

Centre Number

SCEGGS Darlinghurst

2009
 Preliminary Course
 Semester 2 Examination

Mathematics Extension 1

Outcomes Assessed: P1-P8, PE1, PE2, PE3 and PE6
 Task Weighting: 40\%

General Instructions

- Reading time -5 minutes
- Time allowed - $11 / 2$ hours
- Write using black or blue pen
- Write your Student Number at the top of this page
- This paper has four questions
- Attempt all questions on the pad paper provided
- Answer all questions and show all necessary working
- Start each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- Do not attach all questions together in one bundle

Total marks - 60

- Attempt Questions 1 - 4

Question	Comm	Reason	Calc	TOTAL
1		$/ 4$	$/ 2$	$I 15$
2	$/ 3$	$/ 4$		$I 16$
3		$/ 5$		$I 13$
4		$/ 3$	$/ 2$	$I 16$
TOTAL	$/ 3$	$/ 16$	$/ 4$	$I 60$

BLANK PAGE

Question 1 (15 marks)
(a) The polynomial $x^{3}+2 x^{2}+1$ is divided by $x+3$. Calculate the remainder.

2 the ratio $2: 3$ by the point $P(x, y)$. Find the values of x and y.
(c)

In the diagram $\triangle P Q R$ is drawn in a circle. The tangent to the circle at R meets $P Q$ produced to T. S is a point on $P Q$ such that $R S$ bisects $\angle Q R P$.

Copy the diagram.
(i) Explain why $\angle T R Q=\angle R P T$.
(ii) Show that $T R=T S$, giving clear reasons.
(d) A monic polynomial $P(x)$ of degree 4 has one root equal to 2 and a double root equal to -1 .

If the polynomial passes through the point $(0,6)$ find the equation of $P(x)$.

Question 1 continues on the next page

Question 1 (continued)
(e) Let $f(x)=3 x^{2}-2 x$.

Use the definition $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
to find the derivative by first principles of $f(x)$ at the point $x=a$.
(f) By making an appropriate substitution, or otherwise, solve for x.

$$
2\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)-15=0
$$

- Start a new page

Question 2 (16 marks)
(a) Solve for $\theta, \quad 0^{\circ} \leq \theta \leq 360^{\circ}$

$$
\sin 2 \theta=\sin \theta
$$

(b) The curve $y=f(x)$ is shown below.

On the separate answer page attached, draw the graph of:
(i) $\quad y=|f(x)|$
(ii) $\quad y=f(x+2)$
(iii) $\quad y=f(x)-1$

Question 2 (continued)
(c) The polynomial $P(x)=2 x^{3}+3 x^{2}+k x-2$ has roots α, β and γ.
(i) Find the value of $\alpha+\beta+\gamma$.

1
(ii) Find the value of $\alpha \beta \gamma$.
(iii) If one root is the reciprocal of the other, find the third root and hence find the value of k.
(d) (i) Express $\sin x+\cos x$ in the form $R \cos (x-\alpha)$ where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence solve for $0^{\circ} \leq x \leq 360^{\circ}$

$$
\sin x+\cos x=1
$$

(iii) Find all possible solutions of $\sin x+\cos x=1$.

Question 3 (13 marks)
(a)

The diagram shows the lines $3 x-2 y+3=0$ and $2 x+y-5=0$ intersecting at point P. The lines cut the x and y axes at A and B respectively.
(i) Find the co-ordinates of P.
(ii) Find the size of the acute angle, θ, between the lines $3 x-2 y+3=0$ and $2 x+y-5=0$. Answer correct to the nearest minute.
(b) (i) By using the substitution $t=\tan \frac{x}{2}$, show that
$\sin x-3 \cos x-2$
can be written as $\frac{t^{2}+2 t-5}{1+t^{2}}$.
(ii) Hence, find correct to the nearest minute
the values of $x, 0^{\circ} \leq x \leq 360^{\circ}$ for which
$\sin x-3 \cos x-2=0$.

Question 3 continues on the next page

Question 3 (continued)
(c)

The points P, Q, R, S are placed on a circle of radius r such that $P R$ and $Q S$ meet at X.
The lines $P Q$ and $S R$ are produced to meet at T, and $Q X R T$ is a cyclic quadrilateral.

