SYDNEY BOYS HIGH SCHOOL

YEAR 11 YEARLY EXAMINATION 2001

MATHEMATICS

EXTENSION

Time allowed - 2 hours
Examiner: C Kourtesis

DIRECTIONS TO CANDIDATES

- All questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Use a new booklet for each question.

If required, additional booklets may be obtained from the Examination Supervisor upon request.

Question 1 (16 marks)

(a) Express 120° in radians.
(b) Find the value of $19^{-0.5}$ correct to two decimal places.
(c) Factorize $8-x^{3}$.
(d) Find the gradient of the line $3 x+4 y=12$.
(e) If $a^{b}=3$, find the value of $a^{4 b}-5$.
(f) Simplify $\frac{\log _{2} 32}{\log _{2} 16}$.
(g) If

$$
y=\frac{1}{x^{2}+3} \quad \text { find } \quad \frac{d y}{d x}
$$

(h) If $f(\theta)=\theta^{4}+4 \theta^{3 / 2}$ find the value of $f^{\prime}(\theta)$.
(i) Find the remainder when the polynomial $P(x)=x^{3}-4 x$ is divided by $(x+3)$
(j) Given the equation of the parabola

$$
(x-2)^{2}=16(y+4) \quad \text { find the: }
$$

(i) coordinates of the vertex
(ii) coordinates of the focus
(iii) equation of the directrix

Question 2 (15 marks)

(a) (i) Sketch the graphs of $y=x+1$ and $y=|x-2|$ on the same diagram.
(ii) Find the coordinates of any points of intersection.
(b) The graph of $y=10(x+1)(x-3)$ intersects the x axis at two points A and B. Find the length of the line segment $A B$.
(c)

$A B$ is a diagonal of a cube of side $x \mathrm{~cm}$ and C is a vertex on the base of the cube. Determine the size of $\angle A B C$ correct to the nearest minute.
(d) The point (x, y) is determined by the parametric equations $x=3 t-1$ and $y=t^{2}-2 t$ where $t \geq 0$.
Find the value of x corresponding to $y=3$.
(e) Find the values of a, b, c and d if the following equation is satisfied by all real values of x.
$(a x+b)\left(x^{2}+3 c\right)=x^{3}-2 x^{2}+6 x+d$.
(f) If $\sec \theta=\sqrt{5}$ and $\frac{\pi}{2}<\theta<2 \pi$, find the exact value of $\tan 2 \theta$.

Question 3 (18 marks)
(a) The interval $A B$ has end points $A(-2,7)$ and $B(8,-8)$.

Find the coordinates of the point which divides $A B$ internally in the ratio $2: 3$.
(b) If α, β and γ are the roots of the equation

$$
x^{3}-2 x^{2}+1=0
$$

find the:
(i) value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$
(ii) equation whose roots are $-\alpha,-\beta,-\gamma$
(c) Solve the inequality

$$
\frac{2}{x-1} \leq 1
$$

(d) (i) Write down the expansion of $\sin (A+B)$.
(ii) Solve for θ in the interval $0 \leq \theta \leq 2 \pi$

$$
\sin 2 \theta=\frac{1}{2}
$$

(iii) Write down the general solution of

$$
\sin 2 \theta=\frac{1}{2}
$$

(e) The polynomial $P(x)=x^{3}-6 x^{2}+k x+14$ has a zero at $x=1$. Find the:
(i) value of k.
(ii) linear factors of $P(x)$.
(iii) roots of the equation $P(x)=0$.

Question 4 (15 marks)

(a) If $A x-6 y-6 B=0$ and $7 x-18 y+9=0$ represent the same straight line, find the values of A, B and C.
(b) Find the equation of the parabola if its axis is $y=0$ and the line $y=x+3$ is a tangent to the curve.
(c) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y . M$ is the midpoint of the chord $P Q$. The tangents at P and Q meet at the point N.
(i) Show that the equation of the tangent at P is $y-p x+a p^{2}=0$ and write down the equation of the tangent at Q.
(ii) Find the coordinates of M and N.
(iii) Show that $M N$ is parallel to the Y axis.
(iv) Find the coordinates of T, the midpoint of $M N$.
(v) Show that T lies on the parabola.

