SYDNEY BOYS’ HIGH SCHOOL

MOORE PARK, SURRY HILLS

Year 11 YEARLY EXAMINATIONS - September 2002

MATHEMATICS

Extension 1

Time allowed - Ninety Minutes
Examiner: A.M.Gainford

DIRECTIONS TO CANDIDATES

- ALL questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Use a new booklet for each question.
- If required, additional paper may be obtained from the Examination Supervisor upon request.

Question 1. (18 Marks)

(a) Simplify $\frac{x+1}{x}$ where $x=\sqrt{2}+1$, expressing your answer with rational denominator.
(b) Solve for x :
(i) $|4-x|=3$
(ii) $x^{2}-9<0$
(iii) $\frac{1}{x-2}<1$
(c) Find the remainder when the polynomial $P(x)=x^{3}-4 x$ is divided by $x+3$.
(d) Simplify $\frac{x^{3}+27}{x^{2}-3 x+9}$
(e) Give the general solution of the equation $\cos \left(\theta+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
(f) Find the focus and directrix of the parabola $y=\frac{x^{2}}{8}+x+\frac{1}{4}$.
(g) Express $\cos 4 \theta$ as an expression in powers of $\cos \theta$ only.

Question 2. (18 Marks)
(a) Differentiate:
(i) $2 x^{3}-4 x+1$
(ii) $\sqrt{x}-\frac{1}{x}$
(iii) $\left(x^{2}-2\right)^{5}(2 x+1)$
(iv) $\frac{4}{4-x^{2}}$
(b) (i) Express $\sqrt{2} \sin \theta+\sqrt{2} \cos \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0, \alpha$ is 4 acute.
(ii) Hence or otherwise sketch the graph of $y=\sqrt{2} \sin \theta+\sqrt{2} \cos \theta$ in the domain $0 \leq \theta \leq 2 \pi$.
(c) Find the exact value of $\operatorname{cosec} 105^{\circ}$.
(d) How many terms of the arithmetic series $96+93+90+\ldots$. must be taken to give a 2 sum of zero?
(e) Given the polynomial $P(x)=x^{3}+3 x^{2}-x-3$.
(i) Use the factor theorem to find a zero of the polynomial.
(ii) Express $P(x)$ as a product of three linear factors.

Question 3. (18 Marks)
(a) Given $\log _{a} 5=0 \cdot 827$ and $\log _{a} 2=0 \cdot 356$, find $\log _{a} 50$.
(b) Draw neat sketches of the following functions, showing their principle features:
(i) $y=1-|x|$
(ii) $y=\log _{2} x$
(iii) $y=\sqrt[3]{x}$
(c) Given the function $f(x)=2^{x}+2^{-x}$
(i) Find $f(-1)$.
(ii) Show that $f(x)$ is even.
(iii) Find $f(x)=0$.
(iv) State the domain and range of $f(x)$.
(v) Sketch the function.
(d) A geometric series has 4 as its third term and $-\frac{32}{27}$ as its sixth term. Find the first term and the common ratio.
(e) Calculate to the nearest minute the acute angle between the lines $5 x-4 y=17$ and $3 x+2 y=8$.

Question 4. (18 Marks)

(a)

In the isosceles triangle $A B C, \angle A B C=\angle A C B=\alpha$. The points D and E lie on $B C$ and $A C$, so that $A D=A E$, as shown in the diagram. Let $\angle B A D=\beta$.
(i) Explain why $\angle A D C=\alpha+\beta$.
(ii) Find $\angle D A C$ in terms of α and β.
(iii) Hence, or otherwise, find $\angle E D C$ in terms of β.
(b) Let $P\left(2 a p, a p^{2}\right)$ be a point on the parabola $x^{2}=4 a y$.
(i) Write down the equation of the tangent at P.
(ii) Find the co-ordinates of T, the point where the tangent meets the axis of the parabola.
(iii) Show that the tangent at P is equally inclined to the axis of the parabola and to the line joining P to the focus S.
(c) Find the value of the constants a and b if $x^{2}-2 x-3$ is a factor of the polynomial