Copy or trace this diagram onto your answer page.
(i) Find the size of $\angle S Q T$, giving reasons for your answer.
(ii) Find an expression for the length of $P S$ in terms of r.

Question 4 (16 marks)
(a) Solve for x.

$$
\frac{3}{2 x-1} \geq x
$$

(b)

In the diagram $C D$ is a vertical flagpole of height 1 metre which stands on horizontal ground.
The angles of elevation of the top D of the flagpole from points A and B on the ground are α and 2α respectively.
(i) Show that $B C=\frac{1-\tan ^{2} \alpha}{2 \tan \alpha}$.
(ii) Show that $A C-B C=B D$.

Question 4 continues on the next page

Question 4 (continued)
(c) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$. The tangents at P and Q intersect at T.

(i) Show that the tangent at P is given by $y=p x-a p^{2}$.
(ii) Show that the tangents intersect at the point $T(a(p+q), a p q)$.
(iii) Show that the chord $P Q$ has equation $y=\frac{1}{2}(p+q) x-a p q$.
(iv) The line $P Q$ is a tangent to the parabola $x^{2}=2 a y$.

Show that $(p+q)^{2}=8 p q$.
(v) Show that the Cartesian equation of the locus of T is a parabola.

End of paper

Student Number

Use this page to answer Question 2 (b)

Year 11 Extension 1 Mathematics
Preliminary Semester 2 Exam
\qquad

Question 1
a) $\quad P(x)=x^{3}+2 x^{2}+1$

Remainder

$$
\begin{aligned}
P(-3) & =(-3)^{3}+2(-3)^{2}+1 \\
& =-27+18+1 \\
& =-8
\end{aligned}
$$

b)

$$
\begin{aligned}
& A(4,5) \quad B(19,-5) \\
P= & \left(\frac{3 \times 4+2 \times 19}{2+3}, \frac{3 \times 5+2 \times-5}{2+3}\right) \\
= & \left(\frac{50}{5}, \frac{5}{5}\right) \\
= & (10,1)
\end{aligned}
$$

c)

i) $\angle T R Q=\angle T P R$
(Angle between a tangent and a chord is equal to the angle in the alternate segment.)
ii) Let $\angle T R Q=\angle T P R=x$

Let $\angle Q R S=\angle S R P=y$ (equal angles since

$$
\angle T S R=\angle S P R+\angle S R P
$$

$$
=x+y
$$

exterior angle of a
triangle is

$$
\angle S R T=x+y \quad \text { of opposite initeitior angles) }
$$

$\therefore \quad T R=T S \quad \begin{gathered}\text { (sides opposite equal } \\ \text { are equal.) }\end{gathered}$
(Leas 4)

Question l continued.
d)

$$
P(x)=(x-2)(x+1)^{2}(x+k)
$$

manic coefficient of x^{4} is one
passes through $(0,6)$

$$
\begin{aligned}
6 & =2 \times(-1)^{2} \times k \\
-2 k & =6 \\
k & =-3
\end{aligned}
$$

e)

$$
\begin{aligned}
f(x) & =3 x^{2}-2 x \\
f(a) & =3 a^{2}-2 a \\
f(a+h) & =3(a+h)^{2}-2(a+h) \\
& =3\left(a^{2}+2 a h+h^{2}\right)-2 a-2 h \\
& =3 a^{2}+6 a h+3 h^{2}-2 a-2 h \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 a^{2}+6 a h+3 h^{2}-2 a-2 h-\left(3 a^{2}-2 a\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 a h+3 h^{2}-2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6 a+3 h-2)}{h} \\
& =\lim _{h \rightarrow 0}(6 a+3 h-2) \\
& =6 a-2
\end{aligned}
$$

must put extra of degree 4

Question 1 (continued)
f) $2\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)-15=0$

Let $m=x+\frac{1}{x}$

$$
2 m^{2}+m-15=0
$$

$$
(2 m-5)(m+3)=0
$$

$$
\begin{aligned}
& m=\frac{5}{2} \\
& x+\frac{1}{x}=\frac{5}{2} \\
& x^{2}+1=\frac{5}{2} x \\
& 2 x^{2}+2=5 x \\
& 2 x^{2}-5 x+2=0 \\
& (2 x-1)(x-2)=0 \\
& x=\frac{1}{2}, 2
\end{aligned}
$$

