

SCEGGS Darlinghurst

2008
Preliminary Course
Semester 2 Examination

Mathematics Extension 1

Outcomes Assessed: PE2 - PE6 Task Weighting: 40\%

General Instructions

- Reading time -5 minutes
- Working time $-1 \frac{1}{2}$ hours
- This paper has five questions
- Write using blue or black pen
- Answer all questions on the pad paper provided
- Write your Student Number at the top of each page
- Attempt all questions and show all necessary working
- Start each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used

Total marks - 60

- Attempt Questions 1 - 5

BLANK PAGE

Question 1 (12 marks)
(a) The point P divides the interval $A B$ joining $A(-2,-3)$ and $B(1,2)$ externally in the ration $3: 2$.

Find the co-ordinates of P.
(b) The equation $2 x^{3}-4 x-7=0$ has roots α, β and γ.

Find the value of:
(i) $\alpha \beta \gamma$
(ii) $\alpha \beta+\beta \gamma+\alpha \gamma$
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c)

NOT
TO

In the diagram $A B C$ and $E D C$ are straight lines.
$A B=8 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $D E=1 \mathrm{~cm}$
Find x giving reasons.
(d) A polynomial is given by $P(x)=x^{3}+a x^{2}+b x+6$. Find the values of a and b if $(x+3)$ is a factor and if 12 is the remaider when $P(x)$ is divided by $(x+1)$

Question 2 (12 marks)
(a) (i) Express $\sqrt{3} \cos \theta+\sin \theta$ in the form $A \sin (\theta+\alpha)$ where $A>0$.
(b) The line λ_{1} has the equation $x-y+1=0$ and meets the x-axis at A. The line λ_{2} has the equation $\sqrt{3} x+y-2=0$ and meets the x-axis at B. λ_{1} and λ_{2} meet at C.

(i) Find the exact value for $\tan \angle A C B$ ($\angle A C B$ is acute) in its simplest form.
(ii) Find θ and ϕ and hence show $\angle A C B=75^{\circ}$.
(iii) Hence find the exact value of $\tan 75^{\circ}$

Question 2 (continued)
(c) (i) How many words can be created from the letters of the word
COONABARABRAN.
(ii) What is the probability that a word chosen at random has all the 2 "A"s together?

Question 3 (12 marks)
(a) Let $P(x)=(x-2)(x-1)^{2}(x+2)^{3}$
(i) Evaluate $P(0)$.
(ii) Sketch $y=P(x)$ labelling all important features

1

3

1 have a majority of men.
(c) The diagram below shows Donna standing at D on level ground, whilst Gemma is standing 2000 m away at G on the same level ground. They both take the bearing and elevation of a place P at the same instant. Donna finds the bearing is $300^{\circ} \mathrm{T}$ and the angle of elevation 25°, whilst Gemma finds the bearing to be $240^{\circ} \mathrm{T}$ and the angle of elevation 17°.

(i) Copy the diagram onto your sheet, showing all the information given.
ii) Show that if the height $P A$ of the plane is h metres then

$$
h=\frac{2000}{\left(\tan ^{2} 65^{\circ}+\tan ^{2} 73^{\circ}-2 \tan 65^{\circ} \tan 73^{\circ} \cos 60^{\circ}\right)^{\frac{1}{2}}}
$$

(iii) Find h to 3 significant figures.

Question 4 (12 marks)
(a) Todd and Meaghan go to the cinema with three other couples. They sit together as a group in a single row.
(i) In how many ways can they be arranged?
(ii) In how many ways can they sit so that each couple is together?
(iii) Todd and Meaghan had an argument going into the cinema and decided
they do not want to sit together. How many arrangements are possible if the other couples are still sitting with their partners?
(b) Two circles intersect at V and W as shown. A line through V cuts the two circles at X and Z. The tangents at X and Z meet at Y.

Prove $X Y Z W$ is a cyclic quadrilateral.

Question 4 continues on the next page

Question 4 (continued)
(c) (i) Sketch the graph of the polynomial $P(x)=x^{3}-x^{2}-12 x$ showing the intercepts on the x-axis.
(ii) Hence, solve the inequality $x-1 \geq \frac{12}{x}$. 2

Question 5 (12 marks)
(a) If $2^{a}+3^{b}=17$ and $2^{a+2}-3^{b+1}=5$ find the values of a and b.

2
(b) Show that $\frac{\sin 5 x}{\sin x}-\frac{\cos 5 x}{\cos x}=4 \cos 2 x$
(c) Let $f(x)=\frac{x^{2}}{x^{2}-1}$
(i) For what values of x is $f(x)$ undefined
(ii) Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}-1}$
(iii) Find $f(0)$ and hence sketch the curve of $y=f(x)$
(iv) On the same axes sketch $y=x-1$
(v) Hence find the number of solutions to $x^{3}-2 x^{2}-x+1=0$ 1 Explain your answer.