$$
P(x)=x^{3}-3 x^{2}+a x+b
$$

(d) The point $P(11,7)$ divides $A B$ externally in ratio 3:1. If B is $(6,5)$, find the coordinates of A.
(e) An observer (O) in a lighthouse is 180 m vertically above a point B at sea level on the shore. He observes the frigate HMS Shropshire (S) on a bearing of $210^{\circ} \mathrm{T}$ and an angle of depression of $5^{\circ} 21^{\prime}$. He also notes that Wolf Rock (W) is on a bearing of $165^{\circ} \mathrm{T}$ and an angle of depression of $3^{\circ} 40^{\prime}$.
(i) Sketch a diagram to represent this situation.
(ii) Calculate the distance of the frigate from the rock, to the nearest metre.
(iii) Calculate the true bearing from the frigate to the rock.

This is the end of the paper.

SYDNEYBOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

SEPTEMBER 2002

YEARLY EXAMINATION

YEAR 11

Mathematics
 Extension

Sample Solutions

22

$$
\text { a) (i) } \frac{d}{d x}\left(2 x^{3}-4 x+1\right) ~=6 x^{2}-4 .
$$

(iii) $\left.\frac{d}{d x}\left(x^{2}-2\right)^{-1}(2 x+1)\right)$

$$
u=\left(x^{2}-2\right)^{5}
$$

$$
u^{\prime}=5\left(x^{2}-2\right)^{4} \cdot 2 x
$$

$$
=(2 x+1) \cdot 10 x\left(x^{2}-2\right)^{4}+\left(2 x^{2}-2\right)^{5} \cdot 2
$$

$$
=10 n\left(x^{2}-2\right)^{4}
$$

$$
=2\left(x^{2}-2\right)^{4}\left(5 x(2 x+1)+x^{2}-2\right)
$$

$$
r=2 x+1
$$

$$
=2\left(x^{2}-2\right)^{4}\left(10 x^{2}+5 x+x^{2}-2\right)
$$

$$
r^{\prime}=2
$$

$$
=2\left(x^{2}-2\right)^{4}\left(11 x^{2}+5 x-2\right)
$$

(iv) $\frac{d}{d x}\left(\frac{4}{4-2}\right)$

$$
=\frac{d}{d x}\left(x\left(4-x^{2}\right)^{-1}\right)
$$

$=4 \cdot-1\left(4-x^{2}\right)^{-2} \cdot-2 x$
$\langle 2\rangle$

$$
=\frac{8 x}{\xi-x^{2}}
$$

(b) (i) $\sqrt{2} \sin \theta+\sqrt{2} \cos \theta$

$$
\begin{aligned}
& =2\left(\frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta\right) \\
& =2\left(\sin \theta \cos \frac{\pi}{4}+\cos \theta \sin \frac{\pi}{4}\right) \\
& =2 \sin \left(\theta+\frac{\pi}{4}\right)
\end{aligned}
$$

(ii)

(c) $\operatorname{cosec} 105^{\circ}$

$$
\begin{aligned}
& =\frac{1}{\sin (60+45)^{\circ}} \\
& =\frac{1}{\sin 60^{\circ} \cos 48^{\circ}+\cos 60^{\circ} \sin 45^{\circ}} \\
& =\frac{1}{\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}}} \\
& =\frac{2 \sqrt{2}}{\sqrt{3}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta \\
& \text { zerocs } \theta=0, \pi, 2 \pi \\
& \sin \left(\theta+\frac{\pi}{4}\right) \\
& \text { zeroes } \theta+\frac{\pi}{4}=0, \pi, 2 \pi \\
& \theta=-\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

