

SYDNEY BOYS HIGH SCHOOL

3 UNIT MATHEMATICS

Year 11 Yearly Examination

September 2000

Time Allowed: 90 minutes

Total Marks: 72
Examiner: Mr R Dowdell

INSTRUCTIONS:

- Attempt all questions.
- All questions are of equal value.
- All necessary working should be shown in every question. Full marks may not be awarded if work is careless or badly arranged.
- Return your answers in 4 booklets. Each booklet must show your name.
- If required, additional Writing Booklets may be obtained from the Examination Supervisor upon request.

Question 1: (18 marks)
(a) Find the point $P(x, y)$ which divides the interval joining $X(-2,7)$ and $Y(3,17)$ internally in the ratio 3:2.
(b)

$A B=9 \mathrm{~cm}, B C=8 \mathrm{~cm}, C D=7 \mathrm{~cm}$
If $A P=P D$, calculate the length of $B P$.
(c) If $x=2+\sin \alpha$ and $y=4+3 \cos \alpha$, find a relationship between x and y which does not involve α.
(d) For $P(x)=2 x^{3}-7 x^{2}-7 x+30$,
(i) evaluate $P(3)$;
(ii) evaluate $P(-2)$;
(iii) find all the zeroes of $P(x)$.
(e) If α, β and γ are the roots of $7 x^{3}+5 x^{2}-11 x+2$, evaluate
(i) $\alpha+\beta+\gamma$;
(ii) $\alpha \beta+\alpha \gamma+\beta \gamma$;
(iii) $\alpha \beta \gamma$;
(iv) $\alpha^{2}+\beta^{2}+\gamma^{2}$;
(v) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$;
(vi) $\quad(\alpha+1)(\beta+1)(\gamma+1)$.

Question 2: (18 marks) START A NEW BOOKLET

(a) Find the acute angle (to the nearest degree) between the lines $y=5 x-4$ and $y=-x+3$.
(b) If $\tan A$ and $\tan B$ are the roots of the equation $3 x^{2}-5 x-1=0$, find the value of $\tan (A+B)$.
(c) Find the general solution of the equation $\sin 2 x=2 \cos ^{2} x$
(d) A monic cubic polynomial leaves a remainder of $x+8$ when divided by
$x^{2}+4$ and when divided by x leaves a remainder of -4 .
Find the polynomial in the form $a x^{3}+b x^{2}+c x+d$.
(e) Solve $\frac{x-3}{x^{2}-x} \geq-2$.

Graph your solution on a number line.

Question 3: (18 marks) START A NEW BOOKLET
(a) Show that $\sin 8 \theta \sin 2 \theta \equiv \sin ^{2} 5 \theta-\sin ^{2} 3 \theta$.
(b) Solve the equation $x^{2}+2 x-4+\frac{3}{x^{2}+2 x}=0$
(c) If $\cos A=\frac{7}{9}$ and $\sin B=\frac{1}{3}, 0 \leq A \leq \frac{\pi}{2}$ and $0 \leq B \leq \frac{\pi}{2}$,
(i) show, without a calculator, that $A=2 B$;
(ii) find the value of $\cos (A+B)$ in simplest surd form.
(d) The elevation of a hill at a place P due east of it is 48°, and at a place Q due south of P the elevation is 30°. If the distance from P to Q is 500 metres, find the height of the hill (correct to 3 significant figures).

Question 4: (18 marks) START A NEW BOOKLET

Marks
(a) If $f(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)+\sin \left(x+\frac{\pi}{4}\right)}{\cos \left(x-\frac{\pi}{4}\right)-\cos \left(x+\frac{\pi}{4}\right)}$,
(i) comment on the value of $f(0)$;
(ii) simplify the expression for $f(x)$;
(iii) sketch $y=f(x)$ for $-2 \pi \leq x \leq 2 \pi$.
(b) (i) Simplify the square of $\frac{\sqrt{6}+\sqrt{2}}{4}$ and hence state the positive square root of $\frac{2+\sqrt{3}}{4}$.
(ii) Given that θ is acute and that $\cos \theta=\frac{\sqrt{6}-\sqrt{2}}{4}$, find the exact value of $\sin \theta$.
(iii) Hence, or otherwise, evaluate $\sin 2 \theta$ and deduce the exact value(s) of θ, expressing your answer in radians.
(c) (i) Show that the distance from (p, q) to the line $y=x$ is given by

$$
d=\frac{|p-q|}{\sqrt{2}} .
$$

(ii) A point $P(x, y)$ moves such that its distance from the line $y=x$ is equal to its distance from the point $A(-2,2)$.
(α) Show that the equation of the locus of P is

$$
x^{2}+8 x+y^{2}-8 y+2 x y+16=0 .
$$

(β) What type of curve does this locus represent?

END OF PAPER

