

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

SEPTEMBER 2003

YEARLY EXAMINATION

YEAR 11

Mathematics

Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time 2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Total Marks - 120 Marks

- Attempt Questions 1-4
- All questions are NOT of equal value.

[^0]```
Total marks - 120
Attempt Questions 1-4
All questions are NOT of equal value
```

Answer each question in a SEPARATE writing booklet.

Question 1 (35 marks) Use a SEPARATE writing booklet
(a) $\quad$ Find the value of $x$ given that $x^{3}=3^{6}$.
(b) $\quad$ Solve $(x-2)(x+1) \geq 0$.
(c) Sketch $y=|x+1|$, showing the $x$ and $y$ intercepts.
(d) If $\sec \theta=2$, find the possible values of $\tan \theta$.
(e) Find, in EXACT general form, the equation of the line that passes through the point $(-1,3)$ and has an angle of inclination, to the positive direction of the $x$ axis, of $150^{\circ}$.
(f) If $f(x)=\frac{x}{1-3 x}$, find and simplify $f\left(\frac{1}{x}\right)$.
(g)

Solve the inequation $|x+1|<2$
(h) If $y=8 \sqrt{x}$, find $\frac{d y}{d x}$.

2

2
(i) Complete the square to find the minimum value of the quadratic function $y=x^{2}+4 x-6$.
(j)

Write down the value of $\sin \theta$ in the diagram below.

(k) Solve $2 \sin 2 \theta=-1$ where $0 \leq \theta \leq 2 \pi$.
(1) If $(x-1)$ is a factor of $p(x)=x^{3}+a x^{2}-2 x-4$, find the value(s) of $a$.
(m)

Simplify $\frac{\log _{2} 32}{\log _{2} 16}$
(n)

Find $A$ and $B$ if $x^{3}-27=(x-3)\left(x^{2}+A x+B\right)$.
(o) If $f(x)=x^{2}-4$ and $g(x)=x-2$, find in simplest form $f(g(x))$.
(a) If $p=1+\sqrt{2}$ and $q=1-\sqrt{2}$ find
(i) $p-q$
(ii) $p q$
(b) Differentiate the following with respect to $x$ :
(i) $y=4 x^{5}+2 x^{2}-1$
(ii) $y=\frac{7}{x}$
(iii) $y=\left(4 x^{2}-3 x\right)^{12}$
(c) The limiting sum of the geometric series $a+\frac{a}{2}+\frac{a}{4}+\cdots$ is 6 . Find the value of $a$.
(d) Consider the function $f(x)=x^{2}+3 x$.

Show that $f(x+h)-f(x)=2 x h+h^{2}+3 h$
(e) (i) Show that there are 21 terms in the arithmetic series

$$
-2+1+4+\cdots+58
$$

(ii) Hence, or otherwise, find the sum of the 21 terms.

$$
\left.\begin{array}{l}
x=2 \cos \theta \\
y=\sin \theta
\end{array}\right\}
$$

(g) (i) Show that $\frac{1-\cos \theta}{\sin \theta}=\tan \frac{\theta}{2}$
(ii) Hence find the exact value of $\tan 15^{\circ}$. coordinates of the point which divides $A$ and $B$ externally in the ratio $3: 2$.
(i) If $a+b=1$, show that $\left(a^{2}-b^{2}\right)^{2}+a b=a^{3}+b^{3}$
(a) (i) Express $\sqrt{3} \sin x-\cos x$ in the form $R \sin (x-\alpha)$, where $R>0$.
(ii) Hence, solve the equation $\sqrt{3} \sin x-\cos x=1$, for $0 \leq x \leq 2 \pi$.
(b) Find the general solutions of $\sin x+\cos 2 x=1$.
(c) (i) Show that the equation of the normal to the curve $x^{2}=4 y$ at the point $\left(2 p, p^{2}\right)$ is $x+p y=2 p+p^{3}$.
(ii) If the normal passes through the point $(-2,5)$ find the values of $p$.
(d) When the polynomial $P(x)$ is divided by $A(x)=(2 x+1)(x-3)$, it gives a quotient $Q(x)$ and a remainder $R(x)$.
