

SYDNEY BOYS HIGH MOORE PARK, SURRY HILLS

SEPTEMBER 2011 YEARLY YEAR 11 Continuers

Mathematics Ext 1

General Instructions:

- Reading time—5 minutes.
- Working time—90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Answer in simplest exact form unless otherwise stated.

Total marks—68 Marks

- Attempt questions 1–4.
- The mark-value of each question is boxed in the right margin.
- Start each NEW section in a separate answer booklet.
- Hand in your answer booklets in 2 sections:
 Section A (Questions 1 and 2),
 Section B (Questions 3 and 4).

Examiner: Mr P. Bigelow

Section A

Marks

Question 1 (17 marks)

(a) Differentiate the following:

5

(i)
$$y = \frac{4}{3\sqrt{x}}$$
,

(i)
$$y = \frac{4}{2\sqrt{\pi}}$$
,

(ii)
$$y = \frac{x+1}{x-2}$$
,

(iii)
$$y = (2 - 3x^2)^5$$
.

- 2
- (b) Find the equation of the normal to $y = \frac{3}{x}$ at the point where x = -3.

3

(c) Differentiate $y = x^2 + bx + c$, and hence find b and c if the parabola has a y-intercept of -3 and its gradient at that point is -2.

|2|

You are given that $\int_0^4 f(x) dx = 22$ and $\int_0^6 f(x) dx = 15$.

(i) What is the area of the shaded region?

2

(ii) What is the value of $\int_{4}^{6} f(x) dx$?

3

(e) Find
$$\int_{1}^{2} (2x - 3x^{2}) dx$$
.

Question 2 (17 marks)

(a) Consider the function $f(x) = 2 + 3x - x^3$.

7

4

- (i) Find f'(x).
- (ii) Find f''(x).
- (iii) Locate any stationary points and determine their nature.
- (iv) For what values of x is the curve increasing?
- (v) For what values of x is the curve concave up?
- (vi) Sketch the curve.

- (i) Find the co-ordinates of C and D.
- (ii) Find the ratio in which the shaded area is divided by the y-axis.
- (c) (i) Expand $\sin(A+B)$.

3

(ii) Hence show that $\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

3

The diagram shows the graph of the function for $0 \le x \le a$. It is known that f(x) is an odd function and stationary at (0, 0).

- (i) Copy the diagram and continue the graph for $-a \leq x < 0$.
- (ii) On another diagram, sketch y = f'(x).

Section B

(a)

(Use a separate writing booklet.)

Marks

Question 3 (20 marks)

The shaded area is bounded by the curve $y = \sqrt{9-x}$ and the co-ordinate axes.

7

- (i) Write down the values of A and B.
- (ii) Find the area AOB.
- (iii) Find the volume when the shaded area is rotated about
 - (α) the x-axis,
 - (β) the y-axis.
- (b) Solve the following inequalities and graph the solutions on separate number lines.

(i)
$$\frac{2}{|x-1|} > 1$$
,

(ii)
$$\frac{3}{x-2} \leqslant \frac{2}{x+1}.$$

(c) Given $\triangle ABC$ with vertices A(3, 2), B(5, 6) and C(7, 4):

- (i) Find the co-ordinates of E and F, the midpoints of AB and BC respectively.
- (ii) Show that EF is
 - (α) half of
 - (β) and parallel to AC.
- (d) Prove the identity

$$\frac{\sin 2A}{1 + \cos 2A} = \tan A.$$

(e) Solve $4\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 1$ for $0 \le \theta \le 2\pi$.

[HINT: use a double angle result.]

|2|

Question 4 (14 marks)

(a) The graph of
$$y = f(x)$$
 passes through $(2, 1)$ and $f'(x) = \frac{x^3 - 4}{x^2}$. Find $f(x)$.

CT is a tower of height h. From A, due south of the base of the tower, the angle of elevation of T, the top of the tower, is 25°. From B, due east, the angle of elevation of T is 30°. Given that AB is 200 m, find h to the nearest metre.

(c) Let
$$f(x) = \frac{2x}{(1+x^2)^2}$$
.

(i) Copy this table and complete it in decimal form.

X	1	2	3
f(x)			

- (ii) Use the table to find values for $\int_{1}^{3} f(x) dx$ using
 - (α) the Trapezoidal rule,
 - (β) Simpson's rule.

