

SCEGGS Darlinghurst

2006

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time $-1 \frac{1}{2}$ hours
- Write using blue or black pen
- Write your Centre Number and Student Number at the top of each page
- Attempt all questions and show all necessary working
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- Start each question on a new page
- Do not attach all question together in one bundle

Total marks - 60

- Attempt Questions 1-4

Question	Comm	Reason	Calc	Total
$\mathbf{1}$	$/ 2$	$/ 4$		$/ 15$
$\mathbf{2}$	$/ 4$	$/ 3$	$/ 2$	$/ 15$
3		$/ 2$		$/ 15$
4	$/ 2$	$/ 9$		$/ 15$
TOTAL	$/ 8$	$/ 18$	$/ 2$	$/ 60$

BLANK PAGE

Total marks - 60
Attempt Question 1-6
Attempt all questions on the pad paper provided
Write your Centre Number and Student Number at the top of each page
Show all necessary working
Marks may be deducted for careless or badly arranged work
Mathematical templates, geometrical equipment and scientific calculators may be used
Start each question on a new page

Question 1 (15 marks)
(a) Solve:
(i) $x^{2}+x \leq 6$
(ii) $\left|\frac{1}{2} x+3\right|=x-8$

3
(b) When the polynomial $P(x)=x^{3}-k x^{2}+3 x-4$ is divided by $x+2$, the remainder is 3 .

Find the value of k.
(c) Solve the equation:

$$
2 \sin ^{2} \frac{\theta}{2}=1 \text { for } 0^{\circ} \leq \theta \leq 360^{\circ}
$$

(d)

Not

Find the value of x, stating your reason.

Question 1 (continued)
(e) The point P divides the interval joining $A(2,-3)$ and $B(-1,7)$ externally in the ratio $2: 1$.
(i) Find the co-ordinates of P. 2
(ii) Find the ratio in which B divides $A P$. 1

Start a new page

Marks

Question 2 (15 marks)
(a) Solve $\frac{3}{x-1} \leq 4$

3 indicating that they intersect at the origin and also at the point P.
(ii) Prove that the point P is $(2,4)$.
(iii) Find the gradient of each curve at the point P.
(iv) Hence find the acute angle between the curves at the point P.
(c)

$C D$ is a tangent to two circles of different radii at the points P and Q. $P X \| Q Y$
$X Y$ is produced to cut the circles at A and B.
Let $\angle P Q Y=\alpha$.
Prove that $A P Q Y$ is a cyclic quadrilateral.

Start a new page

Marks

Question 3 (15 marks)
(a) Express $2 \sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$ if $R>0$ and α is acute.
(b) (i) Prove that $x-1$ is a factor of the polynomial.

$$
H(x)=2 x^{3}+3 x^{2}-3 x-2
$$

(ii) Hence find all the factors of $H(x)$.
(iii) Graph $y=H(x)$.
(iv) Hence solve $H(x)>0$.
(c) Prove that $\cos 105^{\circ}=\frac{\sqrt{2}-\sqrt{6}}{4}$

3
(d) Point X is due South and Point Y is due West of the foot F of the mountain $F T$, which has a height of h metres. From X and Y, the angles of elevation of T are 35° and 43° respectively. X and Y are 1200 metres apart.

(i) Prove that $X F=h \tan 55^{\circ}$
(ii) Prove that $h=\frac{1200}{\sqrt{\tan ^{2} 55^{\circ}+\tan ^{2} 47^{\circ}}}$

Start a new page

Question 4 (15 marks)
(a) $\quad \alpha, \beta$ and γ are the roots of the polynomial equation $3 x^{3}+x^{2}+2 x-4=0$. Find:
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta+\alpha \gamma+\beta \gamma$
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(iv) Explain what the sign of $\alpha^{2}+\beta^{2}+\gamma^{2}$ indicates about the nature of the roots α, β and γ.
(v) Without any further calculations, sketch a possible graph of

$$
y=3 x^{3}+x^{2}+2 x-4
$$

(b)

$L M$ and $F G$ are two chords of a circle that intersect at right angles at P. $P S$ is perpendicular to $G M$ and $S P$ is produced to meet $L F$ at T.

Let $\angle L M G=\alpha$

Prove:
(i) $\angle F L P=\angle M P S$
(ii) $\triangle L T P$ is isosceles
(iii) T is the midpoint of $L F$

Question 4 (continued)
(c) In the triangle $A B C, \angle B A C=60^{\circ}$.

