

# SYDNEY BOYS HIGH SCHOOL MoORE PARK, SURRY HILLS 

## SEPTEMBER 2004

PHSC Examination

YEAR 11

## Mathematics <br> Extension

## Sample Solutions

| Question | Marker |
| :---: | :--- |
| $\mathbf{1}$ | PSP |
| $\mathbf{2}$ | Mr Choy |
| $\mathbf{3}$ | Mr Hespe |
| $\mathbf{4}$ | Mr Bigelow |

## Question 1

(a) $\frac{1}{3-\sqrt{2}}+\frac{1}{3+\sqrt{2}}=\frac{3+\sqrt{2}+3-\sqrt{2}}{(3-\sqrt{2})(3+\sqrt{2})}$

$$
\begin{aligned}
& =\frac{6}{9-2} \\
& =\frac{6}{7}
\end{aligned}
$$

$\frac{6}{7} \in \mathbb{Q} \Rightarrow \frac{1}{3-\sqrt{2}}+\frac{1}{3+\sqrt{2}}$ is a rational number
QED
(b) (i) $\quad|2 x-1|=5$

$$
\begin{aligned}
& \therefore 2 x-1=5 \text { or } 2 x-1=-5 \\
& \therefore 2 x=6,-4 \\
& \therefore x=3,-2
\end{aligned}
$$

(ii) $x^{2} \geq 1 \Rightarrow x^{2}-1 \geq 0$
$\therefore(x-1)(x+1) \geq 0$
$\therefore x \leq-1, x \geq 1$

(iii) $\frac{1}{x-1}<2 \Rightarrow \frac{1}{x-1}-2<0$
$\therefore \frac{1-2(x-1)}{x-1}<0 \Rightarrow \frac{1-2 x+2}{x-1}<0$
$\therefore \frac{3-2 x}{x-1}<0 \quad\left[\times(x-1)^{2}\right]$
$\therefore(x-1)(3-2 x)<0$
$\therefore x<1, x>\frac{3}{2}$

(c) $\quad P(x)=2 x^{3}-3 x^{2}+x-4$

By the Remainder Theorem:
Remainder $=P(2)=16-12+2-4=2$
(d) $\frac{x^{3}-1}{x^{2}-2 x+1}=\frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)^{2}}=\frac{x^{2}+x+1}{x-1}$
(e) $\sin \left(\theta+\frac{\pi}{4}\right)=\sin \theta \cos \frac{\pi}{4}+\cos \theta \sin \frac{\pi}{4}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}(\sin \theta+\cos \theta) \\
& =\frac{1}{\sqrt{2}}\left(\frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}}\right) \\
& =\frac{3}{\sqrt{10}}=\frac{3 \sqrt{10}}{10}
\end{aligned}
$$

2

(f) $y=\frac{1}{4}\left(x^{2}-2 x+9\right)$

$$
\therefore 4 y=x^{2}-2 x+9 \Rightarrow x^{2}-2 x+1+8
$$

$$
\therefore(x-1)^{2}=4 y-8=4(y-2)
$$

$\therefore a=1$
Vertex (1,2), Focus (1,3)
(g) LHS $=\cos 3 \theta$

$$
\begin{aligned}
& =\cos (2 \theta+\theta) \\
& =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-(2 \sin \theta \cos \theta) \sin \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta \sin ^{2} \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta+2 \cos ^{3} \theta \\
& =4 \cos ^{3}-3 \cos \theta \\
& =\text { RHS }
\end{aligned}
$$

QED

Question 2


## Question 3

3. (a) (i) Express the decimal $0 \cdot 154$ as a common fraction in lowest terms.

$$
\text { Solution: } \begin{aligned}
x & =0 \cdot 1 \dot{5} \dot{4}, \\
100 x & =15 \cdot 45 \dot{4}, \\
99 x & =15 \cdot 3, \\
x & =\frac{153}{990}, \\
& =\frac{17}{110} .
\end{aligned}
$$

(ii) Find $\log _{2} 74$ correct to three decimal places.

$$
\text { Solution: } \quad \begin{aligned}
\log _{2} 74 & =\frac{\log 74}{\log 2} \\
& \approx 6 \cdot 209[6 \cdot 20945336562 \text { on calculator }] .
\end{aligned}
$$

(b) Draw neat sketches of the following functions, showing their principal features:
(i) $y=|x+1|$

Solution: When $x<-1, y=-x-1$; when $y \geq-1, y=x+1$.

