

SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics Extension

General Instructions

- Reading time 5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- Start each **NEW** section in a separate answer booklet.

Total Marks - 80 Marks

- Attempt Questions 1 4
- All questions are of equal value.

Examiner: P. Bigelow

Total marks – 80 Attempt Questions 1 - 4 All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

		Section A (Use a SEPARATE writing booklet)	Marks
Questio	on 1 (20	marks)	
(a)	(i)	Find $\lim_{x \to \infty} \frac{x^2 + x - 20}{x - 1}$	1
	(ii)	$x \rightarrow 4 \qquad x - 4$ $\lim_{x \rightarrow \infty} \frac{4 - x + 2x^2}{x^2 + 7x - 9}$	1
(b)	(i)	Find x in the following $8^x = 2^{x-4}$	1
	(ii)	$\log_x 36 = 2$	1
	(iii)	$\log_3 \frac{\sqrt{3}}{9} = x$	1
(c)	(i)	Differentiate the following $y = (7 - 2x)^6$	1
	(ii)	$y = 7x^{-3} + 4x - 17$	1
	(iii)	$f(x) = x\sqrt{x-2}$	2
	(iv)	$f\left(x\right) = \frac{x+4}{x+5}$	2
(d)		Write down a quadratic equation with roots 4 and -7 .	2
(e)		If $f(x) = \sqrt{x^2 + 16}$ find $f'(3)$.	2
(f)		Find the equation of the tangent to $y = x^2 + 3x + 4$ at the point where $x = 0$.	2
(g)	(i)	For the parabola $(x+2)^2 = 4y - 8$, find the: coordinates of the vertex;	1
	(ii)	coordinates of the focus;	1
	(iii)	equation of the directrix.	1

Question 2 (20 marks)

(a)		α, β and γ are the roots of $x^3 + 4x^2 + 8x + 16 = 0$. Write down the values of:	
	(i)	$\alpha + \beta + \gamma$	1
	(ii)	$\alpha\beta + \beta\gamma + \alpha\gamma$	1
	(iii)	$lphaeta\gamma$	1
	(iv)	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	1
	(v)	$\alpha^2 + \beta^2 + \gamma^2$	1
(b)		Derive the equation of the normal to $x^2 = 4ay$ at $P(2as, as^2)$	2
(c)		Write $\cos x - \sqrt{3} \sin x$ in the form $A \cos(x + \alpha)$ where $A > 0$	2
		and $0 < \alpha < \frac{\pi}{2}$	
(d)		Solve:	
	(i)	$\frac{4}{ x+1 } < 3$	2
	(ii)	$\frac{3}{x-1} \ge \frac{2}{x}$	2
(e)		Find the coordinates of the point which divides the interval <i>AB</i> , where <i>A</i> is $(-4,0)$ and <i>B</i> is $(3,-7)$, <i>externally</i> in the ratio $3:2$	2
(f)	(i)	Show that -4 is a zero of $x^3 - 3x^2 - 18x + 40$.	1
	(ii)	Hence solve $x^3 - 3x^2 - 18x + 40 = 0$	2
(g)		Solve $\sin 2x = \cos x$ for $0 \le x \le 2\pi$	2

Marks

Question 3 (20 marks)

(a)		Find the acute angle between the lines $2x - y - 7 = 0$ and $x - 3y + 3 = 0$.	2
(b)		Find the general solution of the equation $2\cos\theta - \sqrt{3} = 0$	2
(c)	(i)	Write down the expansion of $sin(A - B)$.	1
	(ii)	Find the exact value of sin15°.	2
(d)		The polynomial $x^3 + 2x^2 + ax + b$ has a factor of $x + 2$ and when divided by $x - 2$ the remainder is 12. Find the values of <i>a</i> and <i>b</i> .	3
(e)	(i)	If $0 \le \theta \le \frac{\pi}{2}$ prove that $\tan \theta = \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}}$	2
	(ii)	Hence show that the exact value of $\tan \frac{\pi}{8}$ is $\sqrt{2} - 1$	2
(f)	(i)	Show that $\cot x + \tan x = 2\csc 2x$.	2
	(ii)	Hence, or otherwise, prove that $\cot 15^\circ = 2 + \sqrt{3}$	1
(g)		Show that if $2\cos\theta = x + \frac{1}{x}$ then $2\cos 3\theta = x^3 + \frac{1}{x^3}$.	3
		You may use the identity $\cos 3A = 4\cos^3 A - 3\cos A$	