Write the general form of $R(x)$. Justify your answer.
(e) (i) Show that the point $P(2,7)$ lies on the line $2 x-y+3=0$
(ii) Hence find the distance between the parallel lines $2 x-y+3=0$ and $2 x-y-11=0$
(f)
$A(-2,-5)$ and $B(1,4)$ are 2 points. Find the acute angle $\theta$ between the line joining $A$ and $B$ and the line $x+2 y+1=0$, giving the answer correct to the nearest minute.
(g) The prism in the diagram below has a square base of side 4 cm and its height is $2 \mathrm{~cm} . A B C$ is a diagonal plane of the prism. Let $\theta$ be the acute angle between the diagonal plane and the base of the prism.
(i) Show that $M D=2 \sqrt{2} \mathrm{~cm}$.
(ii) Hence find $\theta$, correct to the nearest minute.


NOT TO SCALE
(a) The quartic equation $x^{4}-4 x^{3}+2 x^{2}-3 x+2=0$ has roots $\alpha, \beta, \gamma$ and $\delta$. Find the value of:
(i) $\alpha+\beta+\gamma+\delta$
(ii) $\quad \alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta$
(iii) $\quad \alpha \beta \gamma \delta$
(iv) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$
(b) Given that $x=1$ is a double root of the equation

$$
6 x^{4}-7 x^{3}+c x^{2}+13 x-4=0
$$

(i) Show that $c=-8$
(ii) Hence find the other roots.
(c) If $\log _{5} 8=a$, prove that $\log _{10} 2=\frac{a}{a+3}$
(d) (i) By expanding $\cos (2 A+A)$, show that

$$
\cos 3 A=4 \cos ^{3} A-3 \cos A
$$

(ii) Hence show that if $2 \cos A=x+\frac{1}{x}$, then $2 \cos 3 A=x^{3}+\frac{1}{x^{3}}$
(e) (i) Show that the equation of the tangent at the point $P\left(2 a p, a p^{2}\right)$ to $x^{2}=4 a y$ is given by $y=p x-a p^{2}$.
(ii) Write down the equation of the tangent at the point $Q\left(2 a q, a q^{2}\right)$.
(iii) Find the coordinates of $M$ the midpoint of chord $P Q$.
(iv) $\quad$ The tangents at $P$ and $Q$ meet at $T$. Find the coordinates of $T$.
(v) Show that $T M$ is parallel to the axis of the parabola.
(vi) $\quad K$ is the midpoint of $T M$. Find the locus of $K$.
(f) Three tangents to the parabola $x^{2}=4 a y$ form a triangle $P Q R$ and the lines $Q R, R P$ and $P Q$ make acute angles $\alpha_{1}, \alpha_{2}, \alpha_{3}$ respectively with the tangent at the vertex. If $d_{1}, d_{2}$ and $d_{3}$ are the respective distances of the focus from these tangents and if $r_{1}, r_{2}$ and $r_{3}$ are the respective distances of the focus from the vertices $P, Q$ and $R$ of $\triangle P Q R$, show that:
(i) $\quad d_{1} \cos \alpha_{1}=d_{2} \cos \alpha_{2}=d_{3} \cos \alpha_{3}=a$
(ii) $\quad d_{1} r_{1}=d_{2} r_{2}=d_{3} r_{3}$
(iii) $\quad r_{1} r_{2} r_{3}=\frac{d_{1}^{2} d_{2}^{2} d_{3}^{2}}{a^{3}}$

SYDNEYBOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

## SEPTEMBER 2003

YEARLY EXAMINATION

## YEAR 11

## Mathematics <br> Extension

## Sample Solutions

Queston 1.
(a)

$$
\begin{aligned}
x^{3} & =3^{6} \\
x & =\left(3^{6}\right)^{\frac{1}{3}} \\
& =3^{2} \\
x & =9
\end{aligned}
$$

(g) $|x+1|<2$

$$
\begin{aligned}
&-2<x+1<2 \\
&-3<x<1 \\
& \text { (h) } y=8 \sqrt{x} \\
&=8 x^{-1} \\
& \frac{d y}{d x}=4 x^{-2} \\
&=\frac{4}{\sqrt{x}}
\end{aligned}
$$

(i)

$$
\begin{aligned}
y & =x^{2}+4 x-6 \\
& =x^{2}+4 x+4-6-4 \\
& =(x+2)^{2}-10 .