Question 2 (continued)
c) $\quad P(x)=2 x^{3}+3 x^{2}+k x-2$
i)

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{a} \\
& =-\frac{3}{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\alpha \beta \gamma & =-\frac{d}{a} \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

iii) One root is reciprocal \Rightarrow Roots are $\alpha, \frac{1}{\alpha}, \gamma$
from part ii

$$
\begin{aligned}
\alpha \beta \gamma & =1 \\
\alpha, \frac{1}{\alpha} \gamma & =1 \\
\gamma & =1
\end{aligned}
$$

Since this is a root of the polynomial $P(1)=0$

$$
\begin{aligned}
& 2 \times(1)^{3}+3 \times(1)^{2}+k \times 1-2=0 \\
& 2+3+k-2=0 \\
& k+3=0 \\
& k=-3
\end{aligned}
$$

Parts (i) and (ii) were well done.

Read the question carefully it says one root is the reciprocal of the other, not the negative reciprocal

Question 2 (continued)
(d) is

$$
\begin{aligned}
\underline{\sin x}+\cos x & =R \cos (x-\alpha) \\
& =R(\cos x \cos \alpha+\sin x \sin \alpha) \\
& =R \cos x \cos \alpha+R \sin x \sin \alpha
\end{aligned}
$$

Match The coefficients

$$
\begin{align*}
& R \cos \alpha=1 \\
& R \sin \alpha=1 \tag{2}\\
& \begin{array}{l}
\text { Find } R \\
R^{2}=1^{2}+1^{2}
\end{array} \tag{2}\\
& R=\sqrt{1+1} \\
& =\sqrt{2} \\
& \therefore \sin x+\cos x=\sqrt{2} \cos \left(x-45^{\circ}\right)
\end{align*}
$$

ii)

$$
\begin{aligned}
\sin x+\cos x & =1 \\
\sqrt{2} \cos (x-45) & =1 \\
\cos (x-45) & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\therefore x-45^{\circ}=-45^{\circ}, 45^{\circ}, 360^{\circ}-45^{\circ}
$$

$$
\begin{aligned}
\text { arad is } 4 & \frac{\text { Check domain }}{0^{\circ} \leq x \leq 360^{\circ}} \\
& -45^{\circ} \leq x-45^{\circ} \leq 315^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\text { quad } 4 \text { quad l quad } 4 \\
x=45,45,360-45 \\
x=0^{\circ}, 90^{\circ}, 360^{\circ} \\
\text { iii) all solutions } \rightarrow \text { general solution } \\
\cos \left(x-45^{\circ}\right)=\frac{1}{\sqrt{2}}
\end{gathered}
$$

$$
\begin{array}{r}
\text { (2) } \begin{aligned}
& x-45^{\circ}=360^{\circ} n \pm \cos ^{-1} \frac{1}{\sqrt{2}} \\
& x=360^{\circ} n \pm 45^{\circ}+45^{\circ} \\
& \therefore x=360^{\circ} n \text { or } x=360^{\circ} n+90^{\circ} \\
& \text { where } n \in \mathbb{Z}
\end{aligned}
\end{array}
$$

Part (i) well done

Remember to check the domain, often a solution is left out if this is not done

Not well done, all possible solutions means general solution
Two methods

- learn the rule
- look for a pattern

Another Method

$$
\cos \left(x-45^{\circ}\right)=\frac{1}{\sqrt{2}} \quad \text { quadrants } 1 \text { or } 4
$$

in Q1: $\quad x-45^{\circ}=45^{\circ}, 360^{\circ}+45^{\circ}, 2 \times 360^{\circ}+45^{\circ} \ldots$.

$$
x=90^{\circ}, 360^{\circ}+90^{\circ}, 2 \times 360^{\circ}+90^{\circ}
$$

Qu:

$$
\begin{aligned}
x-45^{\circ} & =360-45^{\circ}, 2 \times 360-45^{\circ} \\
x & =360^{\circ}, 2 \times 360^{\circ}, \ldots
\end{aligned}
$$

$$
\therefore x=360^{\circ} n+90^{\circ} \text { or } x=360^{\circ} n
$$

Question 3
a)

i)

$$
\begin{equation*}
3 x-2 y+3=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
2 x+y-5=0 \tag{2}
\end{equation*}
$$