(ii) $y=2^{-x}$
Solution:
(iii) $y=\sqrt{9-x^{2}}$

(c) Given the function $f(x)=\frac{x}{x^{2}+1}$
(i) Find $f(-1)$

$$
\text { Solution: } \begin{aligned}
f(-1) & =\frac{-1}{(-1)^{2}+1}, \\
& =-\frac{1}{2} .
\end{aligned}
$$

(ii) Show that $f(x)$ is odd.

$$
\text { Solution: } \begin{aligned}
f(-x) & =\frac{-x}{(-x)^{2}+1}, \\
& =-\frac{x}{x^{2}+1}, \\
& =-f(x) .
\end{aligned}
$$

$$
\therefore f(x) \text { is odd. }
$$

(iii) Find $x$ such that $f(x)=0$.

$$
\text { Solution: } \begin{aligned}
\frac{x}{x^{2}+1} & =0, \\
\therefore x & =0 .
\end{aligned}
$$

(iv) State the domain and range of $f(x)$.

Solution: Domain: $x \in \mathbb{R}$, or all real $x$.
Now, putting $y=f(x)$ and rearranging,

$$
\begin{array}{r}
y x^{2}+y=x, \\
y x^{2}-x+y=0,
\end{array}
$$

$$
\Delta=1-4 y^{2} \geq 0 \text { for real values of } \mathrm{x}
$$ i.e. $\frac{1}{4}=y^{2}$.

And thus the range is $-\frac{1}{2} \leq f(x) \leq \frac{1}{2}$.
(v) Sketch the function.
Solution:
(d) Of the three roots of the cubic equation $x^{3}-15 x+4=0$, two are reciprocals.
(i) Find the other root.

Solution: Let the roots be $\alpha, \frac{1}{\alpha}, \beta$, then

$$
\begin{aligned}
\alpha \times \frac{1}{\alpha} \times \beta & =-4 \text { (product of roots), } \\
\text { i.e. } \beta & =-4 .
\end{aligned}
$$

(ii) Find the reciprocal roots.

Solution: $\quad \alpha+\frac{1}{\alpha}-4=0$ (sum of roots),
$\alpha^{2}-4 \alpha+1=0$,

$$
\alpha=\frac{4 \pm \sqrt{16-4}}{2},
$$

$$
=2 \pm \sqrt{3} .
$$

i.e. the reciprocal roots are $2 \pm \sqrt{3}$.
(e) Find the distance between the parallel lines $4 x+3 y=12$ and $4 x+3 y=5$.

Solution: One point on $4 x+3 y=12$ is $(0,4)$.

$$
\begin{aligned}
\therefore \text { Distance } & =\frac{|0 \times 4+4 \times 3-5|}{\sqrt{16+9}}, \\
& =\frac{7}{5} .
\end{aligned}
$$

Question 4

$$
\text { (a) (1) } \quad \begin{aligned}
\frac{A M}{c} & =\cos A \\
\therefore A M & =c \cos A
\end{aligned} \quad\left\{\begin{array}{l}
\frac{A N}{b}=\cos A \\
\therefore A N
\end{array} \quad=b \cos A .\right.
$$

(iI)

$$
\begin{array}{rlrl}
M N^{2} & =A N^{2}+A M^{2}-2 A N \cdot A M \cdot \cos A \cdot \\
& =b^{2} \cos ^{2} A+c^{2} \cos ^{2} A-2 b c \cos ^{2} A \cdot \cos A \\
& =\cos ^{2} A\left(b^{2}+c^{2}-2 b c \cos A\right) \quad\left(\begin{array}{r} 
\\
\\
\end{array}\right. & =\cos ^{2} A \cdot a^{2} & a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{array}
$$

pan Conic

$$
\therefore M N=a \cos A .
$$ Rule.)

