

SYDNEY BOYS HIGH SCHOOL moore park, sUREY HILLS

SEPTEMBER 2007

Yearly Examination
YEAR 11

Mathematics Extension (Continuers)

General Instructions

- Reading Time - 5 Minutes.
- Working time - 60 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Total Marks - 60

- Attemptquestions 1-4

Attempt questions 1 to 4

Answer each Section in a Separate writing booklet

> Section A (Use a SEPARATE writing booklet)

Question 1 (14 marks)
(a) Find the acute angle between the lines $y=2 x+1$ and $y=-x+1$, correct to the nearest minute.
(b) Consider the polynomial $K(x)=4 x^{3}+t x^{2}+2 x-1$. Given that $x+1$ is a factor of $K(x)$, find the value of t.
(c) The parametric equations of a curve are $x=\frac{2}{t}$ and $y=2 t^{2}$. What is the cartesian equation for the curve?
(d) For the parabola $(x-3)^{2}=6 y+12$, find the:
i. coordinates of the vertex
ii. coordinates of the focus
iii. equation of the directrix
(e) Find the coordinates of the point Q which divides the interval joining $A(2,-3)$ and $B(-4,1)$ externally in the ratio $1: 3$.
(f) Sketch the graph of $y=x^{2}(x-2)^{3}$ without the use of calculus.

Question 2 (14 marks)
(a) Differentiate $f(x)=5-x^{2}$ by using first principles.
(b) Given that $\sin \alpha=\frac{7}{25}$ and $\cos \beta=-\frac{3}{5}$ where α and β are obtuse angles, find the exact value of:
i. $\sin 2 \alpha$
ii. $\cos (\alpha+\beta)$
(c) In a class of 30 students, 22 study Chemistry, 18 study Physics and 13 study both Chemistry and Physics. If a student is chosen at random, what is the probability that the student studies Chemistry or Physics?
(d) i. Express $\sin x-\sqrt{3} \cos x$ in the form $A \sin (x-\alpha)$, with $A>0$ and $0<\alpha<\frac{\pi}{2}$. ii. Find the solutions to $\sin x-\sqrt{3} \cos x=\frac{2}{\sqrt{2}}$ for $0 \leq x \leq 2 \pi$.
(e) Solve the inequation $\frac{1}{x+2} \leq \frac{1}{x+3}$.

Section B (Use a SEPARATE writing booklet)

Question 3 (15 marks)

(a) Solve $\log _{27} 16=x \log _{3} 2$.
(b) Prove the trigonometric identity $\frac{\cos 2 x}{(\cos x+\sin x)^{3}}=\frac{\cos x-\sin x}{1+\sin 2 x}$.
(c) A committee of three is to be chosen from a group of four males and five females. The committee must include at least one male and at least one female. How many different commitees can be formed?
(d) A maths teacher pays $\$ 1000$ into a superannuation fund at the beginning of each year. Compound interest is paid at 9% p.a. on the investment.
i. Show that the first $\$ 1000$ invested becomes $\$ 20413.97$ to the nearest cent after 35 years.
ii. What will be the value of the investment at the end of 35 years? Answer correct to the nearest dollar.
(e) Given that the cubic equation $2 x^{3}+6 x-1=0$ has real roots α, β and γ. Evaluate:
i. $\alpha^{3} \beta^{3} \gamma^{2}+\alpha^{3} \beta^{2} \gamma^{3}+\alpha^{2} \beta^{3} \gamma^{3}$.
ii. $\frac{\alpha}{\beta \gamma}+\frac{\beta}{\alpha \gamma}+\frac{\gamma}{\alpha \beta}$.

Question 4 (17 marks)
(a) The derivative of $x \sqrt{x^{2}+3}$ is $\frac{a x^{2}+b}{\sqrt{x^{2}+3}}$, where a and b are constants. Find the value of a and b.
(b) The student council at a local school consists of 4 boys and 2 girls. In how many ways can they sit next to each other around a circular table for a meeting if:
i. there are no restrictions.
ii. the girls are not to sit next to each other.
(c) Find the general solution of the equation $\tan 2 \theta=\tan \theta$ in radians.
(d)

The point $A\left(3 a t,-a t^{2}\right)$ is a variable point on the parabola $x^{2}=-9 a y$. The normal at A meets the line $x=-a t$ at the point B.
i. Show that the equation of the normal to the parabola at A is

$$
3 x-2 t y=2 a t^{3}+9 a t
$$

ii. Find the coordinates of B.
(e)

A building $A B$ of height $2 h$ metres has a flag pole of height h metres on top of it. From a point C, due south of the building, the angle of elevation of the top of the building is 40°. From a point D, due west of the building, the angle of elevation of the top of the flagpole is 50°. The points C and D are on the same level as A and they are 40 metres apart.
i. Find expressions for $A C$ and $A D$ in terms of h.
ii. Show that $h=\frac{40}{\sqrt{4 \cot ^{2} 40^{\circ}+9 \cot ^{2} 50^{\circ}}}$.
iii. Find to the nearest degree, the true bearing of D from C.