(d)

$$
\left.\begin{array}{rl}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
0 & =\frac{n}{2}(192+(n-1) \times-3) \\
\therefore 0 & =n(192-3 n+3) \\
0 & =n(195-3 n) \\
\therefore n & =0 \quad \text { or } \quad 3 n
\end{array}\right)=1950
$$

$\therefore 65$ tem reonires.
(e) $\quad P(x)=x^{3}+3 x^{2}-x-3$.
(i) $p(1)=1+3-1-3=0$
$\therefore x-1$ is a facher.

$$
\text { (i). } \begin{aligned}
P(x) & =\operatorname{C}(-)(x)(x+3)-1(x+3) \\
& =(x+3)\left(x^{2}-1\right) \\
& =(x+3)(x+1)(x-1)
\end{aligned}
$$

(2) 3. (a) $\log _{a} 50=\log _{a} 5^{2} \times 2$,

$$
\begin{aligned}
& =2 \log _{a} 5+\log _{a} 2, \\
& =2 \times 0.827+0.356, \\
& =2 \cdot 01 .
\end{aligned}
$$

2 (b) (i)

2
(ii)

2
(iii)

1
(c) (i) $\begin{aligned} f(-1) & =\frac{1}{2}+2, \\ \cdots & =2 \frac{1}{2} .\end{aligned}$

1
(ii) $f(-x)=2^{-x}+2^{-(-x)}$,

$$
=2^{-x}+2^{x}
$$

$$
=f(x)
$$

\therefore the function is even.

1 (iii) $2^{x}>0$ and $2^{-x}>0$,
$\therefore 2^{x}+2^{-x} \neq 0$, i.e., there is no solution.
2 (iv) Domain is all real x.
Range is $f(x) \geq 2$.

2 (d) With the usual notation:

$$
\begin{aligned}
& a r^{2}=4, \\
& \begin{aligned}
a r^{5}=\frac{-32}{27}
\end{aligned} \\
& \begin{aligned}
& \text { Now, } \begin{aligned}
\frac{a r^{5}}{a r^{2}} & =\frac{-32}{27} \times \frac{1}{4}, \\
& =\frac{-8}{27}, \\
& =r^{3}
\end{aligned} \\
& \text { So } r=-\frac{2}{3} . \\
& a \times\left(-\frac{2}{3}\right)^{2}=4, \\
& \text { Hence } a=4 \times \frac{9}{4}, \\
&=9 .
\end{aligned}
\end{aligned}
$$

1 (e) $m_{1}=\frac{5}{4}$ and $m_{2}=-\frac{3}{2}$,

$$
\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\tan ^{-1}\left(\frac{22}{7}\right),
$$

$\approx 72^{\circ} 21^{\prime}$ (Nearest minute).
Alternative method:

$$
\tan ^{-1}\left(\frac{5}{4}\right) \approx 51^{\circ} 20^{\prime} 25^{\prime \prime}
$$

$$
\tan ^{-1}\left(-\frac{3}{2}\right) \approx 123^{\circ} 41^{\prime} 24^{\prime \prime}
$$

$123^{\circ} 41^{\prime} 24^{\prime \prime}-51^{\circ} 20^{\prime} 25^{\prime \prime} \approx 72^{\circ} 21^{\prime}$ (Also to the nearest minute).

Quectivi 4
(a) (i) $\angle A D C=\alpha+\beta$ (extenir angle is equal to
the ver y de inemor phrite anges.)