End of paper

Preliminay (ourse Extersion 1 Semest 2 Examination 2008 - Soltion
Q1a)
$A(-2,-3) \quad B(1,2)$

$$
=\frac{3+4}{1}=\frac{6+6}{1}
$$

$$
=7
$$

$$
=12
$$

$$
\therefore P(7,12)
$$

b) i.)

$$
\begin{aligned}
\alpha \beta \gamma & =-\frac{d}{a} \\
& =\frac{-(-7)}{2} \\
& =\frac{7}{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\alpha \beta+\beta \gamma+\alpha \gamma & =\frac{c}{a} \\
& =-\frac{4}{2} \\
& =-2
\end{aligned}
$$

ii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \gamma \\
& =0^{2}-2 x-2 \\
& =4
\end{aligned}
$$

C) $A C \times B C=E C \times B C$ (product of the intreppt -1 ?

Only a few student secants throghe pertosonstaf) co-ld recenthis
$20 \times 12=x(x+1)$

$$
\begin{aligned}
& x^{2}+x-240=0 \\
& (x-15)(x+16)=0 \\
& x=15 \quad \text { <3 } \quad x>0
\end{aligned}
$$

Conam 3

$$
\begin{align*}
& \text { d) } P(-3)=0 \quad P(-1)=12 \\
& \therefore(-3)^{3}+a x(-3)^{2}+b x-3+6=0 \\
& -27+9 a-3 b+6=0 \\
& 9 a-3 b=21 \\
& (-1)^{3}+a(-1)^{2}+b y-1+6=12 \\
& -1+a-b+6=12 \\
& a-b=7 \\
& \therefore \quad 9 a-3 b=21 \ldots(1) \\
& a-b=7 \ldots \text { (2) } \times 3 \\
& 3 a-3 b=21 \ldots 6 \\
& \text { (1)-(5) } 6 a=0 \\
& a=0 \\
& \operatorname{ung}(2) \quad b=-7,\}
\end{align*}
$$

Q2 a) i)

$$
\begin{aligned}
\sqrt{3} \cos \theta+\sin \theta & \equiv A \sin (\theta+\alpha) \\
& \equiv A \sin \theta \cos \alpha+A \cos \theta \sin \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A \cos \alpha=1 \\
& A \sin \alpha=\sqrt{3} \\
& A^{2} \sin ^{2} \alpha+A^{2} \cos ^{2} \alpha=(\sqrt{3})^{2}+1^{2} \\
& A^{2}=3+1 \\
& =4 \\
& A=2 \quad A>0
\end{aligned}
$$

$$
\begin{aligned}
\frac{A \sin \alpha}{A \cos \alpha} & =\frac{\sqrt{3}}{1} \\
\tan \alpha & =\frac{\sqrt{3}}{1} \\
\alpha & =60^{\circ}
\end{aligned}
$$

$$
\therefore \sqrt{3} \cos \theta+\sin \theta=2 \sin \left(\theta+60^{\circ}\right)
$$

ii) $2 \sin \left(\theta+60^{\circ}\right)=-\sqrt{3}$

$$
\sin \left(\theta+60^{\circ}\right)=-\frac{\sqrt{3}}{2}
$$

$\theta+60^{\circ}$ lues in the 3 rd d ath guadrat

$$
\begin{aligned}
\theta+60^{\circ} & =240^{\circ} \quad \theta \neq 60^{\circ}=300 \\
\theta & =180^{\circ} \quad \theta=240^{\circ}
\end{aligned}
$$

Some students
confused the concepts of factor and remander

Done very well. Jost be carell u.th the aux.lliany angh I som 30° a fou fime!

Need to practise solving trig. equations The quadrat uork -as poor.
b) i)

$$
\begin{aligned}
M_{1_{1}}=1 \quad M_{b_{2}} & =-\sqrt{3} \\
\tan \angle A C B & =\left|\frac{1--\sqrt{3}}{1+1 x-\sqrt{3}}\right| \\
& =\left|\frac{1+\sqrt{3}}{1-\sqrt{3}}\right| \\
& =\frac{\sqrt{3}+1}{\sqrt{3}-1}
\end{aligned}
$$

ii) $\tan \theta=1 \quad \tan \phi=-\sqrt{3}$

$$
\theta=45^{\circ} \quad \phi=120
$$

$\phi=\angle A C B+\theta$ (exterior angh eq-alssin $120^{\circ}=\angle A(B) d 5^{\circ}$ of two opposih untrie

$$
\angle A C B=75^{\circ} \quad \text { anglos) }
$$

ii) $\tan 75^{\circ}=\frac{\sqrt{3}+1}{\sqrt{3}-1} \sqrt{ } \quad$ Reas -5
c) i) $\frac{13!}{2!4!2!2!2!}=16216200$