Section A
Question 1.
(a)

$$
\begin{aligned}
\tan \alpha & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{2-(-1)}{1+(2)(-1)}\right| \\
& =3 . \\
\tan \alpha & =3 \\
\alpha & =71^{\circ} 34^{\prime}
\end{aligned}
$$

(b)

$$
\begin{gathered}
K(-1)=-4+t-2-1 ;=0 . \\
t=?
\end{gathered}
$$

(c) $x=\frac{2}{E} \Rightarrow t=\frac{2}{x}$.

So

$$
\begin{aligned}
& y=2\left(\frac{2}{x}\right)^{2} \\
& y=\frac{8}{x^{2}}
\end{aligned}
$$

(d) $(x-3)^{2}=4\left(\frac{3}{2}\right)(y+2)$.
(i) Vertex $(3,-2)$.
(ii) Focus $\left(3,-\frac{1}{2}\right)$.
(iii) Directuri $y=-\frac{7}{2}$ or $-3 \frac{1}{2}$
(e) $\left(\frac{n x_{1}+m x_{2}}{m+n}, \frac{n y_{1}+m y_{2}}{m+n}\right)$

External division mi-n

$$
\begin{aligned}
& \left(\frac{-3 \times 2+1 x-4}{1-3}, \frac{-3 x-3+1 \times 1}{1-3}\right) \\
& =\left(\frac{6-4}{-2}, \frac{9+1}{-2}\right) \\
& =(-1,-5)
\end{aligned}
$$

(f)

Question 2.
(a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5-(x+h)^{2}-\left(5-x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5-x^{2}-2 x h-h^{2}-5+x^{2}}{h} \\
& =\lim _{h \rightarrow 0}-2 x+h . \\
& =-2 x .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \sin \alpha=\frac{7}{25} \Rightarrow \cos \alpha=-\frac{24}{25} . \\
& \cos \beta=-\frac{3}{5} \Rightarrow \sin \beta=\frac{4}{5} .
\end{aligned}
$$

(i)

$$
\begin{aligned}
\sin 2 \alpha & =2 \sin \alpha \cos \alpha \\
& =2 \times \frac{7}{2 \rho} x-\frac{24}{25} \\
& =-\frac{336}{625}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& =-\frac{24}{25} \times-\frac{3}{5}-\frac{7}{25} \times \frac{4}{5} \\
& =\frac{44}{125} .
\end{aligned}
$$

(c)

$$
\frac{27}{30}=\frac{9}{10}
$$

(d) (i) $A \sin (x-\alpha)=A \cos \alpha \sin x-A \sin \alpha \cos x$.

So $A \cos \alpha=1$

$$
A \sin \alpha=\sqrt{3} .
$$

Thus $\tan \alpha=\sqrt{3}$. and $A^{2} \cos ^{2} \alpha+A^{2} \sin ^{2} \alpha=1+3$.

$$
\alpha=\frac{\pi}{3}
$$

$$
A^{2}=4
$$

$\sin x-\sqrt{3} \cos x \equiv 2 \sin \left(x-\frac{\pi}{3}\right)$.

$$
A=2 .
$$

(ii). $2 \sin \left(x-\frac{\pi}{3}\right)=\frac{3}{\sqrt{2}}$

$$
\begin{aligned}
& \sin \left(x-\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}} \\
& x-\frac{\pi}{3}=\frac{\pi}{4}, \frac{3 \pi}{4} \\
& x=\frac{7 \pi}{12}, \frac{13 \pi}{12}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{1}{x+2}-\frac{1}{x+3} \leqslant 0 . \\
& \frac{(x+3)-(x+2)}{(x+3)(x+2)} \leqslant 0 \\
& \frac{1}{(x+3)(x+2)} \leqslant 0 . \\
& (x+3)(x+2) \leqslant 0 . \\
& -3 \leqslant x \leqslant-2 .
\end{aligned}
$$

B11 2007 yr 11 Yearly-Continuers SEction B

QUESTION.(3)
a) $\log _{27} 16=x \log _{3} 2$.