Marks

Question 4 (20 marks)

(a)		Differentiate $f(x) = 3 - x + x^2$ using first principles.	2
(b)		Sketch the following without calculus:	
	(i)	y = (x-1)(x+3)(x-7)	2
	(ii)	$y = (x-2)^2 (x+3)$	2
(c)		$P(2p, p^2)$ and $Q(2q, q^2)$ are points on the parabola $x^2 = 4y$.	
	(i)	Show that the equation of the chord joining <i>P</i> and <i>Q</i> is given by $y = \left(\frac{p+q}{2}\right)x - pq$	2
	(ii)	Find the coordinates of the midpoint, Z, of PQ.	2
	(iii)	If the chord, joining <i>P</i> and <i>Q</i> , passes through $(0,2)$ find the locus of <i>Z</i> .	3
(d)	(i)	θ and ϕ are acute angles such that $\cos \theta = \frac{3}{5}$ and $\sin \phi = \frac{1}{\sqrt{5}}$. Without finding the size of either angle, show that $\theta = 2\phi$.	2
	(ii)	Using the result above, find the exact value of $\sin 3\phi$	3
(e)		Given that $\log_b a = 2$ and $\log_c b = 3$, find the value of $\log_a c$.	2

End of paper

SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics Extension

Sample Solutions

Section	Marker
Α	DM
В	FN
С	EC
D	AF

SECTION A YEARIN Extension Mathematic Q1 a_{1} $l_{m}^{2} \frac{x+x-20}{x-4} = l_{m} (x-4)(x+5)$ = 1m = 274 2+5 = 9. $\frac{4 - x + 2x^2}{2 - 700} = \lim_{x \to 700} \frac{4 - 2x + 2x^2}{x + 7x - 9} = \frac{1}{x^2}$ <u>};</u>) $= \frac{4}{10} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $= \frac{1}{2} - \frac{1}{7} - \frac{1}{7} + \frac{1}{7} - \frac{9}{7^2}$ $\frac{0-0+2}{1+0-0}$ = 2 bi) $8^{x} = 2^{x-4}$ loy 2 = 100, 22-4 x log 2 = (x-4) log, 2 3× /042= x-4 3x=2-4 2x = -4フニース, Page 1/4

ii) logx 36=2 $36 = \chi^2$ JL=6. loy 3 = 7 jii) <u>13</u> = 3² $3^2 + 3^2 = 3^{\chi}$ x = 3² 2=- 7 () i) $y = (7 - 2x)^{6}$ Charle rule dy = 6(7-2x)(-2) $= -12(7-2x)^{5}$ $ii) y = 7a^{-3} + 4x - 17$ $\frac{dy}{dx} = -212e^{-4} + 4$ $iii) f(a) = \pi \sqrt{\pi - 2}$ Chain and product rule. $\int (x) = \sqrt{x-2} + \frac{x}{2} (x-2)^{-1/2}$ $= \sqrt{2L-2} + \frac{2}{2\sqrt{2-2}}$ Page 2/4 $= \sqrt{2-2} \left(\frac{32-4}{2x-4} \right)$