\end{aligned}
$$

$$
\therefore \text { Min ralue in - } 10
$$

$(j)\left(\frac{-4}{5}\right) \vee v(1+\sqrt{3})$
(k)

$$
\begin{array}{ll}
2 \sin 2 \theta=-1 & 0 \leqslant \theta \leqslant 2 \pi \\
\sin 2 \theta=-\frac{1}{2} . & \therefore 0 \leqslant 2 \theta \leqslant 4 \pi
\end{array}
$$

(e)

$$
\begin{aligned}
m & =\tan 150^{\circ} \\
& =-\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\therefore y-3=-\frac{1}{\sqrt{3}}(x+1)
$$

$$
\sqrt{3} y-3 / 3=-x-1
$$

(l) $P(1)=0$

$$
x+\sqrt{3} y+1-3 \Delta=0 \text {. }
$$

$$
\therefore 1+a-2-4=0
$$

$$
\begin{aligned}
a-5 & =0 \\
a & =5 .
\end{aligned}
$$

(f) $f(x)=\frac{x}{1-3 x}$

$$
\begin{aligned}
& f(x)=\frac{x}{1-3 x} \\
& f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}}{1-\frac{3}{x}} \\
& \frac{1}{x-3}
\end{aligned}
$$

$$
\text { (m) } \frac{\log _{2} 32}{\log _{2} 16}=\frac{\log _{2} 2^{5}}{\log _{2^{2}} 2^{4}}=\frac{5 \log _{2} 2}{4 \log _{2} 2}\left(\frac{5}{4}\right)^{v 1}
$$

$$
\left(\sqrt{1} x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)\right.
$$

$$
\begin{aligned}
& \left(2 x^{2}-27=(x-3)\left(x^{2}+3 x+9\right)\right. \\
& \therefore x^{2}+3 x+9 \equiv x^{2}+A x+B \cdot\binom{A=3}{B=9}^{2} \\
& \text { (A) }\left(C_{g}(x)=(x-2)^{2}-4=x^{2}-4 x\right)
\end{aligned}
$$

Q2.
a) $p+q=2 \sqrt{2}$ whe a) $p q=-1$
b) $\frac{d y}{d x}=20 x^{4}+4 x$
11) $-7 / x^{2}$
(II) $12(8 x-3)\left(4 x^{2}-3 x\right)^{1}$
c)

$$
\begin{aligned}
& 6=\frac{a}{1-1 / 2} \\
& a=3 .
\end{aligned}
$$

d)

$$
\begin{aligned}
f(x+h)-f(x) & =(x+h)^{2}+3(x+h)-x^{2}-3 x \\
& =2 x h+h^{2}+3 h
\end{aligned}
$$

e) 1) $58=-2+(n-1) \times 3$ 50 $n=21$
i) $S_{21}=\frac{n}{2}(-2+\sqrt{7})=21 / 2 \times 56=588$
f)

$$
\begin{aligned}
& x=2 \cos \theta \quad \text { so } \quad \begin{aligned}
x^{2} & =4 \cos ^{2} \theta \quad \text { re } x^{2}
\end{aligned}=4 \cos ^{2} \theta \\
& y=\sin \theta y^{2}=\sin ^{2} \theta \quad \frac{4 y^{2}}{}=4 \sin ^{2} \theta \\
& 4 y^{2}+x^{2}=4 \cos ^{2} \theta+4 \sin ^{2} \theta \\
& x^{2}+4 y^{2}=4
\end{aligned}
$$

g) 1)

$$
\begin{aligned}
& \frac{1-\cos \theta}{\sin \varphi}=\tan \frac{1}{2} \Rightarrow \frac{1-\frac{1-t^{2}}{1+t^{2}}}{\frac{8 t^{2}}{1+t^{2}}} \text { war } t=\tan \frac{2}{2} \\
& =\frac{2 t^{2}}{2 t}=t=\tan \%
\end{aligned}
$$

1) $\tan 15=\frac{1-\cos 30^{\circ}}{\sin 30^{\circ}}=\frac{1-\beta / 2}{1 / 2}=2-\sqrt{3}$
