

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

Yearly Examination 2008

Mathematics Extension

General Instructions

- Working time - 75 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 69

- All Questions may be attempted.
- Each Question is worth 23 marks, and should be handed up in a separate examination booklet.
- Full Marks may not be awarded for careless or poorly set out work.

Examiner - A.M.Gainford

Question 1. (23 Marks)
(a) Find the exact value of $\sec 210^{\circ}$.
(b) Solve for x :
(i) $|2-x| \leq 3$
(ii) $x^{2}-4<0$
(iii) $\frac{1}{2 x-6}<1$
(c) Find the remainder when the polynomial $P(x)=x^{3}-5 x-1$ is divided by $x-3$.
(d) Give the general solution of the equation $2 \cos \left(\theta+\frac{\pi}{6}\right)+1=0$.
(e) Use the substitution $t=\tan \left(\frac{\theta}{2}\right)$ to solve the equation $2 \sin \theta+\cos \theta=0$ for $-180^{\circ} \leq \theta \leq 180^{\circ}$. (Answer correct to the nearest minute.)
(f) Express $\cos 3 \theta$ as an expression in powers of $\cos \theta$ only.
(g) Differentiate:
(i) $x \sqrt{x}-\frac{1}{x}$
(ii) $\left(1-x^{2}\right)^{4}\left(1+x^{2}\right)^{4}$
(iii) $\frac{1+x}{1-x}$

Question 2. (23 Marks)

(a) Express $\cos x-\sin x$ in the form $R \cos (x+\alpha)$, where $R>0, \alpha$ is acute.
(b) (i) Show that $2 \tan \theta \sec \theta=\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}$.
(ii) Simplify $\frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x}$.
(c) If α, β, γ are the roots of the polynomial equation $3 x^{3}-6 x^{2}+3 x+1=0$, evaluate:
(i) $\alpha \beta \gamma$
(ii) $\alpha \beta+\alpha \gamma+\beta \gamma$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(d) Given the polynomial $P(x)=x^{3}+6 x^{2}-x-30$.
(i) Use the factor theorem to find a zero of the polynomial.
(ii) Express $P(x)$ as a product of three linear factors.
(e) Draw neat sketches of the following functions:
(i) $\quad y=1-|x-1|$
(ii) $y=2^{-x}$
(iii) $y=1-\sqrt{x}$
(f) Find all solutions of $\sin 2 x=\sin x$ (x in radians).

Question 3. (23 Marks)

(a) Solve $\left(x+\frac{1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+8=0$.
(b) Calculate to the nearest minute the acute angle between the lines $x-3 y=6$ and $2 x+y=-5$.
(c) A surveyor observes, from the top (T) of a vertical cliff a kilometer-post (A) on a straight flat road on the plain below on a bearing of $176^{\circ} \mathrm{T}$, and at an angle of depression of 4°. He then observes the next kilometer-post (B) (one kilometer further along the road) on a bearing of $194.5^{\circ} \mathrm{T}$, and at an angle of depression of 3°.

(i) Copy the diagram to your answer booklet, and find $\theta=\angle A G B$.
(ii) Let $G T=h \mathrm{~m}, A G=x \mathrm{~m}, B G=y \mathrm{~m}$, write an equation connecting x, y and θ.
(iii) Hence find the height of the cliff.
(d) Let $P\left(2 a p, a p^{2}\right)$ be a point on the parabola $x^{2}=4 a y$.
(i) Write down the co-ordinates of the midpoint M of the interval joining P to the focus S.
(ii) Show that, as P moves along the curve, the locus of M is a parabola, and state its focal length.
(e) Find the value of the constants a and b if $x^{2}+3 x-4$ is a factor of the polynomial $P(x)=x^{3}+x^{2}+a x+b$.
(f) The point $P\left(3,3 \frac{1}{2}\right)$ divides the interval $A B$ externally in ratio $3: 1$. If B is $(1,3)$, find the co-ordinates of A.
(g) Consider the cubic curve $y=x^{3}-x$.
(i) Write down the equation of the tangent to the curve at the point where $x=a$, in terms of a.
(ii) Find, in terms of a, the x co-ordinate of the point where this tangent meets the curve again.