(iii) Find
$$\frac{d}{dx}\left(\frac{1}{x^2+1}\right)$$
.

(iv) Using (iii), find the exact value of the integral in (ii).

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

Note: $\ln x = \log_e x$, x > 0

SEPTEMBER 2011 YEARLY YEAR 11 Continuers

Mathematics Ext 1 Solutions

Section A

Marks

5

2

3

Question 1 (17 marks)

(a) Differentiate the following:

(i)
$$y = \frac{4}{3\sqrt{x}}$$
,

Solution:
$$y = \frac{4x^{-\frac{1}{2}}}{3}$$
. $\frac{dy}{dx} = -\frac{1}{2} \cdot \frac{4x^{-\frac{3}{2}}}{3}$, $= -\frac{2}{3x\sqrt{x}}$.

(ii)
$$y = \frac{x+1}{x-2}$$

Solution:
$$\frac{dy}{dx} = \frac{(x-2) \times 1 - (x+1) \times 1}{(x-2)^2},$$

= $\frac{-3}{(x-2)^2}.$

(iii)
$$y = (2 - 3x^2)^5$$
.

Solution:
$$\frac{dy}{dx} = 5 \times (-3 \times 2x) \times (2 - 3x^2)^4,$$

= $-30x(2 - 3x^2)^4.$

(b) Find the equation of the normal to $y = \frac{3}{x}$ at the point where x = -3.

Solution:
$$\frac{dy}{dx} = -\frac{3}{x^2}$$
,
= $-\frac{1}{3}$ at the point $(-3, -1)$.

Normal equation:

$$y+1 = 3(x+3),$$

i.e., $3x - y + 8 = 0.$

(c) Differentiate $y = x^2 + bx + c$, and hence find b and c if the parabola has a y-intercept of -3 and its gradient at that point is -2.

Solution:
$$y' = 2x + b$$
.
Now, at $(0, -3)$:
 $-2 = 2 \times 0 + b$,
 $i.e., b = -2$,
and $-3 = 0^2 - 2 \times 0 + c$,
 $i.e., c = -3$.

3

You are given that $\int_0^4 f(x) dx = 22$ and $\int_0^6 f(x) dx = 15$.

(i) What is the area of the shaded region?

Solution: Shaded area = |15 - 22|, = 7.

(ii) What is the value of $\int_4^6 f(x) dx$?

Solution: $\int_{4}^{6} f(x) dx = \int_{0}^{6} f(x) dx - \int_{0}^{4} f(x) dx,$ = -7.

(e) Find $\int_{1}^{2} (2x - 3x^{2}) dx$.

Solution: $\int_{1}^{2} (2x - 3x^{2}) dx = \left[x^{2} - x^{3}\right]_{1}^{2},$ = 4 - 8 - (1 - 1),= -4.

(f) θ and ϕ are acute angles and $\cos \phi = \frac{1}{3}$ and $\sin \theta = \frac{2}{3}$, find the exact value of $\cos(\theta - \phi)$.

Solution: $\frac{3}{\phi} 2\sqrt{2}$ $\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi,$ $= \frac{\sqrt{5}}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{2\sqrt{2}}{3},$

$$= \frac{\frac{3}{\sqrt{5} + 4\sqrt{2}}}{9}.$$

Question 2 (17 marks)

(a) Consider the function $f(x) = 2 + 3x - x^3$.

7

(i) Find f'(x).

Solution: $f'(x) = 3 - 3x^2$.

(ii) Find f''(x).

Solution: f''(x) = -6x.

(iii) Locate any stationary points and determine their nature.

Solution: When f'(x) = 0, and when f''(x) = 0, x = 0, y = 2, $x = \pm 1, y = 4, 0.$ f''(1) = -6, f''(-1) = 6.

 \therefore A maximum at (1, 4) and a minimum at (-1, 0).

(iv) For what values of x is the curve increasing?

Solution: -1 < x < 1.

(v) For what values of x is the curve concave up?

Solution: x < 0.

(vi) Sketch the curve.

(i) Find the co-ordinates of C and D.

Solution: $x^2 - x - 2 = 0,$ (x-2)(x+1) = 0, $\therefore x = -1, 2.$ *i.e.*, C(-1, 0) and D(2, 0).

