

SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time - 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Extension

Total Marks - 80 Marks

- Attempt Questions 1-4
- All questions are of equal value.

Examiner: P. Bigelow

Answer each SECTION in a SEPARATE writing booklet.
Section A (Use a SEPARATE writing booklet)
Question 1 (20 marks)
(a) Find
(i) $\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4}$
(ii) $\lim _{x \rightarrow \infty} \frac{4-x+2 x^{2}}{x^{2}+7 x-9}$
(b) Find x in the following
(i) $8^{x}=2^{x-4}$
(ii) $\log _{x} 36=2$
(iii) $\log _{3} \frac{\sqrt{3}}{9}=x$
(c) Differentiate the following
(i) $y=(7-2 x)^{6}$
(ii) $y=7 x^{-3}+4 x-17$
(iii) $\quad f(x)=x \sqrt{x-2}$
(iv) $f(x)=\frac{x+4}{x+5}$
(d) Write down a quadratic equation with roots 4 and -7 .
(e)

If $f(x)=\sqrt{x^{2}+16}$ find $f^{\prime}(3)$.

Find the equation of the tangent to $y=x^{2}+3 x+4$ at the point where $x=0$.
(g)

For the parabola $(x+2)^{2}=4 y-8$, find the:
(i) coordinates of the vertex;
(ii) coordinates of the focus;
(iii) equation of the directrix.

Question 2 (20 marks)
(a) $\quad \alpha, \beta$ and γ are the roots of $x^{3}+4 x^{2}+8 x+16=0$.

Write down the values of:
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta+\beta \gamma+\alpha \gamma$
(iii) $\alpha \beta \gamma$
(iv) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(v) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(b) Derive the equation of the normal to $x^{2}=4 a y$ at $P\left(2 a s, a s^{2}\right)$
(c)

Write $\cos x-\sqrt{3} \sin x$ in the form $A \cos (x+\alpha)$ where $A>0$ and $0<\alpha<\frac{\pi}{2}$
(d)

Solve:
(i) $\frac{4}{|x+1|}<3$
(ii) $\frac{3}{x-1} \geq \frac{2}{x}$
(e)

Find the coordinates of the point which divides the interval $A B$, where A is $(-4,0)$ and B is $(3,-7)$, externally in the ratio $3: 2$
(f)
(i) Show that -4 is a zero of $x^{3}-3 x^{2}-18 x+40$.
(ii) Hence solve $x^{3}-3 x^{2}-18 x+40=0$

Question 3 (20 marks)
(a) Find the acute angle between the lines $2 x-y-7=0$ and $x-3 y+3=0$.
(b) Find the general solution of the equation $2 \cos \theta-\sqrt{3}=0$
(c) (i) Write down the expansion of $\sin (A-B)$.
(ii) Find the exact value of $\sin 15^{\circ}$.
(d) The polynomial $x^{3}+2 x^{2}+a x+b$ has a factor of $x+2$ and when divided by $x-2$ the remainder is 12 .
Find the values of a and b.
(e) (i) If $0 \leq \theta \leq \frac{\pi}{2}$ prove that $\tan \theta=\sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}}$
(ii) Hence show that the exact value of $\tan \frac{\pi}{8}$ is $\sqrt{2}-1$
(f) (i) Show that $\cot x+\tan x=2 \operatorname{cosec} 2 x$.
(ii) Hence, or otherwise, prove that $\cot 15^{\circ}=2+\sqrt{3}$
(g) Show that if $2 \cos \theta=x+\frac{1}{x}$ then $2 \cos 3 \theta=x^{3}+\frac{1}{x^{3}}$.

You may use the identity $\cos 3 A=4 \cos ^{3} A-3 \cos A$

Question 4 (20 marks)
(a) Differentiate $f(x)=3-x+x^{2}$ using first principles. $\quad 2$
(b) Sketch the following without calculus:
(i) $y=(x-1)(x+3)(x-7)$
(ii) $y=(x-2)^{2}(x+3)$
(c) $\quad P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ are points on the parabola $x^{2}=4 y$.
(i) Show that the equation of the chord joining P and Q is given by $y=\left(\frac{p+q}{2}\right) x-p q$
(ii) Find the coordinates of the midpoint, Z, of $P Q$.
(iii) If the chord, joining P and Q, passes through $(0,2)$ find the locus of Z.
(d) (i) θ and ϕ are acute angles such that $\cos \theta=\frac{3}{5}$ and $\sin \phi=\frac{1}{\sqrt{5}}$.

Without finding the size of either angle, show that $\theta=2 \phi$.
(ii) Using the result above, find the exact value of $\sin 3 \phi$
(e) Given that $\log _{b} a=2$ and $\log _{c} b=3$, find the value of $\log _{a} c$.

