

SYDNEY BOYS HIGH SCHOOL **MOORE PARK, SURRY HILLS**

SEPTEMBER 2003

YEARLY EXAMINATION

YEAR 11

Mathematics Extension 1

General Instructions

- Reading time 5 minutes. •
- Working time 2 hours. •
- Write using black or blue pen. •
- Board approved calculators may • be used.
- All necessary working should be ٠ shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy • or badly arranged work.
- Start each NEW section in a separate ٠ answer booklet.

Total Marks - 120 Marks

- Attempt Questions 1 4 •
- All questions are NOT of equal • value.

Examiner: E. Choy

Total marks – 120 Attempt Questions 1 – 4 All questions are NOT of equal value

Answer each question in a SEPARATE writing booklet.

Question 1 (35 marks) Use a SEPARATE writing booklet		
(a)	Find the value of x given that $x^3 = 3^6$.	2
(b)	Solve $(x-2)(x+1) \ge 0$.	2
(c)	Sketch $y = x+1 $, showing the x and y intercepts.	2
(d)	If $\sec \theta = 2$, find the possible values of $\tan \theta$.	2
(e)	Find, in EXACT general form, the equation of the line that passes through the point $(-1,3)$ and has an angle of inclination, to the positive direction of the <i>x</i> axis, of 150° .	3
(f)	If $f(x) = \frac{x}{1-3x}$, find and simplify $f\left(\frac{1}{x}\right)$.	2
(g)	Solve the inequation $ x+1 < 2$	2
(h)	If $y = 8\sqrt{x}$, find $\frac{dy}{dx}$.	2
(i)	Complete the square to find the minimum value of the quadratic function $y = x^2 + 4x - 6$.	2

(k)Solve
$$2\sin 2\theta = -1$$
 where $0 \le \theta \le 2\pi$.3(l)If $(x-1)$ is a factor of $p(x) = x^3 + ax^2 - 2x - 4$, find the
value(s) of a.2(m)Simplify $\frac{\log_2 32}{\log_2 16}$ 3(n)Find A and B if $x^3 - 27 = (x-3)(x^2 + Ax + B)$.3(o)If $f(x) = x^2 - 4$ and $g(x) = x - 2$, find in simplest form
 $f(g(x))$.3

2

Question 2 (32 marks) Use a SEPARATE writing booklet			Marks
(a)	(i) (ii)	If $p=1+\sqrt{2}$ and $q=1-\sqrt{2}$ find p-q pq	2 2
(b)	(i) (ii)	Differentiate the following with respect to <i>x</i> : $y = 4x^5 + 2x^2 - 1$ $y = \frac{7}{x}$	2 2
	(iii)	$y = (4x^2 - 3x)^{12}$	3
(c)		The limiting sum of the geometric series $a + \frac{a}{2} + \frac{a}{4} + \cdots$ is 6. Find the value of <i>a</i> .	3
(d)		Consider the function $f(x) = x^2 + 3x$.	
		Show that $f(x+h) - f(x) = 2xh + h^2 + 3h$	2
(e)	(i)	Show that there are 21 terms in the arithmetic series	2
		$-2+1+4+\cdots+58.$	
	(ii)	Hence, or otherwise, find the sum of the 21 terms.	1
(f)		Find an equation in terms of <i>x</i> and <i>y</i> that is independent of θ	2
		$ x = 2\cos\theta $ $ y = \sin\theta $	
(g)	(i)	Show that $\frac{1-\cos\theta}{\sin\theta} = \tan\frac{\theta}{2}$	3
	(ii)	Hence find the exact value of tan15°.	2
(h)		A and B are points $(-5,1)$ and $(2,2)$ respectively. Find the coordinates of the point which divides A and B externally in the ratio $3:2$.	3
(i)		If $a+b=1$, show that $(a^2-b^2)^2 + ab = a^3 + b^3$	3