2) The 3人-2 $\left(\frac{3 \times 2-2 \times-5}{1}, \frac{3 \times 2-2 \times 1}{1}\right)=(16,4)$
3) 

$$
\begin{array}{ll}
\left(a^{2}-b^{2}\right)^{2}+a b & a^{3}+b^{3} \\
(a+b)(a-b))^{2}+a b & \text { ab } \\
(a-b)^{2}+a b & =(a+b)\left(a^{2}-a b+b^{2}\right) \\
a^{2}-a b+b^{2} & \\
& =a^{2}-a b+b^{2} \\
a^{2} b^{2}+a b=a^{3}+b^{3}
\end{array}
$$

(a) (i) $\sqrt{3} \sin x-\cos x \equiv R \sin (x-\alpha)$
$R \sin (x-\alpha)=R(\sin x \cos \alpha-\cos x \sin \alpha)$
$=R \sin x \cos \alpha-R \cos x \sin \alpha$
$=(R \cos \alpha) \sin x-(R \sin \alpha) \cos x$
So $\quad \begin{array}{ll}R \cos \alpha=\sqrt{3} \\ R \sin \alpha=1\end{array}$
$R \sin \alpha=1$
-(2)
(2) $\div$ (1) $\Rightarrow \frac{\sin \alpha}{\cos \alpha}=\tan \alpha=\frac{1}{\sqrt{3}} \Rightarrow \alpha=30^{\circ}$ or $\frac{\pi^{c}}{6}$
$(2)^{2}+(1)^{2} \Rightarrow R^{2} \sin ^{2} \alpha+R^{2} \cos ^{2} \alpha=4$
$\therefore R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=4 \Rightarrow R^{2}=4$
$\therefore R=2$
(ii) $\sqrt{3} \sin x-\cos x=1 \Rightarrow 2 \sin \left(x-\frac{\pi}{6}\right)=1$

$$
\sin \left(x-\frac{\pi}{6}\right)=\frac{1}{2} \quad\left\{\begin{array}{l}
0 \leq x \leq 2 \pi \Rightarrow 0-\frac{\pi}{6} \leq x-\frac{\pi}{6} \leq 2 \pi-\frac{\pi}{6} \\
-\frac{\pi}{6} \leq x-\frac{\pi}{6} \leq \frac{11 \pi}{6}
\end{array}\right.
$$

$x-\frac{\pi}{6}=\frac{\pi}{6}, \pi-\frac{\pi}{6}=\frac{\pi}{6}, \frac{5 \pi}{6}$
$\therefore x=\frac{2 \pi}{6}, \frac{6 \pi}{6}=\frac{\pi}{3}, \pi$
(b) $\sin x+\cos 2 x=1$
$\sin x+1-2 \sin ^{2} x=1 \Rightarrow \sin x-2 \sin ^{2} x=0 \Rightarrow \sin x(1-2 \sin x)=0$
$\therefore \sin x=0, \frac{1}{2}$
$\left.x=n \pi+(-1)^{n} \sin ^{-1}(0)\right\}$

```
\(\sin x=c, \quad-1 \leq c \leq 1\)
```

$x=n \pi+(-1)^{n} \sin ^{-1}(c)$
$\left.x=n \pi+(-1)^{n} \sin ^{-1}\left(\frac{1}{2}\right)\right\}$
$\left.\begin{array}{l}x=n \pi \\ x=n \pi+(-1)^{n} \frac{\pi}{6}\end{array}\right\}$

## Question 3

(c) (i) $x^{2}=4 y \Rightarrow y=\frac{1}{4} x^{2}$
$\frac{d y}{d x}=\frac{x}{2} \Rightarrow \frac{d y}{d x_{x=2 p}}=\frac{2 p}{2}=p$
$\therefore m_{\perp}=-\frac{1}{p} \quad m_{\perp}$ is the gradient of the normal
$\therefore y-p^{2}=-\frac{1}{p}(x-2 p) \Rightarrow p y-p^{3}=-x+2 p \Rightarrow x+p y=2 p+p^{3}$
(ii) $(-2,5)$ lies on the normal.
