

SYDNEYBOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

Mathematics Extension

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 60

- Attempt questions 1-3
- Hand up in 3 sections clearly marked A, B \& C

STANDARD INTEGRALS

$\int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0$, if $n<0$
$\int \frac{1}{x} d x=\ln x, x>0$
$\int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0$
$\int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0$
$\int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0$
$\int \sec ^{2} a x d x=\frac{1}{a} \tan a x$,
$\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
NOTE: $\ln x=\log _{e} x, x>0$

SECTION A

Question 1 (20 marks)

a) Find the remainder when the polynomial $P(x)=x^{3}+3 x-2$ is divided by $x-3$.
b) If $\operatorname{cosec} \theta=\frac{2}{\sqrt{3}}$, find the possible values of $\tan \theta$.
c) The equation $x^{2}-(1-2 k) x+k+3=0$ has consecutive integral roots. Find the possible values of k.
d) i) In how many ways can 6 committee members be selected from 10 people?
ii) In how many ways can this be done if two particular people will only serve together?
e) Express $\sin 3 \theta$ as an expression in powers of $\sin \theta$ only.
f) i) Write the equation of the tangent to the curve $y=x^{3}$ at the point on the curve where $x=1$.
ii) Find the co-ordinates of the point where this tangent crosses the curve.
g) Solve $|2 x+6|<4$
h) Solve for $x:\left(x+\frac{1}{x}\right)^{2}-\left(x+\frac{1}{x}\right)-12=0$

SECTION B

Start a New Booklet

a) Find the coordinates of the point which divides $A B$ with $A(1,4)$ and $B(5,2)$ externally in the ratio $1: 3$.
b) Given the curve with equation $y=\frac{x}{x^{2}+1}$:
i) Find the first and second derivatives.
ii) Identify and determine the nature of any turning points and points of inflexion.
iii) Make a neat sketch of the curve.
c) Solve the inequality $\frac{4}{5-x} \geq 1$.
d) Find the general solution to the equation $\cos \left(\theta+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.
e) i) Express $\sin \theta+\sqrt{3} \cos \theta$ in the form $R \sin (\theta+\alpha)$.
ii) Hence or otherwise sketch the graph of $y=\sin x+\sqrt{3} \cos x$ in the domain $0 \leq x \leq \pi$.

SECTION C

Question 3 (20 marks)

Start a New Booklet

a) In the diagram $\angle \alpha>\angle \beta>0$ and $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{4}{5}$
i) Show that $\tan \alpha \cdot \tan \beta=\frac{1}{9}$
ii) If $\mathrm{PR}=\mathrm{QR}$, show that $9(\tan \alpha+\tan \beta)=8$
iii) Hence find α and β.

8

4
b) i) The polynomial equation $P(x)=0$ has a double root at $x=9$. By writing $P(x)=(x-a)^{2} Q(x)$, where $Q(x)$ is a polynomial, show $P^{\prime}(a)=0$.
ii) Hence or otherwise find the values of a and b if $x=1$ is a double root of $x^{4}+a x^{3}+b x^{2}-5 x+1=0$
c) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
i) Derive the equation of the tangent to the parabola at P.
ii) Find the coordinates of the point of intersection T of the tangents to the parabola at P and Q.
iii) Given that the tangents at P and Q in (ii) intersect at and angle of 45°, show that $p-q=1+p q$.
iv) By Evaluating the expression $x^{2}=4 a y$ at T, or otherwise, find the locus of T.

Siction A. (Q).
(a)

$$
\begin{aligned}
R=P(3) & =27+9-2 \\
& =1
\end{aligned}
$$

(b) $\operatorname{cosec} \theta=\frac{2}{\sqrt{3}}$

$$
\begin{aligned}
\therefore \sin \theta & =\frac{\sqrt{3}}{2} \\
\theta & =60^{\circ}, 120^{\circ} \text { etc. } . \\
\therefore \tan \theta & = \pm \sqrt{3} \text {. } 2
\end{aligned}
$$

(c) Let the roots he $\alpha \alpha \alpha+1$.
shen $\alpha+(\alpha+1)=\frac{-b}{a}=1-2 k$ ie $2 \alpha+1=1-2 k$. ie $\alpha=-k$.
$* \alpha(\alpha+1)=\frac{c}{a}=k+3$ ie. $-k(-k+1)=k+3$ $k^{2}-k=k+3$

$$
k^{2}-2 k-3=0
$$

$$
(k+1)(k-3)=0
$$

$$
\begin{equation*}
k=3,-1 \tag{3}
\end{equation*}
$$

$(d)(1)\binom{10}{6}=210 \quad 2$
(II) Afthey (ie 2 Lantioular tertle) will only seme
tigetter thy are eitl hoth tigetter, thy are eith hoth on w Wotk off.