Question 3 (20 marks) Use a SEPARATE writing booklet			Marks
(a)	(i)	Express $\sqrt{3} \sin x - \cos x$ in the form $R \sin(x - \alpha)$, where $R > 0$.	2
	(ii)	Hence, solve the equation $\sqrt{3} \sin x - \cos x = 1$, for $0 \le x \le 2\pi$.	2
(b)		Find the general solutions of $\sin x + \cos 2x = 1$.	2
(c)	(i)	Show that the equation of the normal to the curve $x^2 = 4y$ at the point $(2p, p^2)$ is $x + py = 2p + p^3$.	2
	(ii)	If the normal passes through the point $(-2,5)$ find the values of <i>p</i> .	2
(d)		When the polynomial $P(x)$ is divided by A(x) = (2x+1)(x-3), it gives a quotient $Q(x)$ and a remainder $R(x)$. Write the general form of $R(x)$. Justify your answer.	1
(e)	(i)	Show that the point $P(2,7)$ lies on the line $2x - y + 3 = 0$	1
	(ii)	Hence find the distance between the parallel lines $2x - y + 3 = 0$ and $2x - y - 11 = 0$	2
(f)		$A(-2,-5)$ and $B(1,4)$ are 2 points. Find the acute angle θ between the line joining A and B and the line $x+2y+1=0$, giving the answer correct to the nearest minute.	2

Question 3 is continued on the next page

- (g) The prism in the diagram below has a square base of side 4 cm and its height is 2 cm. *ABC* is a diagonal plane of the prism. Let θ be the acute angle between the diagonal plane and the base of the prism.
 - (i) Show that $MD = 2\sqrt{2}$ cm. 2
 - (ii) Hence find θ , correct to the nearest minute.

2

(a) The quartic equation
$$x^4 - 4x^3 + 2x^2 - 3x + 2 = 0$$
 has roots
 α, β, γ and δ . Find the value of:
(i) $\alpha + \beta + \gamma + \delta$
(ii) $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$
(iii) $\alpha\beta\gamma\delta$
(iv) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
(b) Given that $x = 1$ is a double root of the equation
 $6x^4 - 7x^3 + cx^2 + 13x - 4 = 0$
(i) Show that $c = -8$
(ii) Hence find the other roots.

(c) If
$$\log_5 8 = a$$
, prove that $\log_{10} 2 = \frac{a}{a+3}$ 3

(d) (i) By expanding
$$\cos(2A+A)$$
, show that 3

$$\cos 3A = 4\cos^3 A - 3\cos A$$

(ii) Hence show that if
$$2\cos A = x + \frac{1}{x}$$
, then $2\cos 3A = x^3 + \frac{1}{x^3}$ 2

Question 4 is continued on the next page.

Question 4 continued

(e)	(i)	Show that the equation of the tangent at the point $P(2ap, ap^2)$ to $x^2 = 4ay$ is given by $y = px - ap^2$.	2
	(ii)	Write down the equation of the tangent at the point $Q(2aq, aq^2)$.	1
	(iii)	Find the coordinates of M the midpoint of chord PQ .	1
	(iv)	The tangents at P and Q meet at T . Find the coordinates of T .	2
	(v)	Show that <i>TM</i> is parallel to the axis of the parabola.	2
	(vi)	<i>K</i> is the midpoint of <i>TM</i> . Find the locus of <i>K</i> .	
(f)		Three tangents to the parabola $x^2 = 4ay$ form a triangle <i>PQR</i> and the lines <i>QR</i> , <i>RP</i> and <i>PQ</i> make acute angles $\alpha_1, \alpha_2, \alpha_3$ respectively with the tangent at the vertex. If d_1, d_2 and d_3 are the respective distances of the focus from these tangents and if r_1, r_2 and r_3 are the respective distances of the focus from the vertices <i>P</i> , <i>Q</i> and <i>R</i> of ΔPQR , show that:	
	(i)	$d_1 \cos \alpha_1 = d_2 \cos \alpha_2 = d_3 \cos \alpha_3 = a$	2
	(ii)	$d_1 r_1 = d_2 r_2 = d_3 r_3$	2

