}{2} \right|$ (c) · There are various ways to prove this question Wt LBAC = x you need to be careful with the alternate segment theorem AB = BC (tang. from an ext. eg. LBCA = LDAC ! pt. are =) . DABC is isos. You also need to be careful . LBAC = x = LBCA (Ls opp. when naming angles - one = sides of isos $\Delta =)$ incorrect letter can mean a world of difference. LBAC= x = LACD (alt. L's on // lines AB & DC =) LBAC= x = LADC (L bet. tang. & chord = L in alt. seq.) V Reas. L . . DABC III DDAC (equiangular)

$$\frac{@uestion 3}{x^3 - 3x^2 + 4x + 8 = 0}$$
i) j) $x + \beta + 8 = -\frac{5}{4}$

$$= -\frac{3}{4}$$

$$= \frac{-3}{4}$$

$$= \frac{-3}{4}$$

$$= \frac{4}{1}$$

$$= -\frac{1}{2}$$

$$(3) x^2 + \beta^2 + 8^2$$

$$(3) x^2 + \beta^2 + 8^2$$

$$\frac{(3) x^2 + \beta^2 + 8^2}{(x + \beta + 8)^2} = x^2 + \beta^2 + 8^2 + 3(x\beta + x8 + \beta 8)$$

$$\therefore x^3 + \beta^2 + 8^2 = (x + \beta + 8)^2 - 2(x\beta + x3 + \beta 8)$$

$$= 3^2 - 2x 4$$

$$= 9 - 8$$

$$= 1$$
ii) The equation has the form
 $a x^3 + bx^2 + cx + d = 0$
 $x^3 + bx^2 + cx + d = 0$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 + bx^2 + cx + d = 0$$

$$x^3 - bx^2 + 1bx + bx = 0$$

$$x^3 - bx^2 + 1bx + bx = 0$$

LEARN THE RULES !!! $ax^{3}+bx^{2}+cx+d=0$ $\alpha+\beta+\chi=-\frac{b}{a}$ $\alpha\beta+\alpha\chi+\beta\chi=\frac{c}{a}$ $\alpha\beta\chi=-\frac{d}{a}$

This question was well done as almost everyone knew their rules. Ü

These results came from part(a) $\alpha + \beta + \vartheta = -\frac{b}{a} = 3$ $\alpha \beta + \alpha \vartheta + \beta \vartheta = \frac{c}{a} = 4$ $\alpha \beta \vartheta = -\frac{d}{a} = -\vartheta$ use these values in part(iii)

• Another method is to write the equation as

 $(\alpha - 2\alpha)(\alpha - 2\beta)(\alpha - 2\beta) = 0$

Then expand and collect like terms. Then substitute the values for sum, product etc. found in part(a).

 part(ii) was a bit tricky.
 It had to be perfectly correct to gain one mark.

b) i)

$$\begin{array}{c} (-1,+1) & (-1,+2) \\ (-1,+2) & (-$$

Question 4 Reas. /7
(a) (i)
$$\cos x + \sin x$$

R $\cos (x - x)$
= R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x \cos x + R \sin x \sin x$
R $\cos x - 45^{\circ}$
Solving trig equations -
R $\cos x - 45^{\circ}$
R $\cos x - 45^{\circ}$
R $\cos (x - 45^{\circ}) = 1$
 $\sin x = 90^{\circ}$, 360°
 $x = 90^{\circ}$, 360

(c)
$$x = \sin\theta + \cos\theta$$

 $y = \tan\theta + \cot\theta$
Prove $x^2y = y + 2$
LHS = $(\sin\theta + \cos\theta)^2 \times y$
 $= (\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta)y$
 $= (1 + 2\sin\theta\cos\theta)y$
 $= y + 2\sin\theta\cos\theta y$
 $= y + 2\sin\theta\cos\theta (\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta})$
 $= y + 2\sin\theta + 2\cos^2\theta$
 $= y + 2(\sin^2\theta + 2\cos^2\theta)$
 $= y + 2$
 $= RHS$ Reas. 3

• $\chi^2 \neq \sin^2 \Theta + \cos^2 \Theta$! $\chi^2 = (\sin\theta + \cos\theta)^2$

= $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$

• Writing up such proofs are easier if you use LHS/RHS-type setting out.

$$\frac{Question S}{4}$$

$$\frac{Birds}{V} = \frac{Vei}{300^{4} - 370^{6}}$$

$$\frac{1}{300^{4}}$$

$$\frac{1}{300^{4}} = \frac{1}{300^{6}}$$

$$\frac{1}{300^{4}} = \frac{1}{300^{6}}$$

$$\frac{1}{300^{6}} = \frac{1}{300^{6}}$$

$$\frac{1}{300^{6}} = \frac{1}{300^{6}}$$

$$\frac{1}{300^{6}} = \frac{1}{300^{6}} = \frac{1}{300^{6}} = \frac{1}{300^{6}} = \frac{1}{100^{6}} =$$

b) i) Solve simultaneously	
$y = m\chi - 1 0$ $\chi^2 = 4y 0$	Most students managed this part of part b).
Substitute Ointe 2	
$x^2 = 4 (mx - 1)$	
$x^2 = 4mx - 4$	
$x^2 - 4mx + 4 = 0$.	
ii) One or more points of intersection means that this quadratic equation has one on more solutions	
<i>∴</i> Δ ≫0	Applications of the Discriminant
$\Delta = b^2 - 4ac$	For points of intersection between line and a parabola.
$= (-4m)^2 - 4 \cdot 1 \cdot 4$ $= 16m^2 - 16$	Solve simultaneously and then apply to the quadratic equation formed.
Solve A70	$\Delta > 0$ one or more solutions
16 m²-16 70 16 (m²-1) 70	$\Delta > 0$ more than one solution
16(m-1)(m+1) > 0	∆=0 one solution →line is a tangent
-1 1	∆<0 no solutions -> line and curve have no intersection.
m = -1, m >>> 1 for these values of the gradient, the line and the powabola have one or none points of intersection. Reas 2	It is always a good idea to be aware of these applications. The use of the discriminant is a technique that appears frequently in harder questions in both the 24 and EXTO exams.

.

W Suice the locus of M is formed
by a chord on the parabola
$$x^2 = 4y$$
,
this chord has one or more points
of intersection when
 $M \leq -1$, $m \gg 1$ (from part(b))
Suice the chord has equation
 $y = (p_{2}^{*}) \times -p_{4}$
(substimute $p_{4} = 1$)
 $= (p_{3}^{*}) \times -p_{4}$
(substimute $p_{4} = 1$)
 $y = (p_{3}^{*}) \times -p_{4}$
(substimute $p_{4} = 1$)
 $p_{2}^{*} \leq -1$, $p_{4}^{*} \gg 1$
 $p_{3}^{*} \leq -1$, $p_{4}^{*} \gg 1$
 $p_{4}^{*} = 2$
Solutiside the parabola, there is no
chord and hence no midpoint.
The chord only exists inside or
on the parabola $z^{2} = 4y$.
The foction inside the parabola is
described by $x^{2} \leq 4y$
 $x^{2} = 2y + 2$
substitute this beaus into the region
 $x^{2} \leq 4y$
 $x^{2} \leq 2 (x^{2}-3)$
 $x^{2} = (x^{2}-4)$
 $x^{2} \leq (x^{2}-3) \times 2$
for the locus of M $x = p + q$
 $(x^{2})(x+2) \gg 0$
 h^{2}
 $x \leq -2, x \geq 2$.
The locus of M lies within the
Decrement of the using the same
logic as in part(b) just a
bit more complicated a logoba.