Question 5 (16 marks)

(a) If $F(x)=\log _{2}\left(\frac{x+1}{x}\right)$ and $F(1)+F(2)+F(3)=\log _{2} K$
(K a constant) find the value of K.
(b) The normal to the curve $y=\frac{a x+b}{\sqrt{x}}$
(a, b constants) has equation $4 \mathrm{a}+\mathrm{y}=22$ at the point where $x=4$. Find the values a and b.
(c) The equation $x^{3}+3 H x+L=0$ has two equal roots. Prove that

$$
L^{2}+4 H^{3}=0
$$

(d) A man travelling along a straight flat road passes three points at intervals of 200 m . From these points he observes the angle of elevation of the top of a hill to the left of the road to be respectively $30^{\circ}, 45^{\circ}$ and again 45°.
(i) Draw a diagram of the above.
(ii) Find the height of the hill.

SYDNEYBOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

SEPTEMBER 2001

YEARLY EXAMINATION

YEAR 11

Mathematics
 Extension

Sample Solutions

(1)

$$
\begin{aligned}
& \text { (a) } 180^{\circ}=\pi \\
& 1^{\circ}=\frac{\pi}{180} \\
& 120=\frac{\pi}{180} \times 120=\frac{2 \pi}{3} .(1)
\end{aligned}
$$

(b) $0.2,3$ (1)
(i) let $P(x)=x^{5}-4 x$.
let $x+3=0$

$$
x=-3 \text {. }
$$

$$
\begin{aligned}
P(-3) & =(-3)^{3}-4(-3) \\
& =-27+12
\end{aligned}
$$

$$
\begin{equation*}
=-15 \tag{2}
\end{equation*}
$$

(c)

$$
8-x^{3}=(2-x)\left(4+2 x+x^{2}\right)
$$

i+4x+8x $x^{2}+4 x-2 x^{2}-x^{3}$
(d) $3 x+4 y=12$

$$
\text { (j) }(x-2)^{2}=16(y+4)
$$

$$
\begin{aligned}
& 4 y=-3 x+12 \\
& 4=-3 x+3.3
\end{aligned}
$$

$$
y=-\frac{3}{4} x+3
$$

$$
m=-\frac{3}{4} \text { (1) }
$$

(e)

$$
\begin{align*}
a^{4 b}-5 & =\left(a^{b}\right)^{4}-5 \\
& =3^{4}-5=76 \tag{1}
\end{align*}
$$

(i) $V(2,-4)$ (i)

(f) $\frac{\log _{2} 2^{5}}{\log _{2} 2^{4}}=\frac{5 \log _{2} 2}{4 \log _{2} 2}=\frac{5}{4}(2)$
(ii) $F(2,0)$ (1)
(iii) $y=-8(1)$
g)

$$
\begin{align*}
& y=\left(x^{2}+3\right)^{-1} \\
& y^{\prime}=-1\left(x^{2}+3\right)^{-2} \times 2 x=\frac{-2 x}{\left(x^{2}+3\right)^{2}}
\end{align*}
$$

(h)

$$
\begin{aligned}
f(\theta) & =\theta^{4}+4 \theta^{\frac{3}{2}} \\
f^{\prime}(\theta) & =4 \theta^{3}+4 \times \frac{3}{3} \theta^{\frac{1}{2}} \\
& =4 \theta^{3}+6 \theta^{\frac{2}{2}}
\end{aligned}
$$

Question 2
a) (1)

(1) $|x-2|=x+1$

Aguare both sides

$$
\begin{aligned}
& x^{2}-4 x+4=x^{2}+2 x+1 \\
& 3=6 x \\
& x=1 / 2 \\
& \text { Test LiAs }=\left|\frac{1}{2}-2\right| \\
&=\frac{3}{2} \\
& \text { RHS }=\frac{3}{2} \\
& \therefore\left(\frac{3}{2}, \frac{5}{2}\right) \text { is in teradic }
\end{aligned}
$$

b)

C) Buse diugratal $B C^{2}=m^{2}+m^{2}$

$$
\begin{aligned}
& B C=\sqrt{2} m \\
\tan \theta & =\frac{m}{\sqrt{2} m} \\
& =\frac{1}{\sqrt{2}} \\
\therefore \theta & \doteqdot 35^{\circ} 16^{\prime}
\end{aligned}
$$

