

SYDNEY BOYS HIGH SCHOOL moore park, surry hills

Yearly Examination 2008

Mathematics Extension

General Instructions

- Working time 75 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 69

- All Questions may be attempted.
- Each Question is worth 23 marks, and should be handed up in a separate examination booklet.
- Full Marks may not be awarded for careless or poorly set out work.

Examiner – A.M.Gainford

Question 1. (23 Marks)

- (a) Find the exact value of $\sec 210^\circ$.
- (b) Solve for *x*:
 - (i) $|2-x| \le 3$ (ii) $x^2 - 4 < 0$ (iii) $\frac{1}{2x-6} < 1$

(c) Find the remainder when the polynomial $P(x) = x^3 - 5x - 1$ is divided by x - 3. 1

(d)	Give the general solution of the equation	$2\cos\left(\theta + \frac{\pi}{6}\right) + 1 = 0.$	3
-----	---	---	---

- (e) Use the substitution $t = \tan(\frac{\theta}{2})$ to solve the equation $2\sin\theta + \cos\theta = 0$ for $-180^\circ \le \theta \le 180^\circ$. (Answer correct to the nearest minute.) 3
- (f) Express $\cos 3\theta$ as an expression in powers of $\cos \theta$ only. 3
- (g) Differentiate:
 - (i) $x\sqrt{x} \frac{1}{x}$
 - (ii) $(1-x^2)^4 (1+x^2)^4$

(iii)
$$\frac{1+x}{1-x}$$

1

6

6

Question 2. (23 Marks)

(a) Express $\cos x - \sin x$ in the form $R \cos(x + \alpha)$, where R > 0, α is acute. 2

(b) (i) Show that
$$2 \tan \theta \sec \theta = \frac{1}{1 - \sin \theta} - \frac{1}{1 + \sin \theta}$$
.

(ii) Simplify
$$\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x}$$
.

(c) If α , β , γ are the roots of the polynomial equation $3x^3 - 6x^2 + 3x + 1 = 0$, evaluate: 4

(i) $\alpha\beta\gamma$ (ii) $\alpha\beta + \alpha\gamma + \beta\gamma$ (iii) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

(d) Given the polynomial $P(x) = x^3 + 6x^2 - x - 30$.

- (i) Use the factor theorem to find a zero of the polynomial.
- (ii) Express P(x) as a product of three linear factors.

- (i) y=1-|x-1| (ii) $y=2^{-x}$ (iii) $y=1-\sqrt{x}$
- (f) Find all solutions of $\sin 2x = \sin x$ (x in radians).

4

6

3

Question 3. (23 Marks)

(a) Solve
$$\left(x+\frac{1}{x}\right)^2 - 6\left(x+\frac{1}{x}\right) + 8 = 0$$
.

- (b) Calculate to the nearest minute the acute angle between the lines x - 3y = 6 and 2x + y = -5.
- (c) A surveyor observes, from the top (T) of a vertical cliff a kilometer-post (A) on a straight flat road on the plain below on a bearing of 176°T, and at an angle of depression of 4° . He then observes the next kilometer-post (B) (one kilometer further along the road) on a bearing of 194.5° T, and at an angle of depression of 3° .

- (i) Copy the diagram to your answer booklet, and find $\theta = \angle AGB$.
- Let GT = h m, AG = x m, BG = y m, write an equation connecting (ii) x, y and θ .
- Hence find the height of the cliff. (iii)
- Let $P(2ap,ap^2)$ be a point on the parabola $x^2 = 4av$. (d)
 - Write down the co-ordinates of the midpoint M of the interval joining P(i) to the focus S.
 - Show that, as P moves along the curve, the locus of M is a parabola, and (ii) state its focal length.
- Find the value of the constants a and b if $x^2 + 3x 4$ is a factor of the polynomial 2 (e) $P(x) = x^3 + x^2 + ax + b$.
- (f) The point $P(3,3\frac{1}{2})$ divides the interval AB externally in ratio 3:1. If B is (1, 3), find the 2 co-ordinates of A.
- (g) Consider the cubic curve $y = x^3 - x$.
 - (i) Write down the equation of the tangent to the curve at the point where x = a, in terms of a.
 - (ii) Find, in terms of *a*, the *x* co-ordinate of the point where this tangent meets the curve again.