 $(v) f(x) = \frac{2+4}{x+5}$ Quotrent rule. $\int (x)^{-1} \frac{(x+5)^{-}(x+4)}{(x+5)^{2}}$ $(x+5)^2$ (x-4)(x+7)=0,J) x²-4x+7x-28=0 Dl²+32-28=0. $f(x) = \sqrt{x^2 + 16}$ Chain rule è $f'(x) = \frac{1}{2} (x^2 + 16)^{-\frac{1}{2}} (2x)$ = 122+16 $f'(3) = \frac{3}{\sqrt{9+15}}$ = 5 $f) y = x^{3} + 3x + 4$ AL (0,4) $\frac{dy}{dx} = 2(0) + 3$ $\frac{At}{y=0^{2}+3(0)+4}$ = 3 Egn of lange 1 m=3; (0,4). $\frac{4}{(0, 4)} = \frac{4}{13}$ $\frac{(0, 4)}{(0, 4)} = \frac{13}{13}$ $\frac{13}{100}$ $\frac{13}{100}$ $\frac{13}{100}$ $\frac{13}{100}$ $\frac{13}{100}$ $\frac{13}{100}$ $\frac{13}{100}$ y - 4 = 3(x - 0) $\dot{Y} = 3x + 4.$

(2+2) = 4y -8 9 D $(2+2)^2 = 4(y-2)$ Vertex (-2,2) ii) tocal length = 1 S foicus (-2,3) iii) Pirectrix y=1

QUESTION 2

(a)
$$x^3 + 4x^2 + 8x + 16 = 0$$

(i)
$$\alpha + \beta + \gamma = -\frac{b}{a} = -4$$

(ii) $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a} = 8$

(iii)
$$\alpha\beta\gamma = -\frac{d}{a} = -16$$

(iv) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \alpha\gamma}{\alpha\beta\gamma} = \frac{8}{-16} = -\frac{1}{2}$

(v)
$$(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma) = 16 - 2 \times 8 = 0$$

(b)
$$x^{2} = 4ay \quad (2as, as^{2})$$
$$y = \frac{x^{2}}{4a}$$
$$y' = \frac{2x}{4a} = \frac{x}{2a} (grad.of tangent)$$
$$y' = \frac{2as}{2a} = s(x = 2as)$$
$$grad.of normal = -\frac{1}{s}$$
$$eqn.of normal is y - as^{2} = -\frac{1}{s} (x - 2as)$$
$$x + sy = as^{3} + 2as$$

(c)
$$\cos x - \sqrt{3} \sin x = A \cos(x + \alpha)$$

 $\cos x - \sqrt{3} \sin x = A \cos x \cos \alpha - A \sin x \sin \alpha$
equating coefficients $A \cos \alpha = 1$, $A \sin \alpha = \sqrt{3}$
 $\tan \alpha = \sqrt{3}$ $\alpha = \frac{\pi}{3}$ $A = 2$
 $\cos x - \sqrt{3} \sin x = 2 \cos\left(x + \frac{\pi}{3}\right)$

d) (i)
$$\frac{4}{|x+1|} < 3$$

 $4 < 3|x+1|$ ($|x+1| > 0$)
 $4 < 3(x+1)$ or $4 < 3(-x-1)$
 $3x+3 > 4$ or $-3x-3 > 4$
 $3x > 1$ or $-3x > 7$
 $x > \frac{1}{3}$ or $x < -\frac{7}{3}$

(d) (ii)
$$\frac{3}{x-1} > \frac{2}{x}$$
 $x \neq 1, x \neq 0$
[multiply by $(x-1)^2 x^2$]
 $3x^2(x-1) \ge 2x(x-1)^2$
 $3x^3 - 3x^2 \ge 2x^3 - 4x^2 + 2x$
 $x^3 + x^2 - 2x \ge 0$
 $x(x^2 + x - 2) \ge 0$
 $x(x+2)(x-1) \ge 0$