(I)

$$
\begin{align*}
\angle D A C & =180-\alpha-\alpha-\beta . \\
& =180-2 \alpha-\beta . \tag{1}
\end{align*}
$$

(III) . $\angle A D E \frac{2 \alpha+\beta}{2}$ tave angle y veroculer Δ. $=\alpha+\frac{\beta}{\alpha}$.

$$
\begin{align*}
\therefore \angle E D C & =\angle A D C-\angle A D E \\
& =\alpha+\beta-\left(\alpha+\frac{\beta}{2}\right) \tag{2.}\\
& =\frac{\beta}{\alpha} .
\end{align*}
$$

(b)

(1) $y-t x+a t^{2}=0$.
(11) T is $\left(0,-a t^{2}\right)$
(II) $S P=\sqrt{\left(a p^{2}-a\right)^{2}+(2 a p-0)^{2}}$

$$
=\sqrt{a^{2} p^{2}-\alpha a^{2} p^{2}+a^{2}+4 a^{2} p^{2}}
$$

$$
=\sqrt{a^{2}\left(\rho^{2}+1\right)^{2}}
$$

$$
=a\left(\rho^{2}+1\right)
$$

$$
\begin{align*}
& S T_{T}=a+a p^{2} \\
&=a\left(p^{2}+1\right) \tag{2.}\\
& \therefore S_{T}=S p \\
& \therefore \text { DPST is roceles } \\
& \therefore \angle P_{S}=\angle S P T .
\end{align*}
$$

(c) of $x^{2}-2 x-3=(x-3)(x+1)$
is a factor if $f(x)=x^{3}-3 r^{2}+a x+b$.

$$
\begin{aligned}
& \text { Then } x-3 \text { is a factor } \Rightarrow z^{2}(3)=0 \\
& x \quad x+1 \text { is a fadis } \Rightarrow R(-1)=0
\end{aligned}\left\{\begin{array}{r}
\text { alle } \\
\text { al }
\end{array}\right.
$$

/heree $27-27+3 a+b=0$

$$
\begin{align*}
& 3 a+b=0 . \\
& a \text { a }-1-3-a+b=0 \\
& -a+b=4 \\
& \text { (1) - (2) } \\
& 4 a=-4 \\
& a=-1 \\
& -3+b=0 \\
& b=3
\end{align*}
$$

$$
\begin{aligned}
& 11=3 \times 6+-1 \times x . \\
& 22=18-x^{2} \\
& 1 x=-4 \\
& 7=3 \times 5+-1 \times y . \\
& 14=15-y \\
& y=17 \quad \therefore \text { At }
\end{aligned}
$$

(i) Sketch.
(II) $x^{2}=a^{2}+b^{2}-2 a b$ cos $x 5^{\circ}$.

Where $a=180 \tan 84^{\circ} 39^{\prime}$

$$
\text { ar } b=180 \text { to } 86^{\circ} 20^{\prime} \text {. }
$$

$$
\begin{aligned}
& \therefore x^{2}=180^{2} 12^{2} 8 x^{\circ} 39^{\prime}+180^{2} \tan ^{2} 86^{\circ} 20^{\prime} \\
& -2 \times 180^{2} \text { 盾 }{ }^{\prime \prime} 84^{\circ} 39^{\prime} \text { 'tan } 88^{\circ} 20^{\prime} \\
& \times \frac{1}{\sqrt{2}} \text {. } \\
& x^{2}=180^{2}\left[1 a^{2} \sin ^{\circ} 39^{\prime}+1 a^{2} 86^{\circ} 20^{\prime}-\sqrt{2} \tan 8 r^{9} 39^{\prime}\right. \\
& \left.\times \tan 80^{\circ} 0^{\prime}\right] \\
& x=180 \sqrt{(\quad)} \\
& \vdots 1987 \sim
\end{aligned}
$$

(II.) $\frac{\sin \angle B F R}{180 \tan 86^{\circ} 20^{\prime}}=\frac{\pi-40^{\circ}}{1987}$

$$
\begin{aligned}
\sin \angle B F R & =\frac{1801 a n 86^{\circ} 20^{\prime} \sin 0^{\circ}}{1987} \\
& \left.=0.9995^{\prime} 7\right) \\
\angle B F R & =\sin ^{-1}(\\
& =88^{\circ} 20^{\prime} .
\end{aligned}
$$

. Beanic 1 R herms is $118^{\circ} 20^{\circ} \mathrm{T}$