This is the end of the paper.

4

4

2

5

4

QUESTION 1 (a) $-\sqrt{3}$ $(e) 2(2t) + 1-t^{2} = 0$ $1+t^{2} + 1+t^{2} = 0$ (b)(1) 2 - 2 53 N - 2+X-3 $4f + 1 - f^2 = 0$ £ 2-4+-1=0 $-\chi \leq 1$ $\chi \leq 5$ t = 4 + 520 $-1 \le \chi \le 5$ (11) (7(+2)()(-2)/0 Jang-2+55 N2-55 -2<x<2 -2/2 Q = 76,717, -13.282 0 = 153°26' or -26°34 (111) 2x-6 < 4x2-2+x+36 4x2-26x+42>0 (f) Cos 30 - Cos(20+0) 2x2-13x+2120 (2x-7)(x#3)>0 = Cos 20 Cost - Sin 20 Sin O 2(<3 or x>32 = (2(0,20-1) (000 - 2 Sind Cond Sind = 26030 - Coso - 2(1-6020) Coso (c) $\int (3) = 27 - 15 - 1 = 11$ = 2 Cos3 - Cos0 - 2 Cos0 + 2 Cos3 R=11 = 4 Con 30 - 3 Cost (d) $\cos(0+i_{6}) = -\frac{1}{2}$ (g)(i) $2i = \chi^{2} - \chi^{2}$ $y' = 3\chi^{2} - \chi^{-2}$ €+71 = 120, 360 +120, 360 + 120, 2x360 - 120. -120, -360+120, -360-120, 2+360+120 0+Th = 2nti +27 ar 2nti-29 $(11)(1-\chi^2) \times \#(1+\chi^2) \times 2\chi + \frac{1}{2}$ 0 = 2hy + 13 or 2mi - 500 $\frac{(1+\chi^2)^{\frac{4}{x}} + 4(1-\chi^2)^{\frac{3}{x}} - 2\chi}{8\chi(1-\chi^2)^{\frac{4}{y}}(1+\chi^2)^{\frac{3}{y}} - 8\chi(1+\chi^2)^{\frac{4}{y}}(1-\chi^2)^{\frac{3}{x}}}$ $\frac{(111)(1-\chi)\times 1 - (1+\chi)\chi - 1}{(1-\chi)^2}$ $\frac{2}{(1-\chi)^2}$

extension 2008 Continuers $\partial / \cos x - / \sin x = \int 2 \left(\frac{1}{\sqrt{2}} \cos x - \sqrt{2} \sin x \right)$ = R (COSXCOSOU - SINXSINZ) $R = \sqrt{\frac{2}{+(-1)^2}}$ 521 R=12. d = 45and $\cos \lambda = \int_{2}^{2}$ $Sin \lambda = \frac{1}{52}$ So $cos \alpha - sin \alpha = 52(cos(\alpha + 45^{\circ}))$ (b) (i) RHS $1-\sin\theta$ $1+\sin\theta$ $\frac{1+\sin\theta-(1-\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}$ $2\sin\theta$ Using 5+c=1 $1 - 51n^2 \theta$ $2 \sin \theta$ COS A 5 2 sint OSO COSO = LHS2 tan 8 sec 8

 $\sin 3\alpha$ _ $\cos 3\alpha$ (b) (ii) SIN20-2-SINACOSO SIMA COSX-= SIN3XCOSX - COS3XSINX $\underline{sin}(3x-x)$ _ t sin 20- $\frac{2 \sin 2x}{\sin 2x} = 2.$ (i) $3x^{2} - 6x^{2} + 3x + 1 = 0$ $d + p + \chi = -\frac{b}{a} = -\frac{-6}{-3} = 2$ $d + p + \lambda \chi + p \chi = \frac{c}{-3} = \frac{3}{-3} = 1$ $d\beta \chi = -\frac{d}{a} = -\frac{1}{3}$ (1) $dpr = -\frac{1}{3}$ (1) (i) $d\beta + d\gamma + \beta\gamma = 1$ = -1/= -3 $(ii) \frac{1+1+1}{\lambda \beta \chi} = \frac{\partial \beta + \partial \chi + \beta \chi}{\partial \beta \chi}$