(iii)
$$r_1 r_2 r_3 = \frac{d_1^2 d_2^2 d_3^2}{a^3}$$
 2

THIS IS THE END OF THE PAPER

Marks

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

SEPTEMBER 2003

YEARLY EXAMINATION

YEAR 11

Mathematics Extension

Sample Solutions

 $\begin{array}{l} \left(\begin{array}{c} \partial \lambda \\ a \end{array} \right) p_{1} q_{2} = 2 d \lambda & u d (u \ a) p_{1} = -1 \\ b \end{array} \right) p_{d \chi}^{d \chi} = 2 \partial \alpha^{4} t q \chi & u \end{array} \right) - \frac{7}{\chi^{4}} & u \end{array} \right) \quad I = \left(\frac{8u}{2k} - 3 \right) \left(\frac{4u}{2k} - \frac{3}{2k} \right)^{4} \\ c \Biggr) \quad b = \frac{a}{1 - \frac{1}{\chi^{4}}} \\ a = 3 \\ d \Biggr) \quad f (x + h) - h(x) = (x + h)^{2} + 3 (x + h) - x^{2} - 3 x \\ = 2x + h^{4} + 3 h \\ e \Biggr) \quad i \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ n \Biggr) \quad S = -2 + (n - i) \chi 3 \quad S = n - 2 i \\ q \Biggr) \quad x = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \cos^{2} \alpha \quad A y^{2} = 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos \alpha \quad S = \chi^{2} - 4 \cos^{2} \alpha \quad \mu = \chi^{2} \cdot 4 \sin^{2} \alpha \\ q \Biggr) \quad y = 2 \cos^{2} \alpha \quad \delta = \chi^{2} + 2 \sin^{2} \alpha \\ q \Biggr) \quad x = -2 \cos^{2} \alpha \quad \delta = \chi^{2} + 2 \sin^{2} \alpha \\ z \Biggr) \quad x = 2 \cos^{2} \alpha \quad \delta = \chi^{2} + 2 \sin^{2} \alpha \\ z \Biggr) \quad x = 2 \cos^{2} \beta \quad \delta^{2} \\ = 2 \cos^{2} \beta \quad \delta^{2} \\ (\alpha + \beta) (\alpha - \beta)^{2} + \alpha \quad \delta \qquad z \Biggr) \quad z$ Q2. a) pig = 2/2 while a) pg = -1

Question 3
(a) (i)
$$\sqrt{3} \sin x - \cos x \equiv R \sin(x - \alpha)$$

 $R \sin(x - \alpha) = R(\sin x \cos \alpha - \cos x \sin \alpha)$
 $= R \sin x \cos \alpha - R \cos x \sin \alpha$
 $= (R \cos \alpha) \sin x - (R \sin \alpha) \cos x$
So $R \cos \alpha = \sqrt{3}$ -(1)
 $R \sin \alpha = 1$ -(2)
(2) $\pm (1) \Rightarrow \frac{\sin \alpha}{\cos \alpha} = \tan \alpha = \frac{1}{\sqrt{3}} \Rightarrow \alpha = 30^{\circ} \text{ or } \frac{\pi}{6}^{\circ}$
(2) $\pm (1)^{2} \Rightarrow R^{2} \sin^{2} \alpha + R^{2} \cos^{2} \alpha = 4$
 $\therefore R^{2} (\sin^{2} \alpha + \cos^{2} \alpha) = 4 \Rightarrow R^{2} = 4$
 $\therefore R^{2} (\sin^{2} \alpha + \cos^{2} \alpha) = 4 \Rightarrow R^{2} = 4$
 $\therefore R^{2} = 2$
(i) $\sqrt{3} \sin x - \cos x = 1 \Rightarrow 2 \sin \left(x - \frac{\pi}{6}\right) = 1$
 $\sin \left(x - \frac{\pi}{6}\right) = \frac{1}{2}$
 $10 \le x \le 2\pi \Rightarrow 0 - \frac{\pi}{6} \le x - \frac{\pi}{6} \le 2\pi - \frac{\pi}{6}$
 $-\frac{\pi}{6} \le x - \frac{\pi}{6} \le 2\pi - \frac{\pi}{6}$
 $\frac{\pi}{6} \le x - \frac{\pi}{6} \le 2\pi - \frac{\pi}{6}$
 $x - \frac{\pi}{6} = \frac{\pi}{6}, \pi - \frac{\pi}{6} = \frac{\pi}{6}, \frac{5\pi}{6}$
 $\therefore x = \frac{2\pi}{6}, \frac{6\pi}{6} = \frac{\pi}{3}, \pi$
(b) $\sin x + \cos 2x = 1$
 $\sin x + 1 - 2\sin^{2} x = 1 \Rightarrow \sin x - 2\sin^{2} x = 0 \Rightarrow \sin x(1 - 2\sin x) = 0$
 $\therefore \sin x = 0, \frac{1}{2}$
 $x = n\pi + (-1)^{\pi} \sin^{-1}(0)$
 $x = n\pi + (-1)^{\pi} \sin^{-1}(\frac{1}{2})$
 $x = n\pi + (-1)^{\pi} \sin^{-1}(\frac{\pi}{6})$