$(-2)+p(5)=2 p+p^{3} \Rightarrow p^{3}-3 p+2=0$
Let $P(x)=x^{3}-3 x+2$
$P(1)=0 \Rightarrow(x-1)$ is a factor of $P(x)$.

$$
x^{2}+x-2=(x-1)(x+2)
$$

$$
\begin{gathered}
\frac{x^{2}+x-2}{x - 1 \longdiv { x ^ { 3 } } - 3 x + 2} \\
x^{3}-x^{2} \\
x - 1 \longdiv { x ^ { 2 } - 3 x + 2 } \\
x^{2}-x \\
x - 1 \longdiv { - 2 x + 2 } \\
-2 x+2
\end{gathered}
$$

$\therefore P(x)=(x-1)^{2}(x+2)$
$\therefore p^{3}-3 p+2=0 \Rightarrow(p-1)^{2}(p+2)=0$
$\therefore p=1,-2$
(d) $\quad \operatorname{deg}(A(x))=2$ and $\operatorname{deg}(R(x))<\operatorname{deg}(A(x))=2$
(The degree of the remainder is always less than the degree of the divisor). So the degree of $R(x)$ is at most 1 ie $R(x)=m x+b$ is the most general form.
(e) (i) $\mathrm{LHS}=2 \times 2-7+3=4-7+3=0=$ RHS

So $(2,7)$ lies on $2 x-y+3=0$
(ii) $\quad d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}, A x+B y-C=0 \Leftrightarrow 2 x-y-11=0$
$\left(x_{1}, y_{1}\right)=(2,7)$
$d=\frac{|2 \times 2-7-11|}{\sqrt{2^{2}+(-1)^{2}}}=\frac{|4-7-11|}{\sqrt{5}}=\frac{14}{\sqrt{5}}=\frac{14 \sqrt{5}}{5} \approx 6.261$

## Question 3

(f) $\quad A(-2,-5), B(1,4)$
$m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4+5}{1+2}=3=m_{1}$
$x+2 y+1=0 \Rightarrow m_{2}=-\frac{1}{2}$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{3-\left(-\frac{1}{2}\right)}{1+3\left(-\frac{1}{2}\right)}\right|=\left|\frac{\frac{7}{2}}{-\frac{1}{2}}\right|=7$
$\therefore \theta=81^{\circ} 52^{\prime}$
(g) (i) $M D=\frac{1}{2} B C=\frac{1}{2} \times \sqrt{4^{2}+4^{2}}=\frac{1}{2} \times \sqrt{32}=\frac{1}{2} \times 4 \sqrt{2}=2 \sqrt{2}$
(ii) $\tan \theta=\frac{A D}{M D}=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=35^{\circ} 16^{\prime}$

QUESTION 4
(a)
(i) $\frac{-(-4)}{1}=4$
(ii) $\frac{-(-3)}{1}=3 \quad 1$
(iii) 21

$$
\begin{aligned}
&(\text { iv })=\frac{\beta \gamma \delta+\alpha \gamma \delta+\alpha \beta \delta+\alpha \beta}{\alpha \beta_{\gamma} \delta} \quad 2 \\
&=\frac{3}{2} \\
& \text { b) }_{\text {(i }}{ }^{6(1)^{4}-7(1)^{3}+c(1)^{2}+13(1)-4=0} \\
& \Rightarrow c=-8 \quad 2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { pax) } 6 x^{4}-7 x^{3}-8 x^{2}+13 x-4=0 \\
& x ^ { 2 } - 2 x + 1 \longdiv { 6 x ^ { 2 } + 5 x - 4 }
\end{aligned}
$$

Other roots are solutions of

$$
\begin{aligned}
6 x^{2}+5 x-4=0 \text { ie } x=-\frac{4}{3} \text { or } \\
x=\frac{1}{2}
\end{aligned} \left\lvert\, \begin{aligned}
& \text { (c) } \begin{aligned}
\log _{10} 2 & =\frac{\log _{5} 2}{\log _{5} 10}\binom{\text { Change of }}{\text { Bare }} \\
& =\frac{\log _{5} 2}{\log _{5} 2+\log _{5} 5}
\end{aligned} \\
& \text { let } u=\frac{\log _{5} 2}{\log _{5} 2+1}
\end{aligned}\right.