$$
\begin{aligned}
L H S & =\log _{27} 16 . \\
& =\frac{\log _{3} 16}{\log _{3} 27} \\
& =\frac{\log _{3} 2^{4}}{3} . \\
& =\frac{4}{3} \log _{3} 2 .
\end{aligned}
$$

$$
\begin{array}{ll}
0 & x=\frac{4}{3} \\
00
\end{array}
$$

(b)

$$
\frac{\cos 2 x}{(\cos x+\sin x)^{3}}=\frac{\cos x-\sin x}{1+\sin 2 x}
$$

$$
\begin{aligned}
L H S & =\frac{\cos 2 x}{(\cos x+\sin x)^{3}} \\
& =\frac{\cos ^{2} x-\sin ^{2} x}{(\cos x+\sin x)^{3}} \\
& =\frac{(\cos x+\sin x)(\cos x-\sin x)}{(\cos x+\sin x)^{3}} \\
& =\frac{\cos x-\sin x}{(\cos x+\sin x)^{2}} \\
& =\frac{\cos x-\sin x}{\cos ^{2} x+2 \sin x \cos x+\sin ^{2} x}=
\end{aligned}
$$

d)
i) $1000(1.09)^{35}=20413.97$
ii)

$$
\begin{aligned}
1^{s t} y_{r}=1000 & (1.09) \\
2^{n d} y_{\text {ear }}= & 1000(1.09) \\
& +(1000)(1.09)^{2} .
\end{aligned}
$$

3 3d $V_{r}=1000(1.09)+1000(1.09)^{2}$

$$
\begin{aligned}
& +1000(1.09)^{3} \text {. } \\
& 3 \cdot d V_{r}=1000(1.99)+1000(1.09)^{2} \\
& +1000(1.09)^{3} . \\
& 35^{\text {th }} y_{r}=1000\left(1.09+1.09^{2}+1.09^{351}\right) \\
& =1000\left(\frac{a\left(r^{n}-1\right)}{r-1}\right) \\
& a=1.09 . \\
& r=1.09 \\
& =1000\left(\frac{1.09\left(1.09^{35}-1\right)}{1.09-1}\right)^{n=35} \text {. } \\
& =\$ 235,124 \cdot 72
\end{aligned}
$$

(B:2) 2007 yr 11 Yearly-dortinuers: SECTION B.
QUESTION 3 (CONTINUED).
e) $2 x^{3}+0 x^{2}+6 x-1=0$
i) $\alpha^{3} * \beta^{3} \times y^{2}+\alpha^{3} \beta^{2} y^{3}+\alpha^{2} \beta^{3} y^{3}$

$$
=\alpha^{2} \beta^{2} y^{2}(\alpha \beta+\alpha y+\beta y) .
$$

$$
=(\alpha \beta y)^{2}(\alpha \beta+\alpha y+\beta y) .
$$

$$
\alpha \beta y=\frac{-d}{a}=\frac{1}{2} .
$$

$$
\alpha \beta+\alpha y+\beta y=\frac{c}{a}=\frac{b}{2}=3 .
$$

$$
\therefore(\alpha \beta y)^{2} *(\alpha \beta+\alpha y+\beta y)=\left(\frac{1}{2}\right)^{2} \times 3
$$

$$
=\frac{3}{4}
$$

ELi) CONTINUED.

-6

B:3 2007 YR11-Yearly-Continuers-SECTION B.

QUESTION 4.
Ret $y=x \sqrt{x^{2}+3}$

$$
\frac{d y}{d x}=v u^{\prime}+u v^{\prime}
$$

where $u=x \quad u^{\prime}=1$.

$$
\begin{aligned}
& \text { Where } u=x \\
& v
\end{aligned} \begin{aligned}
\frac{d y}{d x} & =\left(x^{2}+3\right)^{\frac{1}{2}} \quad v=\frac{1}{2}(2 x)\left(x^{2}+3\right)^{\frac{1}{2}}(1)+(x)(x)\left(x^{2}+3\right)^{-\frac{1}{2}} \\
& =\sqrt{x^{2}+3}+\frac{x^{2}}{\sqrt{x^{2}+3}} \\
& =\frac{x^{2}+3+x^{2}}{\sqrt{x^{2}+3}} \\
& =\frac{2 x^{2}+3}{\sqrt{x^{2}+3}} \\
& =\frac{a x^{2}+b}{\sqrt{x^{2}+3}} \\
\underline{a} & =2
\end{aligned}
$$

