

Centre Number

Student Number

SCEGGS Darlinghurst

2009 Preliminary Course Semester 2 Examination

Mathematics Extension 1

Outcomes Assessed: P1-P8, PE1, PE2, PE3 and PE6 Task Weighting: 40%

General Instructions

- Reading time 5 minutes
- Time allowed $-1\frac{1}{2}$ hours
- Write using black or blue pen
- Write your Student Number at the top of this page
- This paper has **four** questions
- Attempt all questions on the pad paper provided
- Answer **all** questions and show all necessary working
- Start each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used
- **Do not** attach all questions together in one bundle

Total marks – 60

Attempt Questions 1 – 4

Question	Comm	Reason	Calc	TOTAL
1		/4	/2	/15
2	/3	/4		/16
3		/5		/13
4		/3	/2	/16
TOTAL	/3	/16	/4	/60

BLANK PAGE

Question 1 (15 marks)

- (a) The polynomial $x^3 + 2x^2 + 1$ is divided by x + 3. Calculate the remainder. 2
- (b) The interval *AB*, where *A* is (4, 5) and *B* is (19, -5) is divided internally in the ratio 2:3 by the point P(x, y). Find the values of *x* and *y*.

In the diagram $\triangle PQR$ is drawn in a circle. The tangent to the circle at *R* meets *PQ* produced to *T*. *S* is a point on *PQ* such that *RS* bisects $\angle QRP$.

Copy the diagram.

(i) Explain why
$$\angle TRQ = \angle RPT$$
. 1

(ii) Show that TR = TS, giving clear reasons.

(d) A monic polynomial P(x) of degree 4 has one root equal to 2 and a double root equal to -1.

If the polynomial passes through the point (0, 6) find the equation of P(x).

Question 1 continues on the next page

3

3

Question 1 (continued)

(e) Let
$$f(x) = 3x^2 - 2x$$
. 2

Use the definition $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

to find the derivative by first principles of f(x) at the point x = a.

(f) By making an appropriate substitution, or otherwise, solve for *x*.

$$2\left(x+\frac{1}{x}\right)^{2} + \left(x+\frac{1}{x}\right) - 15 = 0$$

Question 2 (16 marks)

(a) Solve for
$$\theta$$
, $0^\circ \le \theta \le 360^\circ$

$$\sin 2\theta = \sin \theta$$

(b) The curve y = f(x) is shown below.

On the separate answer page attached, draw the graph of:

- (i) y = |f(x)| 1
- (ii) y = f(x+2) 1

(iii)
$$y = f(x) - 1$$
 1

Question 2 continues on the next page

3

Question 2 (continued)

(c)	The p	olynomial $P(x) = 2x^3 + 3x^2 + kx - 2$ has roots α , β and γ .			
	(i)	Find the value of $\alpha + \beta + \gamma$.	1		
	(ii)	Find the value of $\alpha\beta\gamma$.	1		
	(iii)	If one root is the reciprocal of the other, find the third root and hence find the value of k .	2		
(d)	(i)	Express $\sin x + \cos x$ in the form $R \cos(x - \alpha)$ where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$.	2		
	(ii)	Hence solve for $0^{\circ} \le x \le 360^{\circ}$	2		
		$\sin x + \cos x = 1$			
	(iii)	Find all possible solutions of $\sin x + \cos x = 1$.	2		

2

Question 3 (13 marks)

The diagram shows the lines 3x - 2y + 3 = 0 and 2x + y - 5 = 0 intersecting at point *P*. The lines cut the *x* and *y* axes at *A* and *B* respectively.

- (i) Find the co-ordinates of *P*.
- (ii) Find the size of the acute angle, θ , between the lines 3x 2y + 3 = 0 and 3x + y 5 = 0. Answer correct to the nearest minute.

(b) (i) By using the substitution $t = \tan \frac{x}{2}$, show that $\sin x - 3\cos x - 2$ can be written as $\frac{t^2 + 2t - 5}{1 + t^2}$.

(ii) Hence, find correct to the nearest minute 3 the values of x, $0^{\circ} \le x \le 360^{\circ}$ for which

 $\sin x - 3\cos x - 2 = 0.$

Question 3 continues on the next page

Question 3 (continued)

The points *P*, *Q*, *R*, *S* are placed on a circle of radius *r* such that *PR* and *QS* meet at *X*. The lines *PQ* and *SR* are produced to meet at *T*, and *QXRT* is a cyclic quadrilateral.

Copy or trace this diagram onto your answer page.

- (i) Find the size of $\angle SQT$, giving reasons for your answer. 2
- (ii) Find an expression for the length of *PS* in terms of *r*. 1

Question 4 (16 marks)

(a) Solve for *x*.

$$\frac{3}{2x-1} \ge x$$

(b)

In the diagram CD is a vertical flagpole of height 1 metre which stands on horizontal ground.

