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YEAR 11

Mathematics Extension (Continuers)

General Instructions Total Marks - 60
e Reading Time- 5 Minutes. o Attemptquestionsl- 4
e  Working time - 60 Minutes

e Writeusing black or blue pen. Pencil may
be used for diagrams.

e Board approved calculators maybe used.

e  All necessary working should be shown in
every question if full marksare to be
awarded.

e Marksmay NOT be awarded for messy or
badly arranged work.

e  Start each NEW section in a separate Examiner: R. Boros
answer booklet.



Total marks 60
Attempt questions 1 to 4

Answer each Section in a Separate writing booklet

Section A (Use a SEPARATE writing booklet)

Question 1 (14 marks)

(a) Find the acute angle between the lines y = 2z + 1 and y = —x + 1, correct to the

nearest minute.

(b) Consider the polynomial K(x) = 4a® + tx® 4+ 2z — 1. Given that = + 1 is a factor of

K(x), find the value of ¢.

2
(c) The parametric equations of a curve are x = n and y = 2t2. What is the cartesian

equation for the curve?

(d) For the parabola (x — 3)* = 6y + 12, find the:
1. coordinates of the vertex
ii. coordinates of the focus

iii. equation of the directrix

(e) Find the coordinates of the point ¢ which divides the interval joining A(2, —3) and

B(—4,1) externally in the ratio 1 : 3.

(f) Sketch the graph of y = z*(x — 2)® without the use of calculus.



Question 2 (14 marks)

(a) Differentiate f(x) =5 — x? by using first principles.

7 3
(b) Given that sina = % and cos§ = —x where o and (3 are obtuse angles, find the
exact value of:
1. sin 2«

ii. cos(a+ )

(c) In a class of 30 students, 22 study Chemistry, 18 study Physics and 13 study both
Chemistry and Physics. If a student is chosen at random, what is the probability

that the student studies Chemistry or Physics?

(d) i Express sinz —v/3cosx in the form Asin (z — ), with A >0 and 0 < a < g

ii. Find the solutions to sinz — v/3 cosz = for 0 < x < 2m.

S

< 1 .
r+2 " x+3

(e) Solve the inequation



Section B (Use a SEPARATE writing booklet)

Question 3 (15 marks)

(a) Solve log,, 16 = z logs 2.

Cos 2x cosx —sinx

b) Prove the trigonometric identit = .
(b) Prov Hgonometre 1 nly(cosm+sinx)3 1 + sin 2z

(c) A committee of three is to be chosen from a group of four males and five females.
The committee must include at least one male and at least one female. How many

different commitees can be formed?

(d) A maths teacher pays $1000 into a superannuation fund at the beginning of each

year. Compound interest is paid at 9%p.a. on the investment.

i. Show that the first $1000 invested becomes $20413.97 to the nearest cent after

35 years.

ii. What will be the value of the investment at the end of 35 years? Answer correct

to the nearest dollar.

(e) Given that the cubic equation 22 + 6z — 1 = 0 has real roots a, § and ~. Evaluate:
i 3332 4+ 033293 1 a2 335,
a
LB
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Question 4 (17 marks)

2

b
(a) The derivative of xvz? + 3 is \672—%, where a and b are constants. Find the value
xe +

of a and b.

(b) The student council at a local school consists of 4 boys and 2 girls. In how many

ways can they sit next to each other around a circular table for a meeting if:

i. there are no restrictions.
ii. the girls are not to sit next to each other.
(c¢) Find the general solution of the equation tan 20 = tan 6 in radians.
(d)
y
x= —at
/ 0 / X
A (3at,—at”)
//
B x* =—Oay

The point A(3at, —at?) is a variable point on the parabola 2> = —9ay. The normal
at A meets the line x = —at at the point B.
i. Show that the equation of the normal to the parabola at A is
3z — 2ty = 2at® + at.

ii. Find the coordinates of B.
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C NOT TO SCALE

A building AB of height 2h metres has a flag pole of height A metres on top of it.
From a point C', due south of the building, the angle of elevation of the top of the
building is 40°. From a point D, due west of the building, the angle of elevation of
the top of the flagpole is 50°. The points C' and D are on the same level as A and

they are 40 metres apart.

i. Find expressions for AC' and AD in terms of h.
40
V4 cot?40° + 9 cot? 50°°
iii. Find to the nearest degree, the true bearing of D from C.

ii. Show that h =

End of paper
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QUESTION 4‘ b) continued.
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