(b) (o) $y-p x+a p^{2}=0$.

$$
\text { (II) } \left.\begin{array}{rlrl}
\sim r_{s p} & =\frac{a p^{2}-a}{d a p} \\
& =\frac{a\left(p^{2}-1\right)}{2 a p} & \tan \theta & =\left\lvert\, \frac{p^{2}-1}{\frac{2 p}{2 p}} 1+\frac{p}{2}-1 \times p\right.
\end{array} \right\rvert\,
$$

(III) $\tan \theta$ is undefined suture $p=0$. At this point $(0,0)$ the angle is $90^{\circ}$.

$$
\text { (c) } \begin{aligned}
\operatorname{LHS} & =\cot \theta+\tan \theta \\
& =\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta} \\
& =\frac{1}{\sin \theta \cos \theta} \\
& =\frac{2}{2 \sin \theta \cos \theta} \\
& =\frac{2}{\sin 2 \theta} \\
& =2 \operatorname{cisec} 2 \theta \\
& =R 1+5 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
& (a, b) \\
& \frac{3 b+a}{4}=0 \Rightarrow 3 b+a=0-10 . \\
& \frac{3 a+b}{4}=4 \Rightarrow 3 a+b=16-2
\end{aligned}
$$

selving $0 *$ ( 0
pimitanekurly.

$$
\text { Hear (1) } a=-3 b
$$

Subertitute in 8

$$
\begin{aligned}
-a b+b & =16 \\
-8 b & =16 \\
b & =-2 .
\end{aligned}
$$

Sub in 0

$$
-6+a=0
$$

$$
a=6
$$

$$
\therefore a=6, b=-2
$$

$$
\text { (e) }\left(A \frac{a}{A P}=\tan \theta \ldots A P=\frac{a}{\tan \theta} \quad a \cos \frac{b}{B P}=\tan \theta \therefore B P=\frac{b}{\tan \theta}\right.
$$

By Pychagasas $\alpha^{\alpha}=A p^{\alpha}+B P^{2}$

$$
\begin{equation*}
d^{2}=\frac{a^{2}}{\tan ^{2} \theta}+\frac{b^{2}}{\tan ^{2} \theta} \tag{A}
\end{equation*}
$$

$$
\left(I \sim L H S=\tan ^{2} \alpha+\tan ^{2} \beta=\frac{a^{2}}{d^{2}}+\frac{b^{2}}{d^{2}}\right.
$$

$$
\begin{aligned}
& =\frac{a^{2}+b^{2}}{d^{2}} \\
& =\frac{d^{2} \tan ^{2} \theta}{\alpha^{\alpha}} \\
& =\tan ^{2} \theta
\end{aligned}
$$

$$
=R H S .
$$



## SEPTEMBER 2004

## YEAR 11

PRELIMINARY HIGH SCHOOL CERTIFICATE EXAMINATION

## Mathematics

## Extension

## General Instructions

- Reading Time - 5 Minutes
- Working time - One and a half hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.


## Total Marks - 72

- Attempt all questions.
- All questions are of equal value.
- Each question is to be answered in a separate booklet.

Examiner: A.M.Gainford

## Question 1. (18 Marks)

(a) Show that $\frac{1}{3-\sqrt{2}}+\frac{1}{3+\sqrt{2}}$ is a rational number.
(b) Solve for $x$ :
(i) $\quad|2 x-1|=5$
(ii) $\quad x^{2} \geq 1$
(iii) $\frac{1}{x-1}<2$
(c) Find the remainder when the polynomial $P(x)=2 x^{3}-3 x^{2}+x-4$ is divided by $x-2$.
(d) Simplify $\frac{x^{3}-1}{x^{2}-2 x+1}$.
(e) If $\tan \theta=2$, and $0<\theta<\frac{\pi}{2}$, find the exact value of $\sin \left(\theta+\frac{\pi}{4}\right)$.
(f) Find the vertex and focus of the parabola $y=\frac{1}{4}\left(x^{2}-2 x+9\right)$.
(g) Show that for all $\theta$ :