This is the end of the paper.

QUESTION 1
(a) $-\frac{\sqrt{3}}{2}$
(e) $2 \frac{(2 t)}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}=0$
(b)(1)

$$
\begin{aligned}
& 2-x \leq 3 \text { or }-2+x \leq 3 \\
& -x \leq 1 \quad x \leq 5 \\
& -1 \leq x \leq 5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (x+2 x-x-2)<0 \\
& -2<x<\left.2 \Rightarrow\right|_{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 2 x-6<4 x^{2}-24 x+36 \\
& 4 x^{2}-26 x+42>0 \\
& 2 x^{2}-13 x+21>0 \\
& (2 x-7)(x-3)>0 \\
& x<3 \text { or } x>3 \frac{1}{2} \frac{1}{3} \int_{3 / 2}^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(3) & =27-15-1=11 \\
R & =11
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \cos (\theta+\pi / 6)=-\frac{1}{2} \\
& \theta+\frac{\pi}{6}=120,360+120,360+120,2 \times 360-120 \\
& -120,-360+120,-360-120,2 \times 360+120 \\
& \theta+\frac{\pi}{6}=2 n \pi+\frac{2 \pi}{3} \text { or } 2 n \pi-\frac{2 \pi}{3} \\
& \theta=2 n \pi+\frac{\pi}{2} \text { or } 2 n \pi-5 \pi
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \operatorname{Cos} 30=\operatorname{Cos}(2 \theta+0) \\
& =\operatorname{Cos} 2 \theta \operatorname{Cos} \theta-\operatorname{Sin} 20 \operatorname{Sin} 0_{=\left(2 \cos ^{2} \theta-1\right) \operatorname{Cos} \theta-2 \operatorname{Sin} \theta \operatorname{Cos} 0 \operatorname{Sin} \theta}^{=2 \cos ^{3} \theta-\operatorname{Cos} 0-2\left(1-\operatorname{Cos}^{2} \theta\right) \operatorname{Cos} \theta} \\
& =2 \operatorname{Cos}^{3} \theta-\cos \theta-2 \operatorname{Cos} \theta+2 \cos ^{3} \theta \\
& =4 \cos ^{3} 0-3 \operatorname{Cos} \theta
\end{aligned}
$$

(9)(i)

$$
\begin{aligned}
x y & =x^{\frac{3}{2}}-x^{-1} \\
y^{\prime} & =\frac{3}{2} x^{\frac{1}{2}}--x^{-2} \\
& =\frac{3}{2} \sqrt{x}+\frac{1}{x^{2}}
\end{aligned}
$$

(ii) $\left(1-x^{2}\right)^{4} \times 4\left(1+x^{2}\right)^{3} \times 2 x+$

$$
\begin{gathered}
\left(1+x^{2}\right)^{4} \times 4\left(1-x^{2}\right)^{3} x-2 x \\
8 x\left(1-x^{2}\right)^{4}\left(1+x^{2}\right)^{3}-8 x\left(1+x^{2}\right)^{4}\left(1-x^{2}\right)^{3}
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& \frac{(1-x) \times 1-(1+x) \times-1}{(1-x)^{2}} \\
& \frac{2}{(1-x)^{2}}
\end{aligned}
$$

YRII Yearh exam 2008 Continvers. extension

$$
\begin{aligned}
\widetilde{2}(\alpha) / \cos x-/ \sin x & =\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right) \\
R=\sqrt{1^{2}+(-1)^{2}} & =R(\cos x \cos \alpha-\sin x \sin \alpha) \\
=\sqrt{2} \quad & R=\sqrt{2} .
\end{aligned}
$$

and. $\cos \alpha=\frac{1}{\sqrt{2}}, \alpha=45^{\circ}$.

$$
\begin{equation*}
\sin \alpha=\frac{\alpha}{\sqrt{2}}, 0 \tag{2}
\end{equation*}
$$

