

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2010 Year 11 Yearly Examination

Mathematics Extension Continuers

(3 Unit)

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- All answers to be given in simplified exact form unless otherwise stated.
- Hand in your answers in 3 separate bundles:
 Section A (Question 1 and Question 2),
 Section B (Question 3 and Question 4) and

Section C (Question 5 and Question 6)

Total Marks – 82

- Attempt questions 1-6
- All questions are **NOT** of equal value.

Examiner: P. Bigelow

Marks

4

Section A - Start a new booklet.

Question 1 (14 marks).

a)	Solve $x^2 + 2x - 8 = 0$.	1
b)	Find T_{10} of $5+9+13+17+$	1
c)	If $f(y) = 9 - y^2$, find: (i) $f(-2)$	2
	(ii) $f(y+1)$	
d)	State the domain of $f(x) = \sqrt{3-x}$.	1
e)	Write down the equation of the parabola with focus (0,5) and directrix $y + 5 = 0$.	1
f)	Find x in the following: (i) $\log_x 36 = 2$	2
	(ii) $\log_8 128 = x$	
g)	Find the exact value of $\tan 15^\circ$.	2

- Find the exact value of $\tan 15^\circ$. g)
- **h**) Solve:
 - (i) |3x-1| > 7(ii) $\frac{4}{x} \le \frac{3}{x+1}$

End of Question 1

Question 2 (12 Marks).

- a) Find the sum of the first 9 terms of $2-1+\frac{1}{2}-\frac{1}{4}+...$ 1
- **b**) Write down the equation of the line represented in the diagram:

(i)
$$f(x) = \frac{4}{9 + x^2}$$

(ii) $f(x) = \frac{x}{9 + x}$

(iii)
$$f(x) = \frac{-x}{9+x^2}$$

e) By considering $0.\dot{5}\dot{4}$ as an infinite geometric series, express $0.\dot{5}\dot{4}$ as a fraction 2 in simplest form.

f) Simplify:

d) Solve $2^{3x+2} = 64$.

- (i) $\sin 5A \cos 2A \cos 5A \sin 2A$
- (ii) $2\sin 3\theta \cos 3\theta$

End of Question 2

End of Section A

2

3

2

Section B – Start a new booklet.

Question 3 (11 marks). Marks a) Sketch the following on separate diagrams (showing essential features): 4 (i) xy = -4(ii) $y = 2^{-x}$ (iii) $y = \sqrt{4 - x^2}$ (iv) $x^2 + y^2 - 6y = 0$ b) State whether the following quadratics are INDEFINITE, POSITIVE 3 **DEFINITE or NEGATIVE DEFINITE:** $2x^2 + 3x + 7$ (i) (ii) $6 - x - x^2$ (iii) $x^2 - 9x - 8$ c) Solve: $4^x - 9(2)^x + 8 = 0$. 2 d) An interval PQ is divided externally in the ratio 4:3 by the point S. Find S, if 2 *P* is (4,3) and *Q* is (-1,9).

End of Question 3

Question 4 (16 marks).				
a)	Graph the	e region defined by the intersection of $y \ge x^2$ and $x + y \le 2$.	2	
b)	Find the a	acute angle between the lines: $2x - y - 5 = 0$ and $x - 3y + 3 = 0$.	2	
c)	Find $f'($.	x) in the following:	6	
	(i)	$f\left(x\right) = 3x^2 - x + 1$		
	(ii)	$f(x) = \left(1 - 5x\right)^6$		
	(iii)	$f(x) = x\sqrt{1+x}$		
	(iv)	$f\left(x\right) = \frac{3x - 1}{3x + 2}$		
d)	If $\sin x =$	$\frac{3}{4}$ and $\frac{\pi}{2} \le x \le \pi$, find the exact value of $\sin 2x$.	2	
e)	If α and μ	β are the roots of $2x^2 - 6x - 1 = 0$, find:	4	
	(i)) $\alpha + \beta$		
	(ii	i) $\alpha\beta$		
	(ii	ii) $\frac{1}{\alpha} + \frac{1}{\beta}$		
	(iv	v) $\alpha^2 + \beta^2$		

End of Question 4

End of Section B

Section C – Start a new booklet.