Prove $a^{2}-b^{2}=c(c-b)$
where a, b and c are sides of the triangle.

End of paper

Prememany Extemmon' Semestat2 2006.
(1) a) (i)

$$
\begin{aligned}
& x^{4}+x-6 \leq 0 \\
& (x+3)(x-3) \leqslant 0 \\
& -36 x \leqslant 2
\end{aligned}
$$

(ii)

$$
\begin{array}{cc}
\frac{1}{2}+3=x-8 & \frac{1}{3} x+3=-x+8 \\
x+6=2 x-16 & x+6=-2 x+16 \\
-x=-2 & 3 x=10 \\
x=1 & x=10
\end{array}
$$

b)

$$
\begin{array}{r}
P(-3)=-8-4 k-6-4=3 \\
-4 h-18=3 \\
4 h=-21 \\
h=-21
\end{array}
$$

c) $\quad \sin \frac{\theta}{2}=\frac{1}{\sqrt{2}}$

Acute ages 35°. Ale 4 quadivade.

$$
\begin{aligned}
& \theta=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ} . \\
& \theta=90^{\circ}, 270^{\circ} .
\end{aligned}
$$

a) $\quad b(x-2)=5 x$ (praverts of intencepla ut off on chondo an :)

$$
6 x-12=5 x
$$

$$
x=12 .
$$

21 Communecialion.
e) (i) $(2,-3) \quad(-1,7)$ salio $2:-1$

$$
\begin{aligned}
x & =\frac{2 \times-1+-1 \times 2}{1} \\
& =-4 \\
y & =\frac{-3 \times-1+7 \times 2}{1} \\
& =17 .
\end{aligned}
$$

Paik P in $(-4,17)$
(ii)

2)

$$
\begin{array}{ll}
\text { a) } \frac{3}{x-1} \leqslant 4 & \frac{3}{x-1}(x-1)^{2} \leqslant 4(x-1)^{2} \\
& 3(x-1) \leq 4\left(x^{2}-2 x+1\right) \\
x-1, x \geqslant 7.4 & 3 x-344 x^{2}-8 x+4 . \\
4 x^{2}-11 x+7 \geqslant 0 . \\
& (x-1)(4 x-7) \geqslant 0
\end{array}
$$

13 Revroneng
b) 1
(i)

(ii)
(iii)

$$
\begin{array}{ll}
\text { iii) } y=x^{2} & y=42-x^{2} \\
y^{\prime}=2 x & y^{\prime}=4-2 x \\
\text { if } x=2, y^{\prime}=4 . & \text { if } x=2 \quad y^{\prime}=4-4=0 .
\end{array}
$$

(iv) $\tan \theta=\left|\frac{4-\dot{0}}{1+0}\right|=4$
$\theta=75^{\circ} 58^{\prime}$ (rearest manite)

$$
\theta=75^{\circ} \leqslant 8^{\prime} \quad \text { (rearest meneute) }
$$

e)

12 Calculus.

$$
\alpha=\langle Y Q P=\langle X P C \quad(\text { comeqp } \angle 0=X P \| Y Q)
$$

$\langle X P C=\angle X A P=\alpha$ (angle hehwew tangent and chand 3 angle in alt evate megmenc)
$\therefore<P A Y=180^{\circ}-2$ (angle cum of atraight angle is 180)
$\therefore \angle P A Y$ and $\angle P Q Y$ are Rupprement any te. APQY is oyelic (as pais opp. angleo mepplenantary

$$
\begin{aligned}
& y=x^{2} \\
& y=4 x-x^{2} \\
& x^{2}=4 x-x^{2} \\
& 2 x^{2}-4 x=0 \\
& 2 x(x-3)=0 \\
& x=0,2 . \quad \therefore P \operatorname{ios}(2,4) \quad<12 \\
& y=0,4 \text {. } \\
& \therefore \text { paind of sintenceli } \\
& 0(0,0) \quad P(2,4) \\
& \therefore \operatorname{Pio}(2,4)<12 \\
& -
\end{aligned}
$$