 $-2 \le x < 0$ or x > 1

(e)
$$m:n = 3:-2$$
 (-4,0) (3,-7)
 $x = \frac{mx_2 + nx_1}{m+n}$ $y = \frac{my_2 + ny_1}{m+n}$
 $x = \frac{3 \times 3 - 2 \times -4}{3 - 2}$ $y = \frac{3 \times -7 - 2 \times 0}{3 - 2}$
(17,-21)

(f) (i)
$$P(-4) = (-4)^3 - 3(-4)^2 - 18(-4) + 40 = 0$$

or
 $x + 4 \sqrt{x^3 - 3x^2 - 18x + 40}$
 $\frac{x^3 + 4x^2}{-7x^2 - 18x}$
 $-7x^2 - 18x$
 $\frac{-7x^2 - 28x}{10x + 40}$
 $\frac{10x + 40}{0 + 0}$
remainder = 0 \therefore 4 is a zero of P(x)

(ii)
$$x^3 - 3x^2 - 18x + 40 = (x+4)(x-5)(x-2) = 0$$

 $x = -4, 2, 5$

$$sin2x - \cos x = 0$$

$$2sinx \cos x - \cos x = 0$$

$$\cos x(2sinx - 1) = 0$$

$$\cos x = 0 \quad \text{or} \quad sinx = \frac{1}{2}$$

$$x = \frac{\pi}{2}, \frac{3\pi}{2} \quad \text{or} \quad x = \frac{\pi}{6}, \frac{5\pi}{6}$$

(g)

ζ

(c) Sin(A-B) = (in A or B - or A sin B)(a) 2x - y - 7 = 0(4)tan 0 1 +x+----+x+ $y = \frac{x}{x} + \frac{1}{x} - \frac{w}{x} + \frac{1}{x} + \frac{w}{x} = \frac{1}{x}$ $\int \ln (5 = \int \ln (45 - 30)$ łł [] φ 0 = 2n T + T $\sqrt{3}$ - 1 2670 $\sqrt{\frac{2}{2}\left(\sqrt{3}-1\right)} = \sqrt{\frac{6}{6}-\sqrt{2}}$ 11 ן 4 ר = 9 9 2/2 1-+ m/m2 1+2/3 2 - 1/3 | ۲ ۲ Ö | [] $\overline{\mathbf{b}}$ Section (c) - Solutions (\cdot, \cdot) $(\lambda) \chi^{3} + 2\chi^{2} + \alpha\chi + b = P(\chi)$ \bigcirc Subst. () into Ņ 1 l $\left(1\right) = 12$ $\left((-2) = 0 \right)$ tan 15 = 1 Ŋ 11 fa= -+ : a=-1, 2a+b=-+& + & + 2x + b = 12 $\sqrt{\left(\sqrt{\Sigma}-1\right)^{2}}=\sqrt{\Sigma}-$ 1+9-20 97-4-6 $(\eta_1 \eta_2 - \theta_1 \eta_2) - (\eta_2 \eta_2 + \theta_1 \eta_2)$ ·8+8-2a+h=0 1 2 (1120) 2 4720 b = 2a - (1) $\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)\times \frac{\sqrt{2}-1}{\sqrt{2}-1}$ । ह† 7 67 20 1-477 = tan 0 P 6 = -2 (i) (-t) x + (+x)(f)(11) 6 - 15 + - 15 + - 15 = - 100 (11)· 6+15+ 6+15-6+215 - 46+15 + (=0 = atrxt1. V || $M^2 - 4m + (= 0)$ $\tan 15 = 2 \pm \sqrt{3}$ ļ Let m = gt 15 $M = A \pm \sqrt{16} - 4$ || V Sintx x Sintx \mathbf{W} Grec x ج ا ح 2 Sin x Gorx ' 51522 2-6-rec 2x. gt x 2 ± 13 || =|