Question 5 (15 marks).

a) Find the value of *x* correct to 3 significant figures.

b)	Sketch (x	$(x-2)^2 = 8(y+1)$, showing vertex, focus and directrix.	2				
c)	(i) E	spress $\sin\theta + \cos\theta$ in the form $R\sin(\theta + \alpha)$ where $R > 0$ and	4				
	0°	$< lpha < 90^{\circ}$.					
	(ii) Hence, solve $\sin \theta + \cos \theta = 1$ for $0 < \theta < 2\pi$.						
d)	d) Find the general solution of $\tan x = 1$						
e)	(i)	Find the axis of symmetry of $y = 4 + x - x^2$	2				
	(ii)	Hence, or otherwise, find the maximum value of $4 + x - x^2$	2				

End of Question 5

Page 5 6/09/2010 7:06:02 PM

Marks

Question 6 (14 marks).

- a) Prove the following:
 - (i) $\cos^4 x \sin^4 x = \cos 2x$

(ii)
$$\frac{\sin 2A}{1 - \cos 2A} = \cot A$$

- **b**) Given $5^x = 13$, find x correct to two decimal places.
- c) A couple wish to save for a deposit on a home. They need to save \$20,000 over a 5 year period. They deposit \$*P*, every month, into an account which is paying 9% p.a., compounding monthly.
 - (i) Show that $20000 = P(1.0075 + 1.0075^2 + ... + 1.0075^{60})$.
 - (ii) Find *P* to the nearest dollar.
- **d**) Two boats at *A* and *B* are observed from the top *P* of a vertical cliff *CP* of height 120 metres. A is on a bearing of 195° T from the cliff and its angle of depression from P is 22° . *B* is on a bearing of 161° T from the cliff and its angle of depression from *P* is 27° .

- (i) Find $\angle ACB$.
- (ii) Use the cosine rule to find the distance between the boats (to the nearest metre).

End of Question 6.

End of Section C.

End of Examination.

4

4

4

Mathematics Extension Continuers 2010 – Section A:

Question 1:

a)
$$x^{2} + 2x - 8 = 0$$

 $(x + 4)(x - 2) = 0$
 $x = -4$, 2
b) $a = 5, d = 4$
 $T_{10} = 5 + 9 \times 4$
 $T_{10} = 41$
c) $f(y) = 9 - y^{2}$
(i) $f(-2) = 9 - (-2)^{2}$
 $f(-2) = 5$
(ii) $f(y + 1) = 9 - (y + 1)^{2}$
 $= 9 - (y^{2} + 2y + 1)$
 $= 9 - y^{2} - 2y - 1$
 $= 8 - 2y - y^{2}$
d) $f(x) = \sqrt{3 - x}$
Domain: $x \le 3$
e) $x^{2} = 20y$
f)
(i) $\log_{8} 128 = x$
 $\log_{8} 8^{7/3} = x$
 $\frac{7}{3} \log_{8} 8 = x$
 $x = \frac{7}{3}$
g) $\tan 15^{\circ} = \tan(45^{\circ} - 30^{\circ})$
 $= \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$
 $= \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \times \frac{1}{\sqrt{3}}}$
 $= \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$
 $= 2 - \sqrt{3}$

Question 2:

a)
$$2 - 1 + \frac{1}{2} - \frac{1}{4} + \cdots$$

 $a = 2$
 $r = -\frac{1}{2}$
 $S_9 = \frac{2\left(1 - \left(-\frac{1}{2}\right)^9\right)}{1 + \frac{1}{2}}$
 $S_9 = \frac{171}{128}$
b) $m = -\frac{1}{2}$
 $y - 0 = -\frac{1}{2}(x - 8)$
 $2y = -x + 8$
 $x + 2y - 8 = 0$
c)
(i) $f(x) = \frac{4}{9 + x^2}$
 $f(-x) = \frac{4}{9 + (-x)^2}$
 $= \frac{4}{9 + x^2}$
Since $f(x) = f(-x)$
 $\therefore f(x)$ is even
(ii) $f(x) = \frac{x}{9 + x}$
 $f(-x) = \frac{-x}{9 - x}$
 $-f(x) = -\frac{x}{9 + x}$
Since $f(x) \neq f(-x) \neq -f(x)$
 $\therefore f(x)$ is neither.
(iii) $f(x) = \frac{-x}{9 + x^2}$
 $f(-x) = \frac{-(-x)}{9 + (-x)^2}$
 $= \frac{x}{9 + x^2}$
 $-f(x) = -\frac{-x}{9 + x^2}$
 $-f(x) = -\frac{-x}{9 + x^2}$
 $= \frac{x}{9 + x^2}$
Since $f(-x) = -f(x)$
 $\therefore f(x)$ is odd.
d) $2^{3x+2} = 64$
 $2^{3x+2} = 64$
 $x = \frac{4}{3}$

.

$$\begin{array}{c} \text{dugstion that } \\ \text{dugstion that }$$

SECTION C QS $fan 60^\circ = \frac{\pi}{DC}$. (a) $DC = \frac{\pi}{1000}$ $Lan 40^\circ = \frac{7L}{20+10x}$ 5_{0} (20+DC) = $\frac{7L}{1-40^{\circ}}$. $20 + \frac{7L}{Lm60^{\circ}} = \frac{7L}{Lm40^{\circ}}$ $20 = \pi \left(\frac{1}{4m_{0}} - \frac{1}{4m_{0}} \right).$ 25 XZ 1 - 1 L 400 - Fm60°. 20 (tu 40 h 60). tan 60 - tan 40 32.6. (b)S(2,1) (2,-1) 9=-3

(CXI)Rsin(Otd) = Rsindcosd + Rsindcosd

 $R_{COA} = 1$ for 2=1. $z = 45^{\circ}$. $\chi^2 = Z$ $\Lambda = \sqrt{2}$.

V2 S.~ (0+45°).

(ji)

 $\sqrt{2}$ sin $(\theta + 45^{\circ}) = 1$ $s_{1} \left(\theta + 4 s^{\circ} \right) = \sqrt{2}.$ OF HE - HE $\Theta + \overline{J}_{4} = \overline{J}_{4} + \overline{J}_{4} + \overline{J}_{4}$ $\theta = \frac{1}{2}$

ton x=1 (d)エ= サイエの

NET

. . . .

.

(e) (i) $y = 4 + \pi - \pi^2$. $x = \frac{b}{2a}$ $\chi = \frac{-1}{-2}$ $\chi = \frac{1}{2}$ (ii) 4+ 2-4. = 1 43. Q6 (a)'(i) cos472- sm4x = (cos22- sm2x)(cos22+ sm2x). $= \cos^2 x - \sin^2 t$ $= \cos 2\pi$. (ii) sm2A _ Zom Acos A the 1- cos 2A - cos 3A + sin 3A - cos 3A + 5m 3A. $= \frac{2 \sin \theta \cos \Lambda}{2 \sin^2 A}$ - cosA SinA = cot A. S = (3 (b) $\chi = \frac{\log 13}{\log 5}.$ = 1.60.-

 $(C)(i)A_{i} = P_{*}I_{1}0075.$ $A_1 = (A_1 + p) |.0075.$ = Px1.00752 + Px1.0075 A3 = Px 1,0075 + Px1,0075 + Px1,0075. A60= P(1.00750+1,0075 59+...+ 1.0075) Since A60 = 20000. Then 20000 = P(1.0075t...+1.0075"). (ii) $20000 = P\left(\frac{1.0075(1-(1.0075)^{60})}{1-1.0075}\right)$ 20000 (-0.0075) DE 1,0075 (1-1.0075"). 5263.19. (\mathcal{A}) (i) 34°. (11), tan 22 = 120. =7 AC = 1201m22 tan 27 = BC =7 BC= 120 +27. 120 AB = AC + BC - ZxACx BC cos 34. AB=34.26.