The angles of elevation of the top D of the flagpole from points A and B on the ground are α and 2α respectively.

(i) Show that
$$BC = \frac{1 - \tan^2 \alpha}{2 \tan \alpha}$$
.

(ii) Show that
$$AC - BC = BD$$
.

Question 4 continues on the next page

3

3

Question 4 (continued)

(c) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The tangents at *P* and *Q* intersect at *T*.

(i) Show that the tangent at *P* is given by
$$y = px - ap^2$$
. 2

(ii) Show that the tangents intersect at the point T(a(p+q), apq). 2

(iii) Show that the chord PQ has equation
$$y = \frac{1}{2}(p+q)x - apq$$
. 2

- (iv) The line PQ is a tangent to the parabola $x^2 = 2ay$. Show that $(p+q)^2 = 8pq$.
- (v) Show that the Cartesian equation of the locus of *T* is a parabola. 1

End of paper

Student Number

Use this page to answer Question 2 (b)

$$\frac{\frac{1}{2} Eav II Extension I Main Denotics}{\frac{1}{2} ext in initiary Semester 2 Exam 2009 Comments}{\frac{2}{2} P(a) = x^3 + 2x^2 + 1}{\frac{2}{2} ext + 1}{\frac{2}{2} ext + 2x^2 + 1}{\frac$$

Question 1 combined.
d)
$$P(x) = (x-2)(x+1)^2 (x+k)$$

 f invest put extra
factor because
coefficient of x^{tr} is one of degree 4
passes through (0,6)
 $6 = 2x(1)^{2} x.k$
 $-2k = 6$
 $k = -3$
e) $f(x) = 3x^2 - 2x$
 $f(a) = 3x^2 - 2x$
 $f(a) = 3x^2 - 2a$
 $f(a+h) = 3(a+h)^{2} - 2(a+h)$
 $= 3(a^{2}+2ah + 3h^{2} - 2a - 2h)$
 $f(a+h) = 3(a+h)^{2} - 2(a+h)$
 $= 3a^{2} + 6ah + 3h^{2} - 2a - 2h$
 $f'(a) = luh_{h \to 0} \frac{4(a+h) - f(a)}{h}$
 $= luh_{h \to 0} \frac{3a^{2}+6ah + 3h^{2} - 2a - 2h}{h}$
 $= luh_{h \to 0} \frac{3a^{2}+6ah + 3h^{2} - 2a - 2h}{h}$
 $= luh_{h \to 0} \frac{6ah + 3h^{2} - 2h}{h}$
 $= luh_{h \to 0} \frac{6ah + 3h^{2} - 2h}{h}$
 $= luh_{h \to 0} \frac{6ah + 3h - 2h}{h}$

Question ((continued) f) $2(x+\frac{1}{2})^2 + (x+\frac{1}{2}) - 15 = 0$ Let m=x+ 1/2 $2m^2 + m - 15 = 0$ (2m - 5)(m + 3) = 0m= 5 m=-3 x+な = 5 x+ 気 =-3 $x^2 + l = -3x$ $\chi^2 + 1 = \frac{1}{2}\chi$ $2x^2+2=5x$ $\chi^{2}+3\chi+1=0$ $2x^2 - 5x + 2 = 0$ x=-b=162-4ac 2a $(2\pi - 1)(x - 2) = 0$ = -3 ± J9-4.1.1 x=1,2 2 $= -3 \pm \sqrt{5}$

Question 2 $\sin 2x = \sin x$ a) dsinz cosx - sinz = 0 Many divided this line Sinix (2005x -1) = 0 by sinn, doing this Sinx=0 Cosx=2 eliminates one of the quad 1 & 4 x = 0, 180,360 resulting equations. You x = 60°, 300° must factorise then solve each equation. Also remember that 360° is in the domain y= [fen] These were well done b)') y = f(x+2)ii Shift left 2 units. 0 y= f(x)-1 If your curve is shifted Shift down 1 unit down then the intercepts will also change

Question 2 (continued) (j 511 x + cosx = Rcos (x - a) Part (1) well done = R(cosz cosa + sinzsina) = RLOSXLOSA + RSINXSINA Match The coefficients Rcosd = 1 $\widetilde{2}$ Rsind=1 Find R Find & @/₍₁₎ $R^2 = l^2 + l^2$ $R = \sqrt{1+1}$ tand=1 = √2 ≪ = 45° 1. 51mx + 105x = √2 (05 (x-45°) ii) 5inx + cosx = 1J2 cos(x-45) = 1 $\cos(\pi - 45) = \frac{1}{\sqrt{2}}$ Remember to check the quad 1 & 4 Check domain domain, often a solution $0^{\circ} \le x \le 360^{\circ}$ -45°≤ 76-45°≤315° is left out if this is not done ∴ x-45° = -45°, 45°, 360°-45° quad 4 quad 1 quad 4 $x = 0^{\circ}, 90^{\circ}, 360^{\circ}$ all golutions -> general solution Not well done, all possible iii) $\cos(\pi - 45^{\circ}) = \sqrt{2}$ solutions means general solution $x - 45^\circ = 360^\circ n \pm \cos^{-1} \sqrt{2}$ R Two methods **(2**) $3c = 360^{\circ}n \pm 45^{\circ} + 45^{\circ}$ - learn the rule - look for a pattern