(d)

$$
x=3 t-1, y=t^{2}-2 t \quad t \geqslant 0
$$

Whan $y=3$

$$
\begin{aligned}
& t^{2}-2 t-3=0 \\
& (t+1)(t-3)=0 \\
& t=3 \text { or }-1
\end{aligned}
$$

$$
\therefore t=3
$$

So $x=3 \times 3-1$

$$
x=8
$$

$$
\text { e) } \begin{aligned}
& (a x+b)\left(x^{2}+3 c\right) \\
= & a x^{3}+3 a c x+b x^{2}+3 b c \\
= & a x^{3}+b x^{2}+3 a c x+3 b c
\end{aligned}
$$

$\geq x^{3}-2 x^{2}+6 x+d$
Equatiry wefficients:
x^{3} :

$$
\begin{aligned}
a & =1 \\
b & =-2 \\
3 c x & =6 \\
3 b c & =d \quad \therefore c=2 \\
\therefore d & =3 \times(-2) \times 2 \\
d & =-12
\end{aligned}
$$

(d) $\quad \sec \theta=\sqrt{5}$

$$
\begin{aligned}
\cos \theta & =\frac{1}{\sqrt{5}} \therefore \operatorname{th} \text { Quad } \\
\theta & \doteqdot 63.435^{\circ} \\
\therefore \tan 2 \theta & \doteqdot-\frac{4}{3}
\end{aligned}
$$

(1) $x^{2}=4 a y$
(1)

$$
\begin{equation*}
x_{4}^{2} / a=y \tag{1}
\end{equation*}
$$

$$
\frac{d y}{d x}=\frac{2 x}{d x}=2 a \text { at } x p
$$

\& y-ap ${ }^{2}=p$ 旁 $(x-2 q)^{x=p}$

$$
y-c y^{2}=p x-2 y^{2} \text { (2) }
$$

$$
y-p x+a p^{2}=0
$$

at d: $y-\varepsilon x+q^{2}=0$.
(A) $A=\frac{2}{3}$

$$
\begin{equation*}
B=-1 / 2 \tag{1}
\end{equation*}
$$

(II) $M:\left[a\left(p(t), \frac{a\left(r^{2}+r^{2}\right)}{2}\right]\right.$
(1)

$$
\begin{aligned}
& \text { N: } \quad y-p x+q^{2}=y-q x+a q^{2} \\
& q x-p x=a q^{2}-a y^{2} \\
& x(q-p)=a(q+p)(q-p) \\
& x=a(q+p) .
\end{aligned}
$$

so $y-a p(q+r)+y^{2}=0$

$$
\begin{aligned}
& y-a p(q+n)+q^{2}=0 \\
& y-a p q-a y^{2}+q^{2}=0
\end{aligned}
$$

N: $\begin{aligned} & y=a p q \\ & {[a(q+p), a q]}\end{aligned}$
(i4) X coure $f M$ Mor $a(P H)$

$$
\begin{aligned}
& \text { we fMor a (} \mathrm{PH} \text {) } \\
& \therefore \text { Mor prabeb bam }
\end{aligned}
$$

\int connt T
(iv) Mune MN: $\left[a(p+z), \frac{a\left(p^{2}\left(y^{2}\right)+a p v\right.}{2}\right]$
(1)
(v) $\left[a(p+q), \frac{a p^{2}+a q^{2}+2 q p i}{4}\right]$

$$
4 y=x^{2} / 2
$$

(3)