(2) $\times 2$

$$
\begin{align*}
4 x+2 y-10 & =0 \\
3 x-2 y+3 & =0 \tag{1}\\
7 x-7 & =0 \\
7 x & =7 \\
x & =1
\end{align*}
$$

Add(1)e(3)

Subst. into (1) $3-2 y+3=0$

$$
\begin{aligned}
& 2 y=6 \\
& y=3 \quad \therefore P(1,3)
\end{aligned}
$$

ii) $3 x-2 y+3=0$
$2 x+y-5=0$

$$
\begin{aligned}
m_{1} & =-\frac{3}{2} & m_{2} & =-\frac{2}{1} \\
& =\frac{3}{2} & & =-2
\end{aligned}
$$

Acute angle $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{aligned}
& =\left|\frac{\frac{3}{2}--2}{1+\frac{3}{2} \times-2}\right| \\
& =\left|\frac{3 \frac{1}{2}}{-2}\right| \\
& =\left|-\frac{7}{4}\right| \\
\tan \theta & =\frac{7}{4} \\
\theta & =60^{\circ} 15^{\prime}
\end{aligned}
$$

$a x+b y+c=0$
To find gradient without making y the suloject $m=-\frac{a}{b}$

Question 3 (continued)

Hence Use Area $=\frac{1}{2} a b \sin C$
or otherwise

You need to firid points A, B and some lengths.

Point A put $y=0$ into $3 x-2 y+3=0$

$$
\begin{aligned}
3 x+3 & =0 \\
3 x & =-3 \\
x & =-1 \quad A(-1,0)
\end{aligned}
$$

Point B put $y=0$ into $2 x+y-5=0$

$$
\begin{aligned}
& 2 x-5=0 \\
& 2 x=5 \\
& x=2 \frac{1}{2} \quad B\left(2 \frac{1}{2}, 0\right)
\end{aligned}
$$

or otherwise is less work!

By counting horizontally and vertically base $=3 \frac{1}{2}$
perpendicular height $=3$ units

$$
\begin{aligned}
\therefore \text { Area } \triangle A P B & =\frac{1}{2} \times 3 \frac{1}{2} \times 3 \\
& =5.25 \text { units }
\end{aligned}
$$

Question 3 (continued)
b) i) $t=\tan \frac{x}{2}$

$$
\begin{aligned}
& \sin x=\frac{2 t}{1+t^{2}} \quad \cos x=\frac{1-t^{2}}{1+t^{2}} \\
= & \frac{\sin x-3 \cos x-2}{1+t^{2}}-3\left(\frac{1-t^{2}}{1+t^{2}}\right)-2 \\
= & \frac{2 t-3+3 t^{2}-2\left(1+t^{2}\right)}{1+t^{2}} \\
= & \frac{2 t-3+3 t^{2}-2-2 t^{2}}{1+t^{2}} \\
= & \frac{t^{2}+2 t-5}{1+t^{2}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \sin x-3 \cos x-2=0 \\
& \frac{t^{2}+2 t-5}{1+t^{2}}=0 \\
& \begin{aligned}
& t^{2}+2 t-5=0 \\
& t=\frac{-6 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&=\frac{-2 \pm \sqrt{4-4 \times 1 x-5}}{2} \\
&=\frac{-2 \pm \sqrt{24}}{2}
\end{aligned}
\end{aligned}
$$

$$
t=\frac{-2+\sqrt{24}}{2} \quad t=\frac{-2-\sqrt{24}}{2}
$$

$\tan \frac{x}{2}=1.449 \ldots$
(Quad ia 3
but Quad 3 angle will
be too big when double

$$
\begin{aligned}
& \frac{x}{2}=55^{\circ} 24^{\prime} \\
& x=110^{\circ} 48^{\prime}
\end{aligned}
$$

Check domain

$$
\begin{aligned}
& 0^{\circ} \leq x \leq 360^{\circ} \\
& 0^{\circ} \leq \frac{x}{2} \leq 180^{\circ}
\end{aligned}
$$

So look for answers in quadrants is 2 only.