) (i) $p(x) = x^3 + 6x^2 - x - 30$ d $\begin{array}{l} \lambda - 50 = 32 - 32 \\ = 0 \\ (2 - 2) \text{ is av factor.} \end{array}$ P(2) = 8 + 24 - 2 - 30(ould also have: (2+3) or (2+5). x + 8x + 15 $\int \chi^3 + 6\chi^2 - \chi - 30$ LID $\chi - 2$ $\chi^3 - 2\chi^2$ $8x^2 - x - 30$ 82-16x 152 - 30152 - 30 $P(y) = (x-z)(x^2+8x+15)$ = (x-z)(x+3)(x+5)

madains $\sin 2\alpha = \sin \alpha$ $2\sin\alpha\cos\alpha - \sin\alpha = 0$ $\sin\alpha(2\cos\alpha - 1) = 0$ Sin x = 0 $2\cos x - 1 = 0 \Rightarrow \cos x = 2$. General solns are: $\theta = TTn + (-1)^{n} \times O(2) n integer$ and $\theta = 2\pi n \pm \frac{\pi}{3}(2) n integer.$

$$\frac{\Theta}{(x + \frac{1}{x})^{2}} = 6\left(x + \frac{1}{x}\right) + 8 = 0$$

$$\int_{at}^{bt} (x + \frac{1}{x})^{2} = 6\left(x + \frac{1}{x}\right) + 8 = 0$$

$$\int_{at}^{bt} (x = x + \frac{1}{x})^{2} = 6\left(x + \frac{1}{x}\right) + 8 = 0$$

$$\int_{at}^{bt} (x = x + \frac{1}{x})^{2} = 0 \quad (1)$$

$$\int_{at}^{bt} (x = x + \frac{1}{x})^{2} = 0 \quad (1)$$

$$\int_{at}^{bt} (x = x + \frac{1}{x})^{2} = 0 \quad (1)$$

$$\int_{at}^{bt} (x = x + \frac{1}{x})^{2} = 0 \quad (1)$$

$$\int_{at}^{bt} (x = \frac{1}{x})^{2} \quad (1)$$

$$\int_{at}^{bt} (x = \frac{1}{x})$$

(c)
$$x^{2}+3x-4 = (x+4)(x-1)$$
 if $f = factor then (x+4) and (x-1) are factor.
(f) $P(-4) = -64 + 16 - 4a + b = 0$
 $P(1) = 1 + 1 + a + b = 0$
 $\Rightarrow -4a + b = 48 - 0$ $a = -10$
 $a + b = -2$ (b) $b = 8$
(f) 2 $P(3, 3\frac{1}{2})$ (external)
 $division$
 $A(x_{1}, y_{1})$
 $\left[\frac{1(x_{1}) + -3(1)}{-3 + 1}, \frac{1(y_{1}) + -3(3)}{-3 + 1}\right] = \left[3, 3\frac{1}{2}\right]$ ()
 $\frac{x_{1}-3}{-2} = 3 \Rightarrow x_{1} = -3$ and $\frac{y_{1}-9}{-2} = 3\frac{1}{2} \Rightarrow y_{1} = 2$
 \therefore Coords of $A(-3, 2)$ ()
(i) gred, tangent $\frac{dy}{dx} = 3x^{2} - 1$ and when $x = a$ gred $= 3a^{2} - 1$
 \therefore Eq.^N tangent is $y - (a^{2}-a) = (3a^{2}-1)(x-a)$ (b)
 $a = x^{2} - 2a^{3} - 2b$ (c)
(i) Solving (C) and (D) $\Rightarrow x^{2} - x = x[3a^{2}-1] - 2a^{3}$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is a double root of this equation $(tangentat)$
 $x = a$ is the x-coord of other pt where tangent
 $y = 3a^{2} - 2a$.$