$$

(Since $\log _{5} 8=a \Rightarrow 3 \log _{5} 2=a$ )

1. L1

$$
\begin{aligned}
& \therefore u=\frac{\frac{a}{3}}{\frac{a}{3}+1}=\frac{a}{a+3} \\
& \begin{aligned}
&(d) \\
& \operatorname{cis} 3 A=\cos (2 A+A) \\
&=\cos 2 A \cos A-\sin 2 A \sin A \\
&=\left(2 \cos ^{2} A-1\right) \cos A-2 \sin A \cos A \sin A \\
&=2 \cos ^{3} A-\cos A-2 \cos A\left[1-\cos ^{2} A\right] \\
&=4 \cos ^{3} A-3 \cos A
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
2 \cos 3 A & =8 \cos ^{3} A-6 \cos A \\
& =(2 \cos A)^{3}-3(2 \cos A) \\
& =\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right) \\
& =e t c \\
& =x^{3}+\frac{1}{x^{3}}
\end{aligned}
$$

(e) (i) Bookwork
(ii) $y=q x-a q^{2}$ ।
(iii) $M\left[a(p+q), \frac{a}{2}\left(p^{2}+q^{2}\right)\right]$,
(iv) $T[a(p+q), a p q] 2$
(v) gradient of $T M$

$$
\frac{\frac{a}{2}\left(p^{2}+q^{2}\right)-a p q}{0}
$$

$\Rightarrow$ undefined gradient.
and groduat of axis of parabola
is undefined

$$
\therefore T M / / \text { axis }
$$

$$
\begin{aligned}
& \text { (vi) } K\left[a(p+q), \frac{\frac{a}{2}\left(p^{2}+q^{2}\right)+a p q}{2}\right] \\
& \text { bt } x=a(p+q), \begin{aligned}
y & =\frac{a}{4}\left(p^{2}+q^{2}\right)+\frac{a p q}{2} \\
& =\frac{a}{4}\left[p^{2}+q^{2}+2 p q\right] \\
& =\frac{a}{4}[p+q]^{2} \\
& =\frac{a}{4}\left[\frac{x}{a}\right]^{2} \\
y & =\frac{x^{2}}{4 a} \text { locus }
\end{aligned}
\end{aligned}
$$

## Question 4 (f)

Let the points $A, B$ and $C$ be $\left(2 a p, a p^{2}\right),\left(2 a q, a q^{2}\right)$ and (2at,at $\left.{ }^{2}\right)$ respectively.


The gradient of $A R$ is $p$, so that $\tan \alpha_{1}=|p|\left[\because \alpha_{1}<90^{\circ}\right]$
So the equation of $R Q$ is $y=p x-a p^{2} \Leftrightarrow p x-y-a p^{2}=0$.
Similarly, the equations of $P Q$ and $R P$ are respectively $y=t x-a t^{2} \& y=q x-a q^{2}$
By solving simultaneously ie the intersection of lines $R B P$ and $C P Q, P$ has coordinates $(a(t+q), a t q)$. This was proved in 4(e).