(b) i) No of ways around a table

$$
\begin{aligned}
& =(n-1)_{0}^{1} \\
& =51 \\
& =120 \text { ways }
\end{aligned}
$$

b) (Continued).
ii)

$$
\frac{1}{\hat{个}}{ }^{4} C_{1}{ }^{3} C_{1} \cdot{ }^{3} C_{1}{ }^{2} C_{1} 1
$$

fix.

$$
=1 \times 4 \times 3 \times 3 \times 2 \times 1 \text {. }
$$

$$
=72 \text { ways }
$$

(c) $\tan 2 \theta=\tan \theta$.

$$
\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\tan \theta
$$

$2 \tan \theta=\tan \theta-\tan ^{3} \theta$

$$
\tan ^{3} \theta+\tan \theta=0
$$

$$
\tan \theta \cdot\left(\tan ^{2} \theta+1\right)=0
$$

either:
$\tan ^{2} \theta+1=0$ which canthappen so

$$
\tan \theta=0
$$

thus this happens when $\sin \theta=0$.
OO General solution is.

$$
\theta=n \mathbb{\pi} \quad n \in \mathbb{Z}
$$

B:4) 2007 Yr 11 -Yearly-(Continuers-SECTIONB.

$$
\begin{aligned}
& \text { Question } 4 \text { (continued) } \\
& \text { (d) i) } x=-a t \quad A\left(3 a t,-a t^{2}\right) . \\
& x^{2}=-9 a y \\
& y= \\
& \text { gradient of tangent } \\
& \frac{d y}{d x}=\frac{2 x}{-9 a}=m, \\
& \text { gradient of normal is. } \\
& m_{2}=\frac{-1}{m_{1}} \\
& =\frac{9 a}{2 x} \text { (e) }\left(3 a t,-a t^{2}\right) \\
& =\frac{9 a}{2(3 a t)}
\end{aligned}
$$

Point gradient formula.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+a t^{2}=\frac{9 a}{2(3 a t)}(x-3 a t) \\
& 6 a t y+6 a^{2} t^{3}=9 a x-27 a^{2} t \\
& 6 t y+6 a t^{3}=9 x-27 a t \\
& 2 t y+2 a t^{3}=3 x-9 a t \\
& 3 x-2 t y=2 a t^{3}+9 a t .
\end{aligned}
$$

d) ii)

$$
\overline{3 x}-2 t y=2 a t^{3}+9 a t
$$

at $x=-$ at.

$$
\begin{aligned}
&-3(a t)-2 t y=2 a t^{3}+9 a t \\
&-2 t y=2 a t^{3}+9 a t+3 a t \\
& y=\frac{-2 a t^{7}-12 a t}{2 t} \\
& y=-a t^{2}-6 a .
\end{aligned}
$$

Co-ordinates of B
$\left(-a t,-a t^{2}-b a\right)$
(4)e)i) $A C \Rightarrow$

$$
\begin{aligned}
& A C \Rightarrow \\
& \tan 40=\frac{2 h}{A C} \\
& A C=\frac{2 h}{\tan 40} \\
& A D \Rightarrow \\
& \tan 50=\frac{3 h}{A D} \\
& A D=\frac{3 h}{\tan 50}
\end{aligned}
$$

3:5) 2007 Yrll Yearly-cohtinuers-section B.

QUESTION 4 (CONTINUED)
e) continued.
ii). By Pythagoras.

$$
\begin{aligned}
& 40^{2}=\left(\frac{2 h}{\tan 40}\right)^{2}+\left(\frac{3 h}{\tan 50}\right)^{2} \\
& 40^{2}=\frac{4 h^{2}}{\tan ^{2} 40}+\frac{9 h^{2}}{\tan ^{2} 50}
\end{aligned}
$$

$$
40^{2}=h^{2}\left(4 \cot ^{2} 40+9 \cot 50\right)
$$

$$
h^{2}=\frac{40^{2}}{4 \cot ^{2} 40+9 \cot ^{2} 5 \phi}
$$

$$
n=\frac{40}{\sqrt{4 \cot ^{2} 40+9 \cot ^{2} 50}}
$$

f)

$$
\begin{aligned}
\tan \theta & =\frac{3 h}{\tan 50} \frac{2 h}{\tan 40} \\
& =\frac{3 h}{\tan 50}+\frac{\tan 40}{2 h} \\
& =\frac{3}{2} \frac{\tan 40}{\tan 50}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =1.0561 . \\
\theta & =46.56 .
\end{aligned}
$$

\therefore Bearing of D from C is $360^{\circ}-46.56^{\circ}$ $=\frac{313^{\circ} \text { (dearest }}{\text { degree) }}$