Comm-1

$$
O_{A} N_{B}^{1} r_{R}
$$

ii) No of uo-ds ath A^{\prime} ' toghter $=\frac{10!}{2!2!2!7!}=226800$

$$
\begin{aligned}
\therefore P(\text { Ai } \operatorname{tg} \text { gher }) & =\frac{226800}{16216200} \\
& =\frac{2}{143}
\end{aligned}
$$

Many studuts made an addition error

$$
\text { 1.2. } \frac{9!}{2!2!2!2!} \text { or fergot }
$$

Lo durde by the 4'2!'s

Q3
a)i)

$$
\begin{aligned}
P(0) & =(0-2)(0-1)^{2}(0+2)^{3} \\
& =-16
\end{aligned}
$$

ii)

$$
\begin{gathered}
y-n t: x=0 \\
y=-16 \\
\text { xn+1: } y=0 \\
x=2 \quad x=1 \quad x=-2
\end{gathered}
$$

multipho. 7 2 3

First line was done very well but a majority of studuts dich't realing the impact of the 11 sign.

Again done wall b-t many studuts left ot the rasons (Nopermit7)
b) i

$$
\begin{aligned}
\text { No of comnitters } & ={ }^{14} C_{5} \\
& =2002
\end{aligned}
$$

ii) No of isma. Hus win majorityotun

$$
\begin{aligned}
& ={ }^{8} c_{3} \times{ }^{6} c_{2}+{ }^{8} c_{4}+{ }^{6} c_{1}+{ }^{6} c_{5} \times{ }^{6} c_{0} \\
& =840+420+56 \\
& =1316 \\
& \therefore P(\text { majo-1 } 1-1 \mathrm{me})=\frac{1316}{2002} \\
& =\frac{9_{4}^{2002}}{143} \quad \sqrt{R a s-3}
\end{aligned}
$$

c) i)

ii) $\quad \tan 65^{\circ}=\frac{A D}{h} \quad \tan 73^{\circ}=\frac{A G}{h}$

$$
A D=4 \tan 65^{\circ} \quad A C=h \tan 73^{\circ}
$$

cosme ru: $D a^{2}=A D^{2}+A C^{2}-2 \times A D \times A G \times 0 \rightarrow 60^{\circ}$

$$
2000^{2}=h^{2} \tan ^{2} 65^{\circ}+h^{2} \tan ^{2} 73
$$

$-2 h^{2} \tan 65^{\circ} \tan 73^{\circ} \cos \cos ^{\circ}$ $=n^{2}\left(\tan ^{2} 65^{\circ}+\tan ^{2} 73^{\circ}-2 \tan 65^{\tan } 73^{\circ} \circ 0060^{\circ}\right.$ are req-ined.

Studuts rendel to b convineng from the answer. 60° ves calalated

$$
h^{2}=\frac{2000^{2}}{\left.\tan ^{2} 65^{\circ}+\tan ^{2} 73^{\circ}-2 \tan 6\right)^{\tan 73^{\prime} \cos 60^{\circ}}}
$$ less siecessfl| of conbreations identifud-3 3 ltus

Stederts who used calculs were gurat

Sore studants usid pernitatias instead students clearly "fudg

- Angle, must be clece tonlya four strdent wne able for show houn - More supportng wor Co....

$$
h=\frac{2000}{\sqrt{\tan ^{2} 65^{\circ}+\tan ^{2} 73^{\circ}-2 \tan 65^{\circ} \tan 73^{\circ} \cos 60^{\circ}}} \text { reas-3 }
$$

ii) $h=695$ (to 3 sig fig)

Q4 a) i) No. $\mathrm{f}_{\text {arrangements }}=81$.

$$
=40320
$$

ii) $\begin{aligned} \text { No. of aringents } & =4!\times 2!\times 2!\times 2!\times 2! \\ & =384\end{aligned}$
iii)

$$
\therefore \text { No of arangent } t=6 \times 2 \times 3!\times 2!\times 2!\times 2!
$$

$$
=576 \quad R_{a}-5
$$

b) Let $\angle y x z=\alpha$ and $\angle y z x=\beta$

$$
\therefore L x y z=180-(\alpha+\beta) \text { (angle sur of } a
$$

$$
\text { triage is } \left.180^{\circ}\right)
$$

$\angle Z w v=\beta$ (angle st tangent equal angl n the alternate segment)

$$
\begin{aligned}
& \angle x w v=\alpha(\because \\
& \angle x w z=\angle x w v+L z w v \\
&=\alpha+\beta \\
& \therefore \angle x w z+\angle x y z=180
\end{aligned}
$$