Hom (but on 3 A = 4 6 3 A - 3 6 A $\pm f 2 \theta_1 \theta = x + \frac{1}{x}$ $\begin{cases} u^{-3} \Theta = \left(x + \frac{1}{x} \right)^{3} \end{cases}$ $x^{3} + \frac{1}{x^{3}}$ $(1, \chi^3 + \frac{1}{\chi^3} = 24730$ $= \left(\chi^{3} + \frac{1}{\chi^{2}}\right) + 3\left(\chi + \frac{1}{\chi}\right)$ $= \chi^{3} + 3 \times + \frac{3}{\chi^{2}} + \frac{1}{\chi^{3}}$ - = { wn ? 0 - 6 wn 0

4

|

4.a.
$$f(x) = 3 - x + x^{2}$$

 $f(x+h) = 3 - (x+h) + (x+h)^{2}$
 $= 3 - x - h + x^{2} + 2xh + h^{2}$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{8 - x - h + x^{2} + 2xh + h^{2} - (8 - x + x^{2})}{h}$
 $= \lim_{h \to 0} \frac{K(-1 + 2x + h)}{h}$
 $= -(+2x)$

b. i.
$$y = (x-1)(x+3)(x-7)$$

when $x=0$, $y=21$
 $y=0$, $x=1,-3,7$

ii.
$$y = (x-2)^2 (x+3)$$

when $x=0$, $y=12$
 $y=0$, $x=2, -3$

$$e_{o_{1}o_{0}} m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$$

$$= \frac{p^{2} - q^{2}}{2p - 2q}$$

$$= \frac{(p - q)(p + q)}{2(p - q)}$$

$$= \frac{p + q}{2}$$

$$y - y_{i} = m(x - x_{i})$$

$$y - p^{2} = \frac{p + q}{2} (x - 2p)$$

$$y^{2} = \left(\frac{p + q}{2}\right)x - p^{2} - pq + p^{2}$$

$$y^{2} = \left(\frac{p + q}{2}\right)x - pq$$

$$i_{0} = 2 = \left(\frac{x_{i} + x_{2}}{2}, \frac{y_{i} + y_{2}}{2}\right)$$

$$= \left(\frac{p + q}{2}, \frac{p^{2} + q^{2}}{2}\right)$$

$$i_{11} = \left(\frac{p + q}{2}, \frac{p^{2} + q^{2}}{2}\right)$$

$$i_{12} = \left(\frac{p + q}{2}, 0 - pq\right)$$

$$-pq = 2$$

$$p^{2} = -2$$

$$p^{2} = -2$$

$$y = \frac{p^{2} + q}{2}$$

$$y = \frac{p^{2} + q}{2}$$

$$y = \frac{p^{2} + q}{2}$$

$$y = \frac{(p + q)^{2} - 2pq}{2}$$

$$g = \frac{(p + q)^{2} - 2pq}{2}$$

$$y = \frac{(p + q)^{2} - 2pq}{2}$$

d. i. O & Ø are acute angles $\cos \varphi = \frac{3}{5}$, $\sinh \varphi = \frac{1}{\sqrt{5}}$ 15 I 5 4 Show that $Q = 2\phi$ $sih Q = sih 2 \emptyset$ RHS= 2 sinderosp $LHS = \frac{4}{5}$ = 2. 15. 25 = 45 LHS=RHS sin Q = sin 20 $\therefore 0 = 2\phi$ $\sin 3\phi = \sin(2\phi + \phi)$ ĥ. = $\sin(0 + \phi)$ = $\sin \theta \cos \phi + \cos \theta \sin \phi$ = 4.75 + 3.75 $=\frac{8}{55}+\frac{3}{55}$ = 11 0- 115 $\log_{b} a = 2 \implies a = b^{2}$ \Box e. $\log_{e} b = 3 \implies b = c^{3}$ sub @ into () let $\log_{\alpha} c = x \implies c = a^{\chi} f$ substitute. $\alpha = (c^3)$ $c = (c^{6})^{x}$ $c' = c^{6x}$ $c' = c^{6x}$ $c' = c^{6x}$ logac