End of paper

SYDNEYBOYS HIGHSCHOOL
MOORE PARK, SURRY HILLS

SEPTEMBER 2005

Yearly Examination
YEAR 11

Mathematics Extension

Sample Solutions

Section	Marker
\mathbf{A}	DM
\mathbf{B}	FN
\mathbf{C}	$\mathbf{E C}$
\mathbf{D}	AF

Section A Year ll Extension Mathematics
QI
ai)

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4} & =\lim _{x \rightarrow 4} \frac{(x-4)(x+5)}{x-4} \\
& =\lim _{x \rightarrow 4} x+5 \\
& =9 .
\end{aligned}
$$

ii)

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{4-x+2 x^{2}}{x^{2}+7 x-9} & =\lim _{x \rightarrow \infty} \frac{4-x+2 x^{2}}{x^{2}+7 x-9} \times \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{4}{x^{2}}-\frac{1}{x}+2}{1+\frac{7}{x}-\frac{9}{x^{2}}} \tag{1}\\
& =\frac{0-0+2}{1+0-0} \\
& =2
\end{align*}
$$

bi)

$$
\begin{aligned}
\text { i) } 8^{x} & =2^{x-4} \\
\log _{2} 8^{x} & =\log _{2} 2^{x-4} \\
x \log _{2} 2^{3} & =(x-4) \log _{2} 2 \\
3 x \log _{2} 2 & =x-4 \\
3 x & =x-4 \\
2 x & =-4 \\
x & =-2 .
\end{aligned}
$$

ii) $\log _{x} 36=2$

$$
\begin{aligned}
& 36=x^{2} \\
& x=6 .
\end{aligned}
$$

iii) $\log _{3} \frac{\sqrt{3}}{9}=x$

$$
\begin{aligned}
\frac{\sqrt{3}}{9} & =3^{x} \\
3^{2}+3^{2} & =3^{x} \\
3^{-\frac{3}{2}} & =3^{x} \\
x & =-\frac{2}{2}
\end{aligned}
$$

C) i) $y=(7-2 x)^{6} \quad$ Chein rule

$$
\begin{aligned}
\frac{d y}{d x} & =6(7-2 x)^{5}(-2) \\
& =-12(7-2 x)^{5}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& y=7 x^{-3}+4 x-17 \\
& \frac{d y}{d x}=-21 x^{-4}+4
\end{aligned}
$$

iii) $f(x)=x \sqrt{x-2} \quad$ Chain and protuct oule.

$$
\begin{aligned}
f^{\prime}(x) & =\sqrt{x-2}+\frac{x}{2}(x-2)^{-\frac{1}{2}} \\
& =\sqrt{x-2}+\frac{x}{2 \sqrt{x-2}} \\
& =\sqrt{x-2}\left(\frac{3 x-4}{2 x-4}\right)
\end{aligned}
$$

1v) $f(x)=\frac{x+4}{x+5} \quad$ Quotreat pule.

$$
\begin{align*}
f^{\prime}(x) & =\frac{(x+5)-(x+4)}{(x+5)^{2}} \tag{2}\\
& =\frac{1}{(x+5)^{2}}
\end{align*}
$$

d)

$$
\begin{array}{r}
(x-4)(x+7)=0 \\
x^{2}-4 x+7 x-28=0 \tag{2}\\
x^{2}+3 x-28=0
\end{array}
$$

e)

$$
\begin{aligned}
f(x) & =\sqrt{x^{2}+16} \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{2}+16\right)^{-\frac{1}{2}}(2 x) \\
& =\frac{x}{\sqrt{x^{2}+16}} \\
f^{\prime}(3) & =\frac{3}{\sqrt{9+16}} \\
& =\frac{3}{5}
\end{aligned}
$$

Chain ruk

$$
\begin{array}{|l|c}
\text { f) } y=x^{2}+3 x+4 & \text { At }(0,4) \\
\hline \text { At } x=0 & \frac{d y}{d x}=2(0)+3 \\
\hline y=0^{2}+3(0)+4 & =3 \\
y=4 & \text { Equ of tengeat } \\
(0,4) \text { is point of } & \text { contach } \\
\frac{d y}{d x}=2 x+3 & y-4=3(x-0) \\
& y=3 x+4
\end{array}
$$

Eqn of tenceut $m=3 ;(0,4)$.