So $\cos x-\sin x=\sqrt{2}\left(\cos \left(x+45^{\circ}\right)\right.$.
(b)

$$
\begin{align*}
\text { (i) RHS } & \frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta} \\
& \frac{1+\sin \theta-(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)} \\
= & \frac{2 \sin \theta}{1-\sin \theta} \quad \text { using } S^{2}+c^{2}=1 \\
= & \frac{2 \sin \theta}{\cos ^{2} \theta} \\
= & \frac{2 \sin \theta}{\cos \theta \cos \theta} \\
= & 2 t \tan \theta \sec \theta=\text { LHS }
\end{align*}
$$

(b)

$$
\begin{aligned}
& \text { (ii) } \begin{aligned}
& \frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x} \\
= & \frac{\sin 3 x \cos x-\cos 3 x \sin x}{\sin x \cos x} \\
= & \frac{\sin (3 x-x)}{\frac{1}{2} \sin 2 x} \\
= & \frac{2 \sin 2 x}{\sin 2 x}=2 .
\end{aligned} .
\end{aligned}
$$

(c)

$$
\begin{align*}
& 3 x^{3}-6 x^{2}+3 x+1=0 \\
& \alpha+\beta+\gamma=-\frac{b}{a}=\frac{-6}{3}=2 \\
& \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=\frac{3}{3}=1 \\
& \alpha \beta \gamma=-\frac{d}{a}=-\frac{1}{3} . \tag{1}
\end{align*}
$$

(i) $\alpha_{\beta \beta}=-\frac{1}{3}$
(ii) $\alpha \beta+\alpha \gamma+\beta \gamma=1$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma}=\frac{1}{-\frac{1}{3}}=-3$
(d) (i) $P(x)=x^{3}+6 x^{2}-x-30$

$$
\begin{gathered}
P(2)=8+24-2-30=32-32 \\
(x-2) \text { is a factor }
\end{gathered}
$$

Could also have: $(x+3)$ or $(x+5)$.
(ii)

$$
\begin{align*}
& \text { (ii) } \begin{aligned}
x-2 \sqrt{x^{2}+8 x+15} \\
x^{3}+6 x^{2}-x-30 \\
x^{3}-2 x^{2}
\end{aligned} \\
& 8 x^{2}-x-30 \\
& 8 x^{2}-16 x \\
& 15 x-30 \\
& P(x)= \\
& =(x-2)\left(x^{2}+8 x+15\right) \\
& =(x-2)(x+3)(x+5) \tag{2}
\end{align*}
$$

(e)

(ii)

(iii) $y=1-\sqrt{x}$.

f)

$$
\begin{aligned}
& \sin 2 x=\sin x \\
& 2 \sin x \cos x-\sin x=0 \\
& \sin x(2 \cos x-1)=0 \\
& \sin x=0 \\
& 2 \cos x-1=0 \Rightarrow \cos x=\frac{1}{2} .
\end{aligned}
$$

General solns are:

$$
\theta=\pi n+(-1)^{n} \times 0(2) n \text { integes }
$$ and $\theta=2 \pi n \pm \frac{\pi}{3}(\mathcal{N}) n$ 'integes.

Question 3
i) 4

$$
\left(x+\frac{1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+8=0
$$

let $u=x+\frac{1}{x}$

$$
\begin{aligned}
\therefore u^{2}-6 u+8 & =0 \\
(u-4)(u-2) & =0
\end{aligned}
$$

$$
u=4 \quad \text { or } \quad u=2
$$

$$
x+\frac{1}{x}=4 \text { or } x+\frac{1}{x}=2
$$

$$
x^{2}-4 x+1=0 \text { or } x^{2}-2 x+1=6
$$

$$
x=2 \pm \sqrt{3} \quad \text { or } \quad x=1 \quad \text { (1) }
$$

b) $y=\frac{1}{3} x-2$ and $y=-2 x-5$
where $m_{1}=\frac{1}{3} \frac{1}{2} \quad m_{2}=-2\left(\frac{1}{2}\right)$

$$
\text { Acute angle } \begin{aligned}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\frac{1}{3}--2}{1+\frac{1}{3}(-2)}\right| \\
\tan \theta & =7\left(\frac{1}{2}\right. \\
\theta & =81^{\circ} 52^{\prime}
\end{aligned}
$$

d) $p\left(\right.$ zap, $\left.a p^{2}\right) \quad S(0, a)$
(i) Coords of M are

$$
\begin{align*}
& \left(\frac{2 a p+0}{2}, \frac{a p^{2}+a}{2}\right) \\
& \text { i } M\left(a p, \frac{a}{2}\left(p^{2}+1\right)\right) \tag{1}
\end{align*}
$$

