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(Use a SEPARATE writing booklet)

Question 1 (28 marks)

(a) Find the value of log, 9.

(b) Solve the following for z:

(i) loggx =3
(ii) log,3 = —1
(111) 22x+1 _ 1

16

(iv) 2> +3x — 18 =0

(c) Differentiate the following with respect to x:

(i) 2z+5

20+ 5

2c +5

20+ 5



(d) Sketch the following on separate axes showing any intercepts with the co-ordinate
axes and any asymptotes:
(i) y=;+1
(i) y = logy(z + 1)

(e) Write 2% — 7z — 4 in the form a(z + 2)? + b(x + 2) + c.

(f) Consider the arithmetic series: =1+ 3+ 7+ 11+ 15+ ....

(i) Which term of the series is 3917

(ii) Hence, find the sum up to the term which is 391.

(g) If f(z) = 2% — 32 — 6. Evaluate:

(i) f(=2)

(i) f'(2)



(Use a SEPARATE writing booklet)

Question 2 (28 marks)

(a) Consider the geometric series: 27 + 18 + 12 + 8 + ...

(i) Explain why the series has a limiting sum.

(ii) Find the limiting sum of the series.

(b) Find the co-ordinates of the focus and the equation of the directrix of

£E2

the parabola y = v 1.

(c) State whether the following functions are odd, even, or neither:

(i) f(z) =2® +10

(iii) f(z) = log;y2"

(d) Find using first principles the derivative f'(z) given that f(z) = .



e) Let log: 3 = a and log; 2 = b.
5 5
(i) Find the following in terms of a and b:

(@) log;6

(B) logs (i)

(i) Evaluate 52*.

(f) Find the value(s) of k for which 2 — kz + 4 = 0 has:

(i) one root equal to —1

(ii) real roots

(iii) one root double the other.

(g) Find the domain and the range of the following:

1) y=vi-=

(i) y = V1 — a2



(h) Caleb plans to deposit an amount of money into an account which will pay him 1%
interest each month on the balance of his account at the time.
Immediately after each interest payment is made, Caleb plans to withdraw $1000.

Let his deposit be $D.

(i) Show that when he has made his second withdrawal, the balance of his account

will be  $[D(1.01)2 — 1000(1 + 1.01)].

(ii) Caleb wants his deposit to be sufficient to be able to make withdrawals for

10 years. Find, to the nearest $100, what his deposit must be.



(Use a SEPARATE writing booklet)

Question 3 (18 marks)

(a) Find the point dividing the interval from (—3,4) to (5, —2) in the ratio 1 : 3.

(b) Find the acute angle between the lines y = 3z — 2 and  + 2y — 3 = 0.

Give the answer to the nearest degree.

(c) (i) Show that (z + 2) is a factor of 62 + 72? — 9z + 2.

(ii) Hence, or otherwise find all of the factors of 6x3 + 72% — 9x + 2.

(d) Find the general solution for tanf + 1 = 0 (in radians).

(e) (i) Write cosf — v/3sin@ in the form Rcos(f + ).

(ii) Hence, or otherwise, solve cos — /3sinf = 1 for 0 < 0 < 2r.

(f) Given that sinf = \/Lg and § < 0 < . Find the exact value of the following:

(i) tan®

(ii) cos26



(Use a SEPARATE writing booklet)

Question 4 (17 marks)

T+ 4

1
(a) Solve o

> 3.

(b)

(i) The arrow on the regular pentagon is spun twice and the sum of the two

numbers is recorded. Find the probability of getting:

() an odd result

(B) a result of at least 7

(ii)) How many times must the arrow on the regular pentagon be spun to be 99.9%

sure of getting at least one 57



(c) Two points P(2ap, ap?) and Q(2aq, aq?) lie on the parabola x? = 4ay.The tangents

at P and @ intersect at the point 7. Let S(0,a) be the focus of the parabola.
(i) Show that the equation of the tangent to the parabola at P is given by

y = pxr — ap®.

(ii) Find the co-ordinates of T

(iii) Show that SP = a(p* + 1).

(iv) Suppose P and ) move on the parabola so that SP + S@Q = 4a.

Show that the locus of the point T" is a parabola.

End of paper
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