Page $\frac{3}{4}$

$$
\text { g1) } \begin{aligned}
(x+2)^{2} & =4 y-8 \\
(x+2)^{2} & =4(y-2)
\end{aligned}
$$

Vertex $(-2,2)$
ii) focal length $=1$

So focus $(-2,3)$
iii) Pirectrix $y=1$

QUESTION 2
(a) $x^{3}+4 x^{2}+8 x+16=0$
(i) $\alpha+\beta+\gamma=-\frac{b}{a}=-4$
(d) (ii) $\frac{3}{x-1}>\frac{2}{x} \quad x \neq 1, x \neq 0$
(ii) $\alpha \beta+\beta \gamma+\alpha \gamma=\frac{c}{a}=8$
(iii) $\quad \alpha \beta \gamma=-\frac{d}{a}=-16$
(iv) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+\beta \gamma+\alpha \gamma}{\alpha \beta \gamma}=\frac{8}{-16}=-\frac{1}{2}$
(v) $(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma)=16-2 \times 8=0$
(b) $\quad x^{2}=4 a y \quad\left(2 \mathrm{as}, \mathrm{as}^{2}\right)$
$y=\frac{x^{2}}{4 a}$
$y^{\prime}=\frac{2 x}{4 a}=\frac{x}{2 a}$ (grad.of tangent)
$y^{\prime}=\frac{2 a s}{2 a}=s(x=2 a s)$
grad.of normal $=-\frac{1}{s}$
eqn.of normal is $\mathrm{y}-\mathrm{as}^{2}=-\frac{1}{s}(x-2 a s)$
$x+s y=a s^{3}+2 a s$
c) $\quad \cos x-\sqrt{3} \sin x=A \cos (x+\alpha)$
$\cos x-\sqrt{3} \sin x=A \cos x \cos \alpha-A \sin x \sin \alpha$
equating coefficients $A \cos \alpha=1, A \sin \alpha=\sqrt{3}$
$\tan \alpha=\sqrt{3} \quad \alpha=\frac{\pi}{3} \quad A=2$
$\cos x-\sqrt{3} \sin x=2 \cos \left(x+\frac{\pi}{3}\right)$
d) (i) $\frac{4}{|x+1|}<3$
$4<3|x+1|(|x+1|>0)$
$4<3(x+1)$ or $4<3(-x-1)$
$3 x+3>4$ or $-3 x-3>4$
$3 x>1 \quad$ or $-3 x>7$
$x>\frac{1}{3} \quad$ or $x<-\frac{7}{3}$
$\left[\right.$ multiply by $\left.(x-1)^{2} x^{2}\right]$

$$
3 x^{2}(x-1) \geq 2 x(x-1)^{2}
$$

$$
3 x^{3}-3 x^{2} \geq 2 x^{3}-4 x^{2}+2 x
$$

$$
x^{3}+x^{2}-2 x \geq 0
$$

$$
x\left(x^{2}+x-2\right) \geq 0
$$

$$
x(x+2)(x-1) \geq 0
$$

$-2 \leq x<0$ or $x>1$
(e) $\quad m: n=3:-2 \quad(-4,0)(3,-7)$
$x=\frac{m x_{2}+n x_{1}}{m+n} \quad y=\frac{m y_{2}+n y_{1}}{m+n}$
$x=\frac{3 \times 3-2 \times-4}{3-2} y=\frac{3 \times-7-2 \times 0}{3-2}$
(17,-21)
(f) (i) $P(-4)=(-4)^{3}-3(-4)^{2}-18(-4)+40=0$
or

$$
\begin{array}{r}
\frac{x^{2}-7 x+10}{x+4 \sqrt{x^{3}-3 x^{2}-18 x+40}} \begin{array}{c}
\frac{x^{3}+4 x^{2}}{-7 x^{2}}-18 x \\
\frac{-7 x^{2}-28 x}{10 x+40} \\
\frac{10 x+40}{0+0}
\end{array}
\end{array}
$$

remainder $=0 \quad \therefore-4$ is a zero of $\mathrm{P}(\mathrm{x})$
(ii) $x^{3}-3 x^{2}-18 x+40=(x+4)(x-5)(x-2)=0$ $x=-4,2,5$
(g) $\sin 2 x-\cos x=0$
$2 \sin x \cos x-\cos x=0$
$\cos x(2 \sin x-1)=0$
$\cos x=0 \quad$ or $\sin x=\frac{1}{2}$
$x=\frac{\pi}{2}, \frac{3 \pi}{2} \quad$ or $x=\frac{\pi}{6}, \frac{5 \pi}{6}$.