$$
\therefore\binom{8}{4}+\binom{8}{6}=70+28=98
$$

eal

$$
\text { e) } \begin{aligned}
\sin 3 \theta & =\sin (2 \theta+\theta) \\
& =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\
& =2 \sin \theta \operatorname{cs} \theta \cdot \cos \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta \\
& =2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin ^{3} \theta \\
& =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta \\
& =2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-2 \sin ^{3} \theta \\
\therefore \sin 3 \theta & =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

2
(f) (i)

$$
\begin{aligned}
& y=x^{3} \\
& y^{\prime}=3 x^{2} \quad \therefore \text { olope y targent at } x=12 \\
& \text { is } 3 .
\end{aligned}
$$

\therefore equ. of tangett at $(1,1)$
is $y-1=3(x-1)$

$$
\begin{aligned}
& y-1=3 x-3 \\
& y=3 x-2
\end{aligned}
$$

$$
1 \frac{1}{2}
$$

(II) Soluing $y=x^{3}$ and $y=3 x-2$.
ie $x^{3}=3 x-2$

$$
x^{3}-3 x+2=0
$$

how (A) wiil have nats $1,1+\alpha$
hen $1+1+\alpha=-\frac{b}{a}=0$.

$$
\therefore \alpha=-2 .
$$

\therefore the eltur pait is $(-2,-8) \quad 1 \frac{1}{2}$
(g) $|2 x+6|<4$

$$
\begin{aligned}
& \therefore-4<2 x+6<4 \\
&-10<2 x<-2 \\
& 1-5<x<-1 \mid
\end{aligned}
$$

2
(h) let $x+\frac{1}{x}=u$.

- equatier hectare.

$$
\begin{aligned}
u^{2}-u-12 & =0 \\
(u-4)(u+3) & =0 \\
u & =4,-3
\end{aligned}
$$

有 $u=4$

$$
\begin{aligned}
x+\frac{1}{x} & =4 \\
x^{2}+1 & =4 x \\
x^{2}-4 x+1 & =0 \\
x & =\frac{4 \pm \sqrt{16-4}}{2} \\
& =\frac{4 \pm \sqrt{12}}{2} \\
& =\frac{4 \pm 2 \sqrt{3}}{2} \\
\mid x & =2 \pm \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
4 / u & =-3 \\
x+\frac{1}{x} & =-3 . \\
x^{2}+1 & =-3 x . \\
x^{2}+3 x+1 & =0 . \\
x & =\frac{-3 \pm \sqrt{9-4}}{2} \\
-1 x & =\frac{-3 \pm \sqrt{5}}{2}
\end{aligned}
$$

YRII Sept 200\% ext 1 paper.
Section B
$\phi 2$.
(a) $A(1,4)^{x_{1}} y_{1}$
$B\left(5,2^{x_{2}}\right)^{y_{2}}$

$$
-1: 3
$$

$$
\begin{align*}
& \left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right) \\
& \Rightarrow\left(\frac{-1 \times 5+3 \times 1}{-1+3}, \frac{-1 \times 2+3 \times 4}{-1+3}\right)=(-1,5) \tag{2}
\end{align*}
$$

(b) $y=\frac{x}{x^{2}+1}$

$$
\text { (1) } \begin{aligned}
y^{\prime} & =\frac{\left(x^{2}+1\right) \times 1-x \times 2 x}{\left(x^{2}+1\right)^{2}} \\
& \left.=\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \times \frac{1}{2}\right) \\
y^{\prime \prime} & =\frac{\left(x^{2}+1\right)^{2} \times-2 x-\left(1-x^{2}\right) \times 2\left(x^{2}+1\right)^{\prime} \times 2 x}{\left(x^{2}+1\right)^{4}} \\
& =\frac{-2 x\left(x^{2}+1\right)^{2}-4 x\left(1-x^{2}\right)\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{4}} \\
& =\frac{-2 x\left(x^{2}+1\right)-4 x\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{3}} \\
& =\frac{-2 x^{3}-2 x-4 x+4 x^{3}}{\left(x^{2}+1\right)^{3}}=\frac{2 x\left(x^{3}-6 x\right.}{\left(x^{2}+1\right)^{3}}\left(x^{2}+1\right)^{3}
\end{aligned}
$$