(3) a)

$$
\begin{array}{rl}
R \sin (\theta-\alpha) & =R \sin \theta \cos \alpha-R \cos \theta \sin \alpha \\
& =2 \operatorname{sen} \theta-3 \cos \theta \\
\therefore R \cos \alpha=2 & R \sin \alpha=3 \cdot \\
\frac{4}{R^{2}+9} R^{2} & R=\sqrt{13} \\
\cos \alpha=\frac{2}{\sqrt{13}}, \quad l
\end{array}
$$

$$
\therefore 2 \operatorname{Ln} \theta-3 \cos \theta=\sqrt{13} \operatorname{\mu in}\left(\theta-50^{\circ} 19^{\prime}\right)
$$

b) (i) $H(1)=2+3-3-2=0$
$\therefore x-1$ a factors.
(iv

$$
\begin{array}{r}
x-1 \int \frac{2 x^{2}+5 x+2}{2 x^{3}+3 x^{2}-3 x-2} \\
\frac{2 x^{3}-2 x^{2}}{5 x^{2}-3 x} \\
5 x^{2}-5 x \\
2 x-2 \\
2 x-2
\end{array}
$$

(iii)

(iv) $\quad-2<x<-\frac{1}{2}$ ad $x>1 \quad$ 2/Reasoneag
(iii) and (iv)
e)

$$
\begin{aligned}
\cos \left(60^{\circ}+45^{\circ}\right) & =\cos 60^{\circ} \cos 45^{2}-\operatorname{con} \\
& =\frac{1 \times 1}{2}-\frac{\sqrt{3} \times \frac{1}{2}}{\sqrt{2}} \\
& =\frac{1-\sqrt{3} \times \sqrt{2}}{2 \sqrt{2}} \frac{\sqrt{2}}{4} \\
& =\frac{\sqrt{2}-6}{4}
\end{aligned}
$$

d)

(i) tax $55^{\circ}=\frac{x p}{h}$
(ii) $\tan 47^{\circ}=\frac{y}{d}$
$\therefore x_{i}^{2}=d \tan 55^{\circ} \quad / 1 \quad y F=\tan 47^{\circ}$.

$$
\begin{aligned}
1200^{2} & =\operatorname{ta}^{2} \tan ^{2} s s^{2}+h^{2} \tan ^{2} 47^{\circ} \\
& =\tan ^{2}\left(\tan ^{2} s^{2}+\tan ^{2} 47^{\circ}\right)
\end{aligned}
$$

$$
L^{2}=\frac{1200^{\circ}}{\tan ^{3} 5 x^{\circ}+\tan ^{2} 47^{\circ}}
$$

$$
d=\frac{1200}{\sqrt{\tan ^{2} 55^{\circ}+\tan ^{2} 49^{\circ}}}
$$

(4) a) (i) $\alpha+\beta+\partial=-\frac{1}{3}$
(ii) $\alpha \beta+\alpha \gamma+\beta_{j}=\frac{2}{3}$
(iii) $\alpha^{2}+\beta^{y}+j^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+d y+\beta \gamma) 人$
$=\frac{1}{9}-\frac{4}{3}=-1 \frac{2}{6}$.
(iv) the negatwin rigo mano that 2 of the soot ate conplex.
(v)
b)

G
 FGILM (Guie)

$$
\begin{aligned}
\therefore \quad 6 B^{\circ} b P & =180^{\circ}-90^{\circ}-\alpha\left(\text { angle sum of } \triangle P_{6} P=180^{\circ}\right) . \\
& =90^{\circ}-\alpha
\end{aligned}
$$

CMPS: $180^{\circ}-90^{\circ}-\alpha \quad$ (angle hem of $\triangle M 0 S=180^{\circ}$).

$$
=90^{\circ}+\alpha
$$

$$
\therefore \angle P G P=\angle M P S .
$$

(ii) \&MPS $\langle P P$ (Vext app. angle ane equal).

$$
\therefore \quad \angle T P L=\angle T L P
$$

$\therefore \quad \triangle L T P$ is uroseive (1pais of nive equal)
(iii) $<T P L=90^{\circ}-\alpha$.
$\therefore \quad<T P F=\alpha$. (anger neun of rightangle is go).

$$
\angle T P_{i}=\angle T P P=\alpha
$$

\therefore TF: TP (opp aqual ungles in $A T P$)

$$
\therefore \quad 4 P=B F
$$

ies Tem mip air bi.
6 Rearoneng.
e)

By Cowine Rule:

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \operatorname{coc} 60^{\circ} \\
& =b^{2}+c^{2}-2 b c+\frac{1}{2} \\
& =b^{2}+c^{2}-b c \\
\therefore \quad a^{2}-b^{2} & =c^{y}-b c \\
& =c(c-b)
\end{aligned}
$$

$\sqrt{3}$ Rearaving