Question 3

(i)
$$x^2 = 4y \Rightarrow y = \frac{1}{4}x^2$$

 $\frac{dy}{dx} = \frac{x}{2} \Rightarrow \frac{dy}{dx}_{x=2p} = \frac{2p}{2} = p$
 $\therefore m_\perp = -\frac{1}{p}$ m_\perp is the gradient of the normal
 $\therefore y - p^2 = -\frac{1}{p}(x-2p) \Rightarrow py - p^3 = -x + 2p \Rightarrow x + py = 2p + p^3$

(ii)
$$(-2,5)$$
 lies on the normal.
 $(-2) + p(5) = 2p + p^3 \Rightarrow p^3 - 3p + 2 = 0$
Let $P(x) = x^3 - 3x + 2$
 $P(1) = 0 \Rightarrow (x-1)$ is a factor of $P(x)$.

$$x^{2} + x - 2 = (x - 1)(x + 2)$$

$$\begin{array}{r} x^{2} + x - 2 \\
x - 1 \right) x^{3} - 3x + 2 \\
x^{3} - x^{2} \\
x - 1 \right) x^{2} - 3x + 2 \\
x^{2} - x \\
x^{2} - x \\
x - 1 \overline{) - 2x + 2} \\
- 2x + 2 \\
0 \\
\end{array}$$

$$\therefore P(x) = (x-1)^2(x+2)$$

$$\therefore p^3 - 3p + 2 = 0 \Rightarrow (p-1)^2(p+2) = 0$$

$$\therefore p = 1, -2$$

- (d) $\deg(A(x)) = 2$ and $\deg(R(x)) < \deg(A(x)) = 2$ (The degree of the remainder is always less than the degree of the divisor). So the degree of R(x) is at most 1 ie R(x) = mx + b is the most general form.
- (e) (i) LHS = $2 \times 2 7 + 3 = 4 7 + 3 = 0 =$ RHS So (2,7) lies on 2x - y + 3 = 0

(ii)
$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}, Ax + By - C = 0 \Leftrightarrow 2x - y - 11 = 0$$
$$(x_1, y_1) = (2, 7)$$
$$d = \frac{|2 \times 2 - 7 - 11|}{\sqrt{2^2 + (-1)^2}} = \frac{|4 - 7 - 11|}{\sqrt{5}} = \frac{14}{\sqrt{5}} = \frac{14\sqrt{5}}{5} \approx 6.261$$

(c)

Question 3

$$A(-2,-5), B(1,4)$$

$$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4+5}{1+2} = 3 = m_1$$

$$x + 2y + 1 = 0 \Rightarrow m_2 = -\frac{1}{2}$$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{3 - (-\frac{1}{2})}{1 + 3(-\frac{1}{2})} \right| = \left| \frac{\frac{7}{2}}{-\frac{1}{2}} \right| = 7$$

$$\therefore \theta = 81^{\circ}52'$$

(g) (i)
$$MD = \frac{1}{2}BC = \frac{1}{2} \times \sqrt{4^2 + 4^2} = \frac{1}{2} \times \sqrt{32} = \frac{1}{2} \times 4\sqrt{2} = 2\sqrt{2}$$

(ii) $\tan \theta = \frac{AD}{MD} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \implies \theta = 35^{\circ}16'$

(f)

$$\begin{array}{c} \hline & \square \\ \hline & \square \\ \hline (a) \\ \hline (i) & -(-4) & = 4 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & = 3 & 1 \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) & -(-3) \\ \hline (a) & -(-3)$$

.

(i) Boolswork
(i)
$$y = qx - oq^{2} 1$$

(ii) $M\left[a(p+q), \frac{a}{2}(p^{2}+q^{2})\right] 1$
(iv) $T\left[a(p+q), opq\right] 2$
(v) grodient of TM

$$\frac{a(p^{2}+q^{2})-apq}{o}$$

$$\Rightarrow undefined grodient.$$
and grodient of axis of porobola
is undefined
... $TM // axis$
(vi) $K\left[a(p+q), \frac{a(p^{2}+q^{2})+apq}{2}\right] 2$
but $x = a(p+q)$, $y = \frac{a}{4}(p^{2}+q^{2}) + \frac{apq}{2}$
 $= \frac{a}{4}\left[p^{2}+q^{2} + 2pq\right]$
 $= \frac{a}{4}\left[p + q\right]^{2}$
 $= \frac{a}{4}\left[p + q\right]^{2}$
 $y = \frac{x^{2}}{4a}$ focus

Question 4 (f)

Let the points A, B and C be $(2ap, ap^2)$, $(2aq, aq^2)$ and $(2at, at^2)$ respectively.