Question 3 (continued)

i) Let $\angle P Q S=\angle P R S=x$
(angles in the same segment are equal)

$$
\begin{aligned}
& \angle X Q T=180^{\circ}-\angle P Q S=180^{\circ}-x \\
& \angle T R P=180^{\circ}-\angle P R S=180^{\circ}-x
\end{aligned}
$$

(Angle sum of a straight line is 180°)

$$
\angle X Q T=\angle T R P
$$

Sirice QXRT is a cyclic quadrilateral

$$
\begin{aligned}
\angle X Q T+\angle T R X & =180^{\circ} \\
\therefore \quad 2 \angle X Q T & =180^{\circ} \\
\angle X Q T & =90^{\circ} \\
\therefore \quad \angle S Q T & =90^{\circ}
\end{aligned}
$$

ii) Since $\angle S Q T=90^{\circ}$

$$
\angle S Q P=90^{\circ}
$$

(Angle sum straight line is 180°)
\therefore PS is a diameter of the circle
(Angle subtended by the diameter is 90° at the circumference)
Since r is the radius of the circle

$$
P S=2 r
$$

$$
\begin{aligned}
& \text { Question } 4 \\
& \text { a) } \frac{3}{2 x-1} \geqslant x
\end{aligned}
$$

undefined when $x=\frac{1}{2}$
multiply both sides by $(2 x-1)^{2}$

$$
\begin{aligned}
& \frac{3}{2 x-1} \times(2 x-1)^{2} \geqslant x(2 x-1)^{2} \\
& 3(2 x-1) \geqslant x(2 x-1)^{2} \\
& 3(2 x-1)-x(2 x-1)^{2} \geqslant 0
\end{aligned}
$$

don't expand.
factorise it instead!

$$
\begin{aligned}
& (2 x-1)[3-x(2 x-1)] \geq 0 \\
& (2 x-1)\left(3-2 x^{2}+x\right) \geq 0
\end{aligned}
$$

\uparrow factorise out -1 and then reverse signs

$$
\begin{aligned}
& (2 x-1) \cdot-1\left(2 x^{2}-x-3\right) \geq 0 \\
& (2 x-1)\left(2 x^{2}-x-3\right) \leq 0 \\
& (2 x-1)(2 x-3)(x+1) \leq 0
\end{aligned}
$$

$x \leq-1,-\frac{1}{2} \leq x \leq 1 \frac{1}{2}$
but $x \neq \frac{1}{2} \quad \therefore$ The solution is

$$
x \leq-1,-\frac{1}{2}<x \leq 1 \frac{1}{2}
$$

Not well done
most students chose to expand at this point although this can be done it takes a lot more time and effort
Please factorise, it is much more efficient and you will be less likely to make a mistake
make sure you answer the question and incorporate any undefined values

Question 4 (continued)
Prove that $A C-B C=B D$

$$
\begin{aligned}
A C-B C & =\frac{1}{\tan \alpha}-\left(\frac{1-\tan ^{2} \alpha}{2 \tan \alpha}\right) \\
& =\frac{2-1+\tan ^{2} \alpha}{2 \tan \alpha} \\
& =\frac{1+\tan ^{2} \alpha}{2 \tan \alpha} \\
& =\frac{\sec ^{2} \alpha}{2 \tan \alpha} \\
& =\frac{1}{\cos ^{2} \alpha} \\
& =\frac{1}{\cos ^{2} \alpha} \frac{1 \sin \alpha}{\cos \alpha} \\
& =\frac{1}{2 \sin \alpha \cos \alpha} \\
& =\frac{1}{\sin 2 \alpha} \\
& =B D
\end{aligned}
$$

Question 4 (continued)
i)

$$
\begin{aligned}
x^{2} & =4 a y \\
y & =\frac{x^{2}}{4 a} \\
y^{\prime} & =\frac{2 x}{4 a} \\
& =\frac{x}{2 a}
\end{aligned}
$$

At $p\left(2 a p, a p^{2}\right)$

$$
\begin{aligned}
& m_{T}=\frac{2 a p}{2 a} \\
&=p \\
& \varepsilon_{q u}+a n g e n t \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-a p^{2}=p(x-2 a p) \\
& y-a p^{2}=p x-2 a p^{2} \\
& y=p x-a p^{2}
\end{aligned}
$$