Coons $f T$

$$
\begin{aligned}
& {\left[a(p+q), \frac{a(p+q)^{2}}{4}\right]} \\
& x=a(p+q) \\
& x / a=p+q \\
& \therefore y=\frac{a(p+q)^{2}}{4}
\end{aligned}
$$

$$
y=\frac{a(x / a)^{2}}{4}
$$

$$
u y=a \cdot x_{2}^{2} / 2
$$

$$
x^{2}=4 a y
$$

\therefore Therar perable

$$
\begin{aligned}
& q^{5} \\
& \text { (a) } \quad F(x)=\log _{2}\left(\frac{x+1}{x}\right) \\
& \log m+\log n=\log (m \times n) \\
& F(1)+F(2)+F(3)+F(4)=\log _{2}\left(\frac{2}{1}\right)+\log _{2}\left(\frac{3}{2}\right)+\log _{2}\left(\frac{4}{3}\right) \\
& =\log _{2}\left(\frac{2}{1} \times \frac{3}{2} \times \frac{4}{3}\right) \\
& =\log _{2} 4 \\
& \therefore \quad \therefore k=4 \\
& \text { (b) } y=\frac{a x+b}{\sqrt{x}}=a \sqrt{x}+\frac{b}{\sqrt{x}}=a x^{\frac{1}{2}}+b x^{-1 / 2} \\
& \therefore y^{\prime}=\frac{1}{2} a x^{-1 / 2}-\frac{b}{2} x^{-3 / 2} \\
& \begin{aligned}
x=4, \quad y^{\prime} & =\frac{1}{2} a \times 4^{-1 / 2}-\frac{b}{2}(4)^{-3 / 2} \quad y=\frac{4 a+b}{2} \\
& =\frac{a}{4}-\frac{b}{16} \\
& =\frac{4 a-b}{16} \\
\therefore m_{\perp} & =\frac{-16}{4 a-b}=\frac{16}{b-4 a}=\underset{\text { nradient of }}{\text { normal }}
\end{aligned} \\
& \left.\begin{array}{l}
4 x+y=22 \\
x=4, y=6
\end{array} \quad \therefore m=-4 \quad \therefore \begin{array}{l}
\frac{16}{b-4 a}=-4 \\
\frac{4 a+b}{2}=6
\end{array}\right] \\
& \left.\begin{array}{rlrl}
\therefore 16 & =-4 b+16 a & -(1) \Rightarrow 4 & =-b+4 a . \\
14 & =b+4 a & -(2)
\end{array} \quad 12=b+4 a .\right]+ \\
& \therefore 8 a=16 \\
& a=2 \Rightarrow b=4 \\
& a=2, b=4
\end{aligned}
$$

$$
\text { (c) } x^{3}+3 H x+L
$$

Let the voct, be α, α, β

$$
\left.\begin{array}{l}
\alpha+\alpha+\beta=0 \\
\alpha^{2}+\alpha \beta+x \beta=3 H \\
\alpha^{2} \beta=-L
\end{array}\right]
$$

$$
\left.\begin{array}{ll}
2 \alpha+\beta=0 & \Rightarrow \beta=-2 \alpha \\
\alpha^{2}+2 x \beta=3 H & \Rightarrow \alpha^{2}+2 \alpha(-2 \alpha)=3 H \Rightarrow-3 \alpha^{2}=3 H \Rightarrow \alpha^{2}=-H \\
\alpha^{2} \beta=-L & \Rightarrow \alpha^{2}(-2 \alpha)=-L \Rightarrow-2 \alpha^{3}=-L \\
& \Rightarrow \alpha^{3}=\frac{L}{2} \Rightarrow \alpha=\left(\frac{L}{2}\right)^{\frac{1}{3}}
\end{array}\right]
$$

$$
\begin{gathered}
\therefore\left[\left(\frac{L}{2}\right)^{\frac{1}{3}}\right]^{2}=-H \\
0\left(\frac{L}{2}\right)^{2 / 3}=-H \\
\therefore\left(\frac{L}{2}\right)^{2}=(-H)^{3}=-H^{3} \\
\therefore L^{2}=-4 H^{3} \\
\therefore L^{2}+4 H^{3}=0 \quad Q E D
\end{gathered}
$$

(d)

$\left.\therefore \begin{array}{rl}D x^{2}+100^{2} & =h^{2}-\text { - (1) } \\ 0 x^{2}+300^{2} & =3 h^{2}-6\end{array}\right] \quad$ (Pythagovas', Theorem)

$$
2 h^{2}=300^{2}-100^{2}
$$

$$
h^{2}=\frac{300^{2}-100^{2}}{2}
$$

$$
\therefore h=\sqrt{ }
$$

$$
=200 \mathrm{~m}
$$

\therefore The height of the will is 200 m