(g) If $2 \cos \theta=x+\frac{1}{x} . \quad$| $f \cos ^{3} \theta$ | $=\left(x+\frac{1}{x}\right)^{3}$ |
| ---: | :--- |
| | $=x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}$ |
| | $=\left(x^{3}+\frac{1}{x^{3}}\right)+3\left(x+\frac{1}{x}\right)-(1)$ |
| $b u t \cos A$ | $=4 \cos ^{3} A-3 \cos A$ |
| $\therefore 2 \cos 3 A$ | $=8 \cos ^{3} A-6 \cos t$ |
| From (1) | |
| $x^{3}+\frac{1}{x^{3}}$ | $=8 \cos ^{3} \theta-6 \cos \theta$ |
| $\therefore x^{3}+\frac{1}{x^{3}}$ | $=2 \cos 3 \theta$ |

4.a.

$$
\begin{aligned}
f(x) & =3-x+x^{2} \\
f(x+h) & =3-(x+h)+(x+h)^{2} \\
& =3-x-h+x^{2}+2 x h+h^{2} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\beta-x-h+x^{2}+2 x h+h^{2}-\left(3-x+x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-1+2 x+h)}{h} \\
& =-1+2 x
\end{aligned}
$$

b.i. $y=(x-1)(x+3)(x-7)$.
when $x=0, y=21$

$$
y=0, \quad x=1,-3,7
$$

ii. $y=(x-2)^{2}(x+3)$
when $x=0, y=12$

$$
y=0, x=2,-3
$$

$$
\text { c.i. } \begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x^{\prime}} \\
& =\frac{p^{2}-q^{2}}{2 p-2 q} \\
& =\frac{(p-q)(p+q)}{2(p-q)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-p^{2}=\frac{p+q}{2}(x-2 p) \\
& y=\left(\frac{p+q}{2}\right) x-p^{2}-p q+p^{2} \\
& y=\left(\frac{p+q}{2}\right) x-p q
\end{aligned}
$$

ii.

$$
\begin{aligned}
Z & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{2 p+2 q}{2}, \frac{p^{2}+q^{2}}{2}\right) \\
& =\left(p+q, \frac{p^{2}+q^{2}}{2}\right)
\end{aligned}
$$

iii. $(0,2)$ satisfies $y=\left(\frac{p+q}{2}\right) x-p q$

$$
\begin{align*}
& 2=\left(\frac{p+q}{2}\right) \cdot 0-p q \\
& -p q=2 \\
& p q=-2 \tag{1}
\end{align*}
$$

from(ii)

$$
\begin{align*}
& x=p+q \tag{2}\\
& y=\frac{p^{2}+q^{2}}{2} \tag{3}
\end{align*}
$$

rearrange (3)

$$
y=\frac{(p+q)^{2}-2 p q}{2}
$$

substitute (1) \$ (2) into (30)

$$
\begin{aligned}
& y=\frac{x^{2}-2(-2)}{2} \\
& y=\frac{x^{2}+4}{2}
\end{aligned}
$$

$\alpha . i . \theta \notin \phi$ are acute angles

$$
\cos \theta=\frac{3}{5}, \quad \sin \phi=\frac{1}{\sqrt{5}}
$$

Show that $\theta=2 \phi$

$$
\begin{aligned}
& \sin \theta=\sin 2 \phi \\
& \angle H S=\frac{4}{5} \quad R H S=2 \sin \phi \cos \phi \\
&=2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} \\
&=\frac{4}{5} \\
& \angle H S=\text { RHS } \\
& \sin \theta=\sin 2 \phi \\
& \therefore \theta=2 \phi
\end{aligned}
$$

$i i$

$$
\begin{aligned}
\sin 3 \phi & =\sin (2 \phi+\phi) \\
& =\sin (\theta+\phi) \\
& =\sin \theta \cos \phi+\cos \theta \sin \phi \\
& =\frac{4}{5} \cdot \frac{2}{\sqrt{5}}+\frac{3}{5} \cdot \frac{1}{\sqrt{5}} \\
& =\frac{8}{5 \sqrt{5}}+\frac{3}{5 \sqrt{5}} \\
& =\frac{11}{5 \sqrt{5}} \text { or } \frac{11 \sqrt{5}}{25}
\end{aligned}
$$

e.

$$
\begin{aligned}
& \log _{b} a=2 \quad \Longrightarrow \quad \begin{array}{l}
a=b^{2} \\
\log _{c} b=3
\end{array} \quad \Longrightarrow \begin{array}{l}
b=c^{3}
\end{array} .
\end{aligned}
$$

sub (2) into (1)

$$
\begin{aligned}
& a=\left(c^{3}\right)^{2} \\
& a=c^{6}
\end{aligned}
$$

let $\log _{a} c=x \Rightarrow c=a^{x}:$ substitute.

$$
\begin{aligned}
& c=\left(c^{6}\right)^{x} \\
& c^{\prime}=c^{6 x} \\
& \therefore \begin{array}{r}
6 x \\
r
\end{array}=\frac{1}{2} \quad \therefore \log _{a}^{c}=\frac{1}{6}
\end{aligned}
$$