Calc
ii) Similarly tangent at Q

$$
\begin{align*}
& y=q x-a q^{2} \tag{2}\\
& y=p x-a p^{2} \tag{1}
\end{align*}
$$

Solve simultaneousily

$$
\begin{aligned}
p x-a p^{2} & =q x-a q^{2} \\
p x-q x & =a p^{2}-a q^{2} \\
x(p-q) & =a\left(p^{2}-q^{2}\right) \\
x & =a \frac{(p-q)(p+q)}{p-q} \\
x & =a(p+q)
\end{aligned}
$$

$$
\text { Subst. into(1) } \quad \begin{aligned}
y & =a p(p+q)-a p^{2} \\
& =a p^{2}+a p q-a p^{2} \\
& =a p q \\
T(a(p+q), a p q) &
\end{aligned}
$$

Question 4 (continued)
iii) $P\left(2 a p, a p^{2}\right) \quad Q\left(2 a q, a q^{2}\right)$

Gradient $P Q$

$$
\begin{aligned}
m_{p a} & =\frac{a q^{2}-a p^{2}}{2 a q-2 a p} \\
& =\frac{a\left(q^{2}-p^{2}\right)}{2 a(q-p)} \\
& =\frac{a(q-p)(q+p)}{2 a(q-p)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

Equation of chord $P Q$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-a p^{2} & =\frac{(p+q)}{2}(x-2 a p) \\
y-a p^{2} & =\frac{1}{2}(p+q) x-\frac{1}{2}(p+q) \times 2 a p \\
y-a p^{2} & =\frac{1}{2}(p+q) x-a p^{2}-a p q \\
y & =\frac{1}{2}(p+q) x-a p q
\end{aligned}
$$

Alternate Method
Chord of contact: $P Q$ is a chord of contact from the external point $T(a(p+q)$, and $)$

$$
\begin{aligned}
x x_{0} & =2 a\left(y+y_{0}\right) \\
x a(p+q) & =2 a(y+a p q) \\
x(p+q) & =2 y+2 a p q \\
2 y & =x(p+q)+2 a p q \\
y & =\frac{1}{2}(p+q) x+a p q
\end{aligned}
$$

Question 4 (continued)
(iv)

$$
\begin{align*}
& x^{2}=2 a y \tag{1}\\
& y=\frac{1}{2}(p+q) x-a p q
\end{align*}
$$

Solve simultaneously

$$
\begin{aligned}
& x^{2}=2 a\left(\frac{1}{2}(p+q) x-a p q\right) \\
& x^{2}=a(p+q) x-2 a^{2} p q \\
& x^{2}-a(p+q) x+2 a^{2} p q=0
\end{aligned}
$$

This is a quadratic equation.
Since the line $P Q$ is a tangent to the parabola there is only one solution
\therefore Using the discriminant $\Delta=0$

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(-a(p+q))^{2}-4.1 .2 a^{2} p q \\
& =a^{2}(p+q)^{2}-8 a^{2} p q \\
& =a^{2}\left[(p+q)^{2}-8 p q\right]
\end{aligned}
$$

Since $\Delta=0$

$$
\begin{aligned}
a^{2}\left[(p+q)^{2}-8 p q\right] & =0 \\
(p+q)^{2}-8 p q & =0 \\
(p+q)^{2} & =8 p q
\end{aligned}
$$

This was a tricky question:
we have the line $P Q$ and the parabola $x^{2}=2$ ar. Start by solving these simultanearly

* This is essential to solve this question

Question 4 (continued)
v) $T(a(p+q), a p q)$

$$
\begin{aligned}
x=a(p+q) & \Rightarrow p+q=\frac{x}{a} \\
y=a p q & \Rightarrow p q=\frac{y}{a}
\end{aligned}
$$

Using part iv)

$$
\begin{aligned}
& (p+q)^{2}=8 p q \\
& \left(\frac{x}{a}\right)^{2}=\frac{8 y}{a} \\
& \frac{x^{2}}{a^{2}}=\frac{8 y}{a} \\
& x^{2}=\frac{8 y}{a} \times a^{2} \\
& x^{2}=8 a y
\end{aligned}
$$

The locus of T is a parabola.