(b) (ii) Stat pits dust when $y^{\prime}=0$

Since $\left(x^{2}+1\right)^{2} \neq 0$,

$$
\begin{aligned}
& 1-x^{2}=0 \\
& x^{2}=1 \\
& x= \pm 1
\end{aligned}
$$

When $x=+1, y=\frac{1}{2} \quad\left(1, \frac{1}{2}\right)$.
when $x=-1, y=\frac{-1}{2}\left(-1,-\frac{1}{2}\right)$.
$\operatorname{at}\left(1, \frac{1}{2}\right) y^{\prime \prime}=\frac{2(1-3)}{84}=\frac{-2}{4}<0$ max. stat pet If $\left(-1,-\frac{1}{2}\right) y^{\prime \prime}=\frac{-2(1-3)}{84}=\frac{2}{4}>0$ min stat ρ (1)
Inflexions occur when $y^{\prime \prime}=0$ and 7 a sign change

$$
2 x\left(x^{2}-3\right)=0 \quad \text { because }\left(x^{2}+1\right)^{3} \neq 0
$$

$$
\begin{aligned}
x=0, & x^{2}-3 \\
x^{2} & =3 \\
x & = \pm \sqrt{3} .
\end{aligned}
$$

at $x=0, y=\frac{0}{0+1}=0 \Rightarrow(0,0)$.
at $x=+\sqrt{3}, y=\frac{\sqrt{3}}{4} \Rightarrow\left(\sqrt{3}, \frac{\sqrt{3}}{4}, \square\right)$
at $x=+\sqrt{3}, y=\frac{-3}{4} \Rightarrow\left(\sqrt{3}, \frac{\sqrt{2}}{4}\right) \quad\left\{\begin{array}{l}\text { at } x=-\sqrt{3}, y=\frac{-\sqrt{3}}{4} \Rightarrow\left(-\sqrt{3}, \frac{\sqrt{3}}{4}\right) \\ \text { at } x=0-\varepsilon \quad y^{\prime \prime}>0 \\ x=0+\varepsilon \quad y^{\prime \prime}<0\end{array}\right\}$ signivenafnger $\left\{\begin{array}{l}\text { at } \\ x=-\sqrt{3}-\varepsilon y^{\prime \prime}<0 \\ x=-\sqrt{3}+\varepsilon y^{\prime \prime}>0\end{array}\right\}$
at $\left.\begin{array}{rl}x=\sqrt{3}-\varepsilon & y^{\prime \prime}<0 \\ x=\sqrt{3}+\varepsilon & \begin{array}{l} \\ y^{\prime \prime}>0\end{array}\end{array}\right\}$ sign change
b) (iii)

$$
\begin{array}{ll}
\left(1, \frac{1}{2}\right) \max & (0,0) \text { infl. } \\
\left(-1,-\frac{1}{2}\right) \min & \left(\sqrt{3}, \frac{\sqrt{3}}{4}\right) \div(1.7, .4) \text { inf } \\
& \left(-\sqrt{3},-\frac{\sqrt{3}}{4}\right) \div(-1.7,-.4) \text { inf }
\end{array}
$$

(c) $\frac{4}{5-x} \geqslant 1$ now $x \neq 5$.

$$
\begin{aligned}
& 5-x \\
& \frac{4(5-x)^{2}}{(5-x)} \geqslant 1 .(5-x)^{2} \\
& 4(5-x) \geqslant(5-x)^{2} \\
& 4(5-x)-(5-x)^{2} \geqslant 0 \\
& (5-x)[4-(5-x)] \geqslant 0 \\
& (5-x)[-1+x] \geqslant 0 \\
& (5) \geqslant 0
\end{aligned}
$$

So $(x-1)(5-x) \geqslant 0$

above or touching $1 \leq x \leq 5$ but $x \neq 5$, so $\{x, 1 \leq x<5\}$
$2(d)$ in radians

$$
\text { If } \cos \theta=\cos \alpha
$$

$$
\theta=2 \pi \times n \pm \alpha .
$$

So $\cos \left(\theta+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \theta+\frac{\pi}{6}=2 \pi \times n \pm \frac{\pi}{6} \\
& \theta=2 \pi n \pm \frac{\pi}{6}-\frac{\pi}{6}
\end{aligned}
$$