(ii) let $x=$ ap, $y=\frac{a}{2}\left(p^{2}+1\right) \frac{1}{2}$

Since $p=\frac{x}{a} \Rightarrow y=\frac{a}{2}\left(\frac{x^{2}}{a^{2}}+1\right)$ or $x^{2}=2 a\left(y-\frac{a}{x}\right) \quad 1^{1 / 2}$
Focal length is a units 1
(c) 5

(i) $A G B=\theta=18.5^{\circ}$
(ii) $\ln , \triangle A G T, \tan 4^{\circ}=\frac{h}{x}$
$\ln \triangle B G T, \tan 3^{\circ}=\frac{h}{y}$
In $\triangle A B G$ by COSINE RULE $1000^{2}=x^{2}+y^{2}-2 x y \cos 18.5^{\circ}$ (1)
(iii) $x=h \cot 4^{\circ}, y=h \cot 3^{\circ}$ $1000^{2}=h^{2} \cot ^{2} 4^{0}+h^{2} \cot ^{2} 3^{\circ}-2 h^{2} \cot ^{\circ} 4^{\circ} \cot 3^{\circ} \cos 100^{\circ} \cdot 8^{\circ}$

$$
h^{2}=\frac{1000^{2}}{\left[\cot ^{2} 4^{\circ}+\cot ^{2} 3^{\circ}-2 \cot 4^{\circ} \cot 3^{\circ} \cos 18 \cdot 0^{\circ}\right]}
$$

$\therefore h \doteqdot 140 m$. (1)
(e) $x^{2}+3 x-4=(x+4)(x-1) \quad \therefore$ If a factor then $(x+4)$ and

量:

$$
\left.\begin{array}{rl}
\therefore & P(-4)=-64+16-4 a+b=0 \\
& P(1)=1+1+a+b=0 \\
\Rightarrow & -4 a+b=48-1 \\
a+b=-2
\end{array}\right\} \begin{aligned}
& a=-10 \\
& b=8
\end{aligned}
$$

(f) 2

let

(external) division

$$
\begin{equation*}
\left[\frac{1\left(x_{1}\right)+-3(1)}{-3+1}, \frac{1\left(y_{1}\right)+-3(3)}{-3+1}\right] \equiv\left[3,3 \frac{1}{2}\right] \tag{1}
\end{equation*}
$$

$\frac{x_{1}-3}{-2}=3 \Rightarrow x_{1}=-3$ and $\frac{y_{1}-9}{-2}=3^{\frac{1}{2}} \Rightarrow y_{1}=2$
\therefore Coords of $A(-3,2)$ (1)
g) $4 y=x^{3}-x$ - (c)
(i) grad. tangent $\frac{d y}{d x}=3 x^{2}-1$ and when $x=a$ grad $=3 a^{2}-1$
$\therefore E q^{n}$ tangent is $y-\left(a^{3}-a\right)=\left(3 a^{2}-1\right)(x-a)$

$$
\begin{equation*}
\text { or } y=x\left[3 a^{2}-1\right]-2 a^{3} \tag{4}
\end{equation*}
$$

(ii) Solving (C) and (D) $\Rightarrow x^{3}-x=x\left[3 a^{2}-1\right]-2 a^{3}$
ie $x^{3}-3 a^{2} x+2 a^{3}=0 \circledast$ since
$x=a$ is a double root of this equation (tanguntat)
\therefore sum of roots of \circledast is

$$
\begin{aligned}
a+a+\gamma & =-\frac{\left(-3 a^{2}\right)}{1}=3 a^{2} \\
\gamma & =3 a^{2}-2 a
\end{aligned}
$$

\therefore This is the x coord of other pt where tangent unonts curve oran.