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
$$

## Question 2. (18 Marks)

(a) Differentiate:
(i) $1+2 x-4 x^{2}-x^{3}$
(ii) $\sqrt{1-x^{2}}$
(iii) $(x-1)^{4}(3 x+1)$
(iv) $\frac{2}{x^{3}-1}$
(b) (i) Express $\sin x-\sqrt{3} \cos x$ in the form $A \sin (x-\alpha)$, where $A>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Find the general solution to the equation $\sin x-\sqrt{3} \cos x=\frac{2}{\sqrt{2}}$.
(c) Solve $(x-1)^{2}<4(x-1)$, and graph the solution on the number line.
(d) Sketch the graph of $y=\cos x+\sin 2 x$ in the domain $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(e) Given the polynomial $P(x)=x^{3}-19 x-30$.
(i) Use the factor theorem to find a zero of the polynomial.
(ii) Express $P(x)$ as a product of three linear factors.

Question 3. (18 Marks)
(a) (i) Express the decimal $0 \cdot 1 \dot{5} \dot{4}$ as a common fraction in lowest terms.
(ii) Find $\log _{2} 74$ correct to three decimal places.
(b) Draw neat sketches of the following functions, showing their principle features:
(i) $\quad y=|x+1|$
(ii) $y=2^{-x}$
(iii) $y=\sqrt{9-x^{2}}$
(c) Given the function $f(x)=\frac{x}{x^{2}+1}$
(i) Find $f(-1)$.
(ii) Show that $f(x)$ is odd.
(iii) Find $x$ such that $f(x)=0$.
(iv) State the domain and range of $f(x)$.
(v) Sketch the function.
(d) Of the three roots of the cubic equation $x^{3}-15 x+4=0$, two are reciprocals.
(i) Find the other root.
(ii) Find the reciprocal roots.
(e) Find the distance between the parallel lines $4 x+3 y=12$ and $4 x+3 y=5$.

## Question 4. (18 Marks)

(a)


Triangle $A B C$ has sides of length $a, b, c$ as shown.
$B M$ is perpendicular to $A C$ and $C N$ is perpendicular to $A B$.
(i) Show that $A M=c \cos A$ and $A N=b \cos A$.
(ii) Hence, using the cosine rule, prove that $M N=a \cos A$.
(b) Let $P\left(2 a p, a p^{2}\right)$ be a point on the parabola $x^{2}=4 a y$.
(i) Write down the equation of the tangent at $P$.
(ii) Let $\theta$ be the acute angle between the tangent at $P$ and the line $S P$, which joins $P$ with the focus $S$.

$$
\text { Show that } \tan \theta=\frac{1}{|p|} \text {. }
$$

(iii) Explain the situation at the one point where this angle is not acute.
(c) Show that $\cot \theta+\tan \theta=2 \operatorname{cosec} 2 \theta$.
(d) The point $P(0,4)$ divides the interval from $(a, b)$ to $(b, a)$ in ratio $3: 1$.

Find the values of $a$ and $b$.
(e) $A P B$ is a horizontal semicircle, diameter $d \mathrm{~m}$.

At $A$ and $B$ are vertical posts of height $a \mathrm{~m}$ and $b \mathrm{~m}$ respectively.
From $P$, the angle of elevation of the tops of both posts is $\theta$.
The angle $A P B$ is a right angle.

(i) Prove that $d^{2}=\frac{a^{2}}{\tan ^{2} \theta}+\frac{b^{2}}{\tan ^{2} \theta}$.
(ii) From $B$, the angle of elevation of $A^{\prime}$ is $\alpha$, and from $A$, the angle of elevation of $B^{\prime}$ is $\beta$.

Prove that $\tan ^{2} \alpha+\tan ^{2} \beta=\tan ^{2} \theta$.

## End of the paper.