The gradient of *AR* is *p*, so that $\tan \alpha_1 = |p| [\because \alpha_1 < 90^\circ]$ So the equation of *RQ* is $y = px - ap^2 \Leftrightarrow px - y - ap^2 = 0$. Similarly, the equations of *PQ* and *RP* are respectively $y = tx - at^2 \& y = qx - aq^2$ By solving simultaneously is the intersection of lines *RBP* and *CPQ*, *P* has coordinates (a(t+q), atq). This was proved in 4(e).

(Similarly *Q* and *R* have coordinates (a(t+p), atp) & (a(t+q), atq) respectively)

If $\tan \alpha_1 = |p| \Rightarrow \cos \alpha_1 = \frac{1}{\sqrt{1+p^2}}$ [Pythagoras' Theorem] (Similarly $\cos \alpha_2 = \frac{1}{\sqrt{1+q^2}} \& \cos \alpha_3 = \frac{1}{\sqrt{1+t^2}}$)

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} \Longrightarrow d_1 = \frac{a(1 + p^2)}{\sqrt{1 + p^2}} = a\sqrt{1 + p^2}$$
(Similarly, $d_1 = a\sqrt{1 + q^2}$)

(Similarly $d_2 = a\sqrt{1+q^2} \& d_3 = a\sqrt{1+t^2}$)

$$r_1^2 = PS^2 = (a^2(t+q)^2 + a^2(tq-1)^2) = a^2(t^2 + q^2 + 1 + t^2q^2) = a^2(1+t^2)(1+q^2)$$

(Similarly $r_2^2 = a^2(1+p^2)(1+t^2) \& r_3^2 = a^2(1+p^2)(1+q^2)$)

(i)
$$d_1 \cos \alpha_1 = a \sqrt{1 + p^2} \times \frac{1}{\sqrt{1 + p^2}} = a$$
.
Similarly for $d_2 \cos \alpha_2 \& d_3 \cos \alpha_3$ ie $d_2 \cos \alpha_2 = d_3 \cos \alpha_3 = a$
QED

(ii)
$$d_1^2 r_1^2 = a^2 (1+p^2) \times a^2 (1+q^2) (1+t^2) = a^4 (1+p^2) (1+q^2) (1+t^2)$$

Similarly $d_2^2 r_2^2 = d_3^2 r_3^2 = a^4 (1+p^2) (1+q^2) (1+t^2)$
Thus $d_1 r_1 = d_2 r_2 = d_3 r_3$
QED

(iii)
$$r_1 r_2 r_3 = \frac{d_1^2 d_2^2 d_3^2}{a^3}$$

 $\Leftrightarrow a^3 r_1 r_2 r_3 = d_1^2 d_2^2 d_3^2$
 $\Leftrightarrow (ar_1)(ar_2)(ar_3) = d_1^2 d_2^2 d_3^2$
 $\Leftrightarrow (d_1 r_1 \cos \alpha_1)(d_2 r_2 \cos \alpha_2)(d_3 r_3 \cos \alpha_3) = d_1^2 d_2^2 d_3^2$ (from(i))
 $\Leftrightarrow (r_1 \cos \alpha_1)(r_2 \cos \alpha_2)(r_3 \cos \alpha_3) = d_1 d_2 d_3$
 $(r_1^2 \cos^2 \alpha_1)(r_2^2 \cos^2 \alpha_2)(r_3^2 \cos^2 \alpha_3)$
 $= \frac{a^2(1+q^2)(1+t^2)}{(1+p^2)} \times \frac{a^2(1+p^2)(1+t^2)}{(1+q^2)} \times \frac{a^2(1+q^2)(1+p^2)}{(1+t^2)}$

$$= a^{6}(1+q^{2})(1+t^{2})(1+p^{2})$$

= $a^{2}(1+p^{2}) \times a^{2}(1+q^{2}) \times a^{2}(1+t^{2})$
= $d_{1}^{2}d_{2}^{2}d_{3}^{2}$
 $\therefore (r_{1}\cos\alpha_{1})(r_{2}\cos^{2}\alpha_{2})(r_{3}\cos\alpha_{3}) = d_{1}d_{2}d_{3}$
QED