Another Method $\cos(x-45^\circ) = \frac{1}{\sqrt{2}}$ quadrants 1 or 4 in Q1: x-45°= 45°, 360°+45°, 2×360°+45°.... $\kappa = 90^{\circ}, 360^{\circ} + 90^{\circ}, 2 \times 360^{\circ} + 90^{\circ}$ Q4: n-45°= 360-45°, 2×360-45°, ---- $\mathcal{K} = 360^{\circ}, 2 \times 360^{\circ}, \dots$ $\therefore \chi = 360^{\circ}n + 90^{\circ}$ or $\chi = 360^{\circ}n$

Question 3 (continued)
Hence Use Area =
$$\frac{1}{2}$$
 abs:
or otherwise p we $A = \frac{1}{2}bh$
Now need to find points A, B and
Some lengths.
Point A put y=0 wite $3x-2y+3=0$
 $3x + 3=0$
 $3x = -3$
 $x = -1$ $A(-1,0)$
Point B put y=0 into $2x + y - 5 = 0$
 $2x = 5$
 $x = 2\frac{1}{2}$ $B(2\frac{1}{2}, 0)$
Or otherwise is less work!
 $p(1,3)$
 $A(-1,0)$ $3\frac{1}{3}$ $B(2\frac{1}{2}, 0)$
By countring horizontally and vertically
base = $3\frac{1}{2}$
perpendicular height = 3 units
 \therefore Area $\triangle APB = \frac{1}{2} \times 3\frac{1}{2} \times 3$
 $= 5\cdot 25$ $units^2$

	Question 3 (contra		
	ij t=tan =		
9	•		
	$\sin x = 2t$ (c	$\kappa \chi = 1 - t^2$	
	1+ 22	1+2 ²	
		2	
	5in x - 5cos x -		
	$= \frac{26}{1+k^2} - 3\left(\frac{1-k^2}{1+k^2}\right)$		
	$-2t-3+3t^{2}$		
	1+ &2		
	= 2t-3+3t2-2		
	1+22		
	$= t^2 + 2t -$	5	
	しゃ セン		
ij	511 x - 3 cos x - 2	2=0	
	++2+-5		
	1+62		
	z-+ze	b ³ -40C	
	2	0	
	= -2 = J	4-4212-5	
	= -2 = >		
	2		
	$t = -2 + \sqrt{24}$	t=-2-124	Check domain
	2	2	0° ≤ x ≤ 360°
ta	nえ = 1·449	$\tan \frac{2}{2} = -3.449$	0° ≤ ² = 180°
- / L	Quade a 3	(Quad 2 and 4 but Quad 4 angle)	So look for answers in quadrants 11 2 only.
be	e too big when doubled)	(will be too big.)	
	₹ = 55°24'	$\frac{2}{2} = (180^{\circ} - 73^{\circ}50')$	
	$x = 110^{\circ}48'$	$\frac{32}{2} = 106^{\circ} 10'$	
	V	TELL LU	I

Question 3 (continued) (Reas 3) T Let LPQS = LPRS = x 1) (angles in the same segment are equal) L XQT = 180°- LPQS = 180°-x LTRP = 180° - LPRS = 180° - X (Angle sum of a straight line is 180°) LXQT = LTRP Since QXRT is a cyclic quadrilateral $LXQT + LTRX = 180^{\circ}$ $\therefore 2 \angle x QT = 180^{\circ}$ LXQT = 90° : LSQT = 90° ij Since 250T=90° $LSQP = 90^{\circ}$ (Angle sum straight line is 180°) : PS is a diameter of the circle (Angle subtended by the diameter is 90° at the circumference) Since r is the radius of the circle PS= 2r