$\therefore X Y Z W$ is a cyclic quadrilatel as
opposite angle, are supplementary.

c) :)

$$
\begin{aligned}
P(x) & =x^{3}-x^{2}-12 x \\
& =x\left(x^{2}-x-12\right) \\
& =x(x-4)(x+3)
\end{aligned}
$$

$\therefore y-u t i n=0 \quad p(0)=0$
x-ut $y=0 \quad P(x)=0$

$$
x(x-4)(x+3)=0
$$

$$
x=0 \quad x=-3 \quad x=4
$$

ii)

$$
\begin{aligned}
& x^{2} \times(x-1) \geqslant \frac{12}{x} \times x^{2} \\
& x^{3}-x^{2} \geqslant 12 x \\
& x^{3}-x^{2}-12 x \geqslant 0
\end{aligned}
$$

\therefore from the graph $-3 \leqslant x<0$ ad $x \geqslant 4$
TANGENTS FROM
Different circles
are not equal in Length I!
Everyone except 2
or 3 prep hast they dod.

Qs a) Let $m=2^{a}$ and $n=3^{b}$

$$
\begin{aligned}
& \therefore \quad 2^{a}+3^{b}=17 \quad 2^{a+2}-3^{b+1}=5 \\
& m+n=17 \quad 2^{2} \times 2^{a}-3 \times 3^{b}=5 \\
& \quad 4 m-3 n=5 \\
& \therefore \quad 4 m-3 n=5 \cdots 0 \\
& m+n=17 \cdots(2) \times 3 \\
& 3 m+3 n=51 \cdots \text { (3) }
\end{aligned}
$$

(1) + (3)

$$
\begin{aligned}
& \text { } \begin{array}{l}
M M
\end{array}=56 \\
& M=8 \\
& \text { from (2) } n=9 \\
& \therefore 2^{a}=8 \quad 3^{b}=9 \\
& a=3 \quad b=2 \quad \quad \quad R_{c a-} \quad
\end{aligned}
$$

Done very well. A fur proph grepped it the wrong way.

Many students missend the link between i) diV)
beaux they and ip isth $x^{2}-x-12 \geqslant 0$
Yo, have is multiply, through by x^{2} ot x bo ky y \geqslant

Only a fer students wed sucursflin this questio

Alternate- sol -has are possible but only a cop of studuts were able to correctly find 'a' b^{\prime}

A couple of "lucky" students "chanced" upon the corral answer. trial and error.
b)

$$
\begin{align*}
\text { LHS } & =\frac{\sin 5 x-\frac{\cos 5 x}{\sin x}}{\cos x} \\
& =\frac{\sin 5 x \cos x-\cos 5 x \sin x}{\sin x \cos x} \\
& =\frac{\sin (5 x-x)}{\sin x \cos x} \\
& =\frac{\sin 4 x}{\frac{1}{2} \sin 2 x} \\
& =\frac{2 \sin 2 x \cos 2 x}{\frac{1}{2} \sin 2 x} \\
& =4 \cos 2 x
\end{align*}
$$

c) i) $x= \pm 1$
ii)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}-1} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2} / x^{2}}{x^{2} / x^{2}-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1-\frac{1}{x^{2}}} \\
& =1
\end{aligned}
$$

ii) $f(0)=0$
iv)
v

r) Solve sim. ltane o-sly

$$
y=\frac{x^{2}}{x^{2}-1} \cdots 0 \quad y=x-1 \ldots(1)
$$

Very feew studuts

$$
\frac{x^{2}}{x^{2}-1}=x-1
$$

cold get to thir line - Aluays bolk of the patton.

$$
\begin{aligned}
& x^{2}=(x-1)\left(x^{2}-1\right) \\
& x^{2}=x^{3}-x-x^{2}+1 \\
& 0=x^{3}-2 x^{2}-x+1
\end{aligned}
$$

\therefore ptrof intuxatio of $y=\frac{x^{2}}{x^{2}-1}$ and $y=x-1$
a.e the solitas to $x^{n^{2}-2 x^{2}-n+1}=0$

$$
\therefore 3 \text { solutions. }
$$

Reas-1

Well dome by rost
studuts

A cuar statement of thereasen was requind to sobtain this mark.

