

SYDNEY BOYS HIGH SCHOOL

3 UNIT MATHEMATICS

Year 11 Yearly Examination

September 2000

Time Allowed: 90 minutes

Total Marks: 72

Examiner: Mr R Dowdell

INSTRUCTIONS:

- Attempt *all* questions.
- *All* questions are of equal value.
- All necessary working should be shown in every question. Full marks may not be awarded if work is careless or badly arranged.
- Return your answers in 4 booklets. Each booklet must show your name.
- If required, additional Writing Booklets may be obtained from the Examination Supervisor upon request.

Question 1: (18 marks)

(a) Find the point P(x, y) which divides the interval joining X(-2, 7) and Y(3, 17) internally in the ratio 3:2.

If AP = PD, calculate the length of *BP*.

(c) If $x = 2 + \sin \alpha$ and $y = 4 + 3\cos \alpha$, find a relationship between x and y which does not involve α .

(d) For
$$P(x) = 2x^3 - 7x^2 - 7x + 30$$
,

- (i) evaluate P(3);
- (ii) evaluate P(-2);
- (iii) find all the zeroes of P(x).

(e) If α , β and γ are the roots of $7x^3 + 5x^2 - 11x + 2$, evaluate

- (i) $\alpha + \beta + \gamma$;
- (ii) $\alpha\beta + \alpha\gamma + \beta\gamma;$
- (iii) $\alpha\beta\gamma$;
- (iv) $\alpha^2 + \beta^2 + \gamma^2$;
- (v) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma};$
- (vi) $(\alpha+1)(\beta+1)(\gamma+1)$.

2

3

2

4

7

Question 2: (18 marks) START A NEW BOOKLET Marks

- (a) Find the acute angle (to the nearest degree) between the lines y = 5x 4 and y = -x + 3.
- (b) If $\tan A$ and $\tan B$ are the roots of the equation $3x^2 5x 1 = 0$, find the value of $\tan(A + B)$.
- (c) Find the general solution of the equation $\sin 2x = 2\cos^2 x$ 4
- (d) A monic cubic polynomial leaves a remainder of x+8 when divided by 4 $x^2 + 4$ and when divided by x leaves a remainder of -4.

Find the polynomial in the form $ax^3 + bx^2 + cx + d$.

(e) Solve
$$\frac{x-3}{x^2-x} \ge -2$$
.

Graph your solution on a number line.

Question 3: (18 marks) START A NEW BOOKLET

(a) Show that
$$\sin 8\theta \sin 2\theta \equiv \sin^2 5\theta - \sin^2 3\theta$$
.

(b) Solve the equation
$$x^2 + 2x - 4 + \frac{3}{x^2 + 2x} = 0$$
 4

(c) If
$$\cos A = \frac{7}{9}$$
 and $\sin B = \frac{1}{3}$, $0 \le A \le \frac{\pi}{2}$ and $0 \le B \le \frac{\pi}{2}$, 4

- (i) show, without a calculator, that A = 2B;
- (ii) find the value of cos(A + B) in simplest surd form.
- (d) The elevation of a hill at a place P due east of it is 48°, and at a place Q due south of P the elevation is 30°. If the distance from P to Q is 500 metres, find the height of the hill (correct to 3 significant figures).

Page 4 of 5

Marks

4

Question 4: (18 marks) START A NEW BOOKLET

(a) If
$$f(x) = \frac{\sin(x - \frac{\pi}{4}) + \sin(x + \frac{\pi}{4})}{\cos(x - \frac{\pi}{4}) - \cos(x + \frac{\pi}{4})}$$
,

- (i) comment on the value of f(0);
- (ii) simplify the expression for f(x);
- (iii) sketch y = f(x) for $-2\pi \le x \le 2\pi$.

(b) (i) Simplify the square of
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$
 and hence state the positive square root of $\frac{2 + \sqrt{3}}{4}$.

- (ii) Given that θ is acute and that $\cos \theta = \frac{\sqrt{6} \sqrt{2}}{4}$, find the exact value of $\sin \theta$.
- (iii) Hence, or otherwise, evaluate $\sin 2\theta$ and deduce the exact value(s) of θ , expressing your answer in radians.

(c) (i) Show that the distance from
$$(p, q)$$
 to the line $y = x$ is given by

$$d = \frac{|p-q|}{\sqrt{2}}.$$

- (ii) A point P(x, y) moves such that its distance from the line y = x is equal to its distance from the point A(-2, 2).
 - (α) Show that the equation of the locus of *P* is $x^2 + 8x + y^2 - 8y + 2xy + 16 = 0$.
 - (β) What type of curve does this locus represent?

END OF PAPER

6

6

6