So $\theta=2 \pi n, \theta=2 \pi n-\frac{\pi}{3}$
$2(e) i(i) \left\lvert\, \sin \theta+\sqrt{3} \cos \theta=2\left(\frac{1}{2} \sin \theta+\frac{\sqrt{3}}{2} \cos \theta\right) \quad R=\sqrt{1^{2}+\sqrt{3}}=2\right.$.
no $2\left(\frac{1}{2} \sin \theta+\frac{\sqrt{3}}{2} \cos \theta\right)$

$$
=R(\sin \theta \cos \alpha+\cos \theta \sin \alpha)
$$

now $\left.R=2, \begin{array}{l}\cos \alpha=\frac{1}{2} \text { quad 1, } 4 \\ \sin \alpha=\frac{\sqrt{3}}{2} \text { quad , } 2 .\end{array}\right\}$ quad 1.
So $\alpha=\frac{\pi}{3}$ (radian measure).
So $2 \frac{8}{\sin }\left(\theta+\frac{\pi}{3}\right)=\sin \theta+\sqrt{3} \cos \theta$
(ii)

$$
\begin{aligned}
& y=2 \sin \left(\theta+\frac{\pi}{3}\right) \\
& 1=0, y=2 \sin \frac{\pi}{3}=\sqrt{3} \\
& 1=\frac{\pi}{2} y=2 \sin \frac{5 \pi}{6}=1 \\
& =\pi y=2 \sin \frac{4 \pi}{3}=-\sqrt{3}
\end{aligned}
$$

Question [3] solution.

$$
\begin{aligned}
& \frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{4}{5} \\
& 5[\cos \alpha \cos \beta-\sin \alpha \sin \beta] \\
= & 4[\cos \alpha \cos \beta+\sin \alpha \sin \beta]
\end{aligned}
$$

(8)
$\cos \alpha \cos \beta=9 \sin \alpha \sin \beta \cdot[2]$

$$
\begin{align*}
& \therefore \tan \alpha \tan \beta=\frac{1}{9} \tag{1}\\
& \text { If } P R=Q R \Rightarrow \alpha+\beta=45^{\circ}
\end{align*}
$$

$$
\therefore \quad \tan (\alpha+\beta)=1
$$

Now, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=1$

$$
\therefore \tan \alpha+\tan \beta=1-\tan \alpha \tan \beta
$$

$$
\begin{align*}
& =1-\frac{1}{9} \tag{2}\\
& =8
\end{align*}
$$

$$
\begin{equation*}
=8 / 9 \tag{2}
\end{equation*}
$$

$\Rightarrow q(\tan \alpha+\tan \beta)=8$
Let $\tan \alpha, \tan \beta$ be the $[$ roots to $x^{2}-\frac{8}{9} x+\frac{1}{9}=0$

$$
\begin{aligned}
\therefore & 9 x^{2}-8 x+1=0 \\
& x=\frac{8 \pm \sqrt{64-36}}{18}
\end{aligned}
$$

$\therefore \tan \alpha=\frac{8+2 \sqrt{7}}{18}, \alpha=367^{\circ} 1$
or $\tan \beta=\frac{8-2 \sqrt{7}}{18} \quad \beta=8^{\circ} 33$ i
(b)
(i)

$$
\begin{aligned}
& \text { 6) } p(x)=(x-9)^{2} q(x) \\
& p^{\prime}(x)=2 q(x)(x-q)+(x-9)^{2} q^{\prime}(x) \\
& \therefore p^{\prime}(q)=0
\end{aligned}
$$

(ii) $p(1)=0 \Rightarrow 1+a+b-4=0$

$$
\begin{equation*}
\therefore a+b=3 \tag{1}
\end{equation*}
$$

[2].

$$
\begin{equation*}
P^{\prime}(1)=04+3 a+2 b-5=0 \tag{2}
\end{equation*}
$$

l.e $\quad 3 a+2 b=5$
(1) $\times\{-27$

$$
\begin{align*}
& -2 a+2 b=-6 \tag{3}\\
& a=-1 \\
& b=4
\end{align*}
$$

$$
l=\tan \alpha=\frac{p-q}{1+p q}
$$

[2].

$$
\begin{gather*}
\therefore \quad p-q=1+p q \tag{5}\\
\frac{x}{a}=p+q \\
\frac{4}{a}=p q \\
(p-q)^{2}=(p+q)^{2}-4 p q \\
\therefore(1+p q)^{2}=(p+q)^{2}-4 p q \\
\therefore\left(1+\frac{4}{a}\right)^{2}=\frac{x^{2}}{a^{2}}-\frac{44}{a} \\
1+\frac{2 y}{a}+\frac{y^{2}}{a^{2}}=\frac{x^{2}}{a^{2}}-\frac{4 y}{a} \\
a^{2}+2 a y+y^{2}=x^{2}-4 a y . \\
\operatorname{Locxs} 01 \tag{6}
\end{gather*}
$$

Locus of T

$$
x^{2}-y^{2}-6 a y-a^{2}=0
$$

$$
\left.\begin{array}{c}
(p-q) x=a(p+q)(p-q)^{2} \\
\therefore \quad x=a(p+q) \tag{4}\\
y=a p q
\end{array}\right\}
$$