Question 4 a) $\frac{3}{2x-1}$ \rightarrow x Not well done undefined when $x=\frac{1}{2}$ multiply both sides by $(2x - 1)^2$ $\frac{3}{2\chi-1} \times (2\chi-1)^2 \quad \forall \chi (2\chi-1)^2$ 3 (2x-1) > x (2x-1)2 $3(2x-1) - x(2x-1)^2 > 0$ most students chose to don't expand. expand at this point factorise it instead! although this can be done it takes a lot more (2x-i) [3-x(2x-i)] >0time and effort $(2x-1)(3-2x^2+x) > 0$ Please factorise, it is 1 factorise out -1 and then reverse signs much more efficient and you will be less $(2\pi - 1)$, $-1(2\pi^2 - \pi - 3)$ >0 likely to make a $(2\pi - 1)(2\pi^2 - \pi - 3) \leq 0$ mistake $(2x-i)(2x-3)(x+1) \leq 0$ -1/ -1/2 make sure you answer the ひとし、 しち ちゃらしち question and incorporate but x f 1/2 :. The solution is any undefined values ルシート, -ケイン シーン

Question 4 (continued) D b) Part (i) was well dene $\tan 2d = \frac{1}{BC}$ BC = tanza 2tand 1-tan2d $= 1 - \tan^2 \alpha$ 2tand This was a tricky ii) R tand = L 2 question. You needed to establish Ac = Land an expression for AC and BD in terms of & then set the question up $\sin 2d = 1$ BD (20 B as a trig identity BD = proof. sin2d Problems arose when students wrote an expression for BD using pythagoras - although this can be done it makes the question very difficult.

Question 4 (continued)
Prove that
$$AC - BC = BD$$

 $AC - BC = \frac{1}{\tan n d} - \frac{(1 - \tan^2 d)}{(2 \tan d)}$
 $= \frac{2 - 1 + \tan^2 d}{2 \tan d}$
 $= \frac{1 + \tan^2 d}{2 \tan d}$
 $= \frac{58C^2 d}{2 \tan d}$
 $= \frac{58C^2 d}{2 \tan d}$
 $= \frac{1}{\cos^2 d}$
 $= \frac{1}{\cos^2 d}$
 $= \frac{1}{2 \sin d} \times \frac{\cos d}{\cos^2 d}$
 $= \frac{1}{2 \sin d \cos d}$
 $= \frac{1}{5m^2 d}$
 $= BD$

Question 4 (continued)
iii)
$$P(2ap, ap^2) \quad R(2aq, aq^2)$$

bradient PQ
 $m_{PQ} = \frac{aq^2 - ap^2}{2aq - 2ap}$
 $= \frac{a(q^2 - p^2)}{2a(q - p)}$
 $= \frac{a(q - p)(q + p)}{2a(q - p)}$
 $= \frac{p+q}{2}$
 $y - ap^2 = (p+q)(x - 2ap)$
 $y - ap^2 = \frac{1}{2}(p+q)x - \frac{1}{2}(p+q)x2ap$
 $y - ap^2 = \frac{1}{2}(p+q)x - ap^2 - apq$
 $y = \frac{1}{2}(p+q)x - apq$
Alternate Method
Chord of contect: PQ is a chord of
contect from the external point T (a(ptg), qt)
 $\pi = 2a(y + y)$
 $\pi = x(ptg) + 2apg$
 $y = x(ptg) + 2pg$

Question 4 (continued) (iv) $\chi^2 = 2ay$ () $y = \frac{1}{2}(p+q) - apq$ (2) R This was a tricky question: we have the line PQ Solve simultaneously and the parabola n2= Lay. Start by $\chi^{2} = 2a \left(\frac{1}{2} \left(p + q \right) \chi - apq \right) \\ \chi^{2} = a(p + q) \chi - 2a^{2}pq$ solving these simultaneasly $x^{2} - a(p+q)x + 2a^{2}pq = 0$ This is a quadratic equation. Since the line PQ is a <u>tangent</u> to the parabola there is only * This is essential to solve this question one solution : Using the discriminant $\Delta = 0$ $\Delta = b^2 - 4ac$ $=(-a(p+q))^{2} - 4.1.2a^{2}pq$ $= a^{2}(p+q)^{2} - 8a^{2}pq$ $= a^2 \left[(p+q)^2 - 8pq \right]$ Since $\Delta = 0$ $a^2 \left[\left(p + q \right)^2 - 8 p q \right] = 0$ $(p+q)^2 - 8pq = 0$ $(p+q)^2 = 8pq$

Question 4 (continued) v) T(a(p+q), apq) You need to eliminate prog. $\chi = a(p+q) \Rightarrow p+q = \frac{\chi}{a}$ Use your x and y coordinates to get an y=apq ⇒ pq= ⇒ expression for ptg. and for pg Using part iv) Substitute these expressions into the equation from part (v) (P+q)2 = 8pg $\left(\frac{x}{a}\right)^2 = 8 \frac{y}{a}$ $\chi^2 = 8y$ $\kappa^2 = \frac{8}{2}y \times a^2$ $x^2 = 8ay$ The locus of T is a parabola.