(Similarly $Q$ and $R$ have coordinates $(a(t+p), a t p) \&(a(t+q), a t q)$ respectively)
If $\tan \alpha_{1}=|p| \Rightarrow \cos \alpha_{1}=\frac{1}{\sqrt{1+p^{2}}}$ [Pythagoras' Theorem]
(Similarly $\cos \alpha_{2}=\frac{1}{\sqrt{1+q^{2}}} \& \cos \alpha_{3}=\frac{1}{\sqrt{1+t^{2}}}$ )
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}} \Rightarrow d_{1}=\frac{a\left(1+p^{2}\right)}{\sqrt{1+p^{2}}}=a \sqrt{1+p^{2}}$
(Similarly $d_{2}=a \sqrt{1+q^{2}} \& d_{3}=a \sqrt{1+t^{2}}$ )
$r_{1}^{2}=P S^{2}=\left(a^{2}(t+q)^{2}+a^{2}(t q-1)^{2}\right)=a^{2}\left(t^{2}+q^{2}+1+t^{2} q^{2}\right)=a^{2}\left(1+t^{2}\right)\left(1+q^{2}\right)$
$\left(\right.$ Similarly $\left.r_{2}^{2}=a^{2}\left(1+p^{2}\right)\left(1+t^{2}\right) \& r_{3}^{2}=a^{2}\left(1+p^{2}\right)\left(1+q^{2}\right)\right)$
(i) $\quad d_{1} \cos \alpha_{1}=a \sqrt{1+p^{2}} \times \frac{1}{\sqrt{1+p^{2}}}=a$.

Similarly for $d_{2} \cos \alpha_{2} \& d_{3} \cos \alpha_{3}$ ie $d_{2} \cos \alpha_{2}=d_{3} \cos \alpha_{3}=a$
$Q E D$
(ii) $\quad d_{1}^{2} r_{1}^{2}=a^{2}\left(1+p^{2}\right) \times a^{2}\left(1+q^{2}\right)\left(1+t^{2}\right)=a^{4}\left(1+p^{2}\right)\left(1+q^{2}\right)\left(1+t^{2}\right)$

Similarly $d_{2}^{2} r_{2}^{2}=d_{3}^{2} r_{3}^{2}=a^{4}\left(1+p^{2}\right)\left(1+q^{2}\right)\left(1+t^{2}\right)$
Thus $d_{1} r_{1}=d_{2} r_{2}=d_{3} r_{3}$
QED
(iii) $\quad r_{1} r_{2} r_{3}=\frac{d_{1}^{2} d_{2}^{2} d_{3}^{2}}{a^{3}}$
$\Leftrightarrow a^{3} r_{1} r_{2} r_{3}=d_{1}^{2} d_{2}^{2} d_{3}^{2}$
$\Leftrightarrow\left(a r_{1}\right)\left(a r_{2}\right)\left(a r_{3}\right)=d_{1}^{2} d_{2}^{2} d_{3}^{2}$
$\Leftrightarrow\left(d_{1} r_{1} \cos \alpha_{1}\right)\left(d_{2} r_{2} \cos \alpha_{2}\right)\left(d_{3} r_{3} \cos \alpha_{3}\right)=d_{1}^{2} d_{2}^{2} d_{3}^{2} \quad$ (from(i))
$\Leftrightarrow\left(r_{1} \cos \alpha_{1}\right)\left(r_{2} \cos \alpha_{2}\right)\left(r_{3} \cos \alpha_{3}\right)=d_{1} d_{2} d_{3}$
$\left(r_{1}^{2} \cos ^{2} \alpha_{1}\right)\left(r_{2}^{2} \cos ^{2} \alpha_{2}\right)\left(r_{3}^{2} \cos ^{2} \alpha_{3}\right)$
$=\frac{a^{2}\left(1+q^{2}\right)\left(1+t^{2}\right)}{\left(1+p^{2}\right)} \times \frac{a^{2}\left(1+p^{2}\right)\left(1+t^{2}\right)}{\left(1+q^{2}\right)} \times \frac{a^{2}\left(1+q^{2}\right)\left(1+p^{2}\right)}{\left(1+t^{2}\right)}$
$=a^{6}\left(1+q^{2}\right)\left(1+t^{2}\right)\left(1+p^{2}\right)$
$=a^{2}\left(1+p^{2}\right) \times a^{2}\left(1+q^{2}\right) \times a^{2}\left(1+t^{2}\right)$
$=d_{1}{ }^{2} d_{2}{ }^{2} d_{3}{ }^{2}$
$\therefore\left(r_{1} \cos \alpha_{1}\right)\left(r_{2} \cos ^{2} \alpha_{2}\right)\left(r_{3} \cos \alpha_{3}\right)=d_{1} d_{2} d_{3}$

## QED


[^0]:    Examiner: E. Choy