(ii) Find the ratio in which the shaded area is divided by the y-axis.

Solution: $\int_{-1}^{0} (2+x-x^2) dx = \left[2x + \frac{x^2}{2} - \frac{x^3}{3} \right]_{-1}^{0},$ $= 0 - \left\{ -2 + \frac{1}{2} - \frac{1}{3} \right\},$ $= 1\frac{5}{6}.$ $\int_{0}^{2} (2+x-x^2) dx = \left[2x + \frac{x^2}{2} - \frac{x^3}{3} \right]_{0}^{2},$ $= \left\{ 4 + \frac{4}{2} - \frac{8}{3} \right\} - 0,$ = 5. *i.e.*, the ratio is 11 : 30.

(c) (i) Expand $\sin(A+B)$.

Solution: $\sin(A+B) = \sin A \cos B + \cos A \sin B$.

(ii) Hence show that $\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

Solution: $\sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ},$ $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2},$ $= \frac{\sqrt{6} + \sqrt{2}}{4}.$

The diagram shows the graph of the function for $0 \le x \le a$. It is known that f(x) is an odd function and stationary at (0, 0).

(i) Copy the diagram and continue the graph for $-a \le x < 0$.

(ii) On another diagram, sketch y = f'(x).

Section B

(Use a separate writing booklet.)

Marks

Question 3 (20 marks)

The shaded area is bounded by the curve $y = \sqrt{9-x}$ and the co-ordinate axes.

7

(i) Write down the values of A and B.

Solution: A(9, 0), B(0, 3)

(ii) Find the area AOB.

Solution:
$$\int_0^9 (9-x)^{\frac{1}{2}} dx = \left[-1 \times \frac{2}{3} \times (9-x)^{\frac{3}{2}} \right]_0^9,$$
$$= -\frac{2}{3} \{0 - 27\},$$
$$= 18.$$

(iii) Find the volume when the shaded area is rotated about

 (α) the x-axis,

Solution: Note that
$$y^2 = 9 - x$$
.
Volume = $\pi \int_0^9 (9 - x) dx$,
= $\pi \left[9x - \frac{x^2}{2} \right]_0^9$,
= $\pi \{ 81 - \frac{81}{2} - 0 \}$,
= $\frac{81\pi}{2}$.

 (β) the y-axis.

Solution: Note:
$$y^2 = 9 - x$$
,
 $x = 9 - y^2$,
 $x^2 = 81 - 18y^2 + y^4$.
So Volume = $\pi \int_0^3 (81 - 18y^2 + y^4) dy$,
 $= \pi \left[81y - 6y^3 + \frac{y^5}{5} \right]_0^3$,
 $= \pi \left\{ 243 - 162 + \frac{243}{5} \right\}$,
 $= \frac{648\pi}{5}$.

(b) Solve the following inequalities and graph the solutions on separate number lines.

(i)
$$\frac{2}{|x-1|} > 1$$
,

Solution:
$$2 > |x-1|,$$
 $-2 < x-1 < 2,$ $-1 < x < 3, \ x \neq 1.$

(ii)
$$\frac{3}{x-2} \leqslant \frac{2}{x+1}.$$

- (c) Given $\triangle ABC$ with vertices A(3, 2), B(5, 6) and C(7, 4):
 - (i) Find the co-ordinates of E and F, the midpoints of AB and BC respectively.

Solution:
$$E ext{ is } \left(\frac{3+5}{2}, \frac{2+6}{2}\right) = (4, 4),$$

 $F ext{ is } \left(\frac{5+7}{2}, \frac{6+4}{2}\right) = (6, 5).$

- (ii) Show that EF is
 - (α) half of

Solution:
$$AC^2 = (3-5)^2 + (2-6)^2,$$

 $= 20,$
 $AC = 2\sqrt{5}.$
 $EF^2 = (4-6)^2 + (4-5)^2,$
 $= 5,$
 $EF = \sqrt{5} = \frac{1}{2}AC.$

 (β) and parallel to AC.

Solution: Slope,
$$m_{AC}=\frac{2-4}{3-7}=\frac{1}{2}.$$

$$m_{EF}=\frac{4-5}{4-6}=\frac{1}{2}. \quad i.e., \ EF \parallel AC.$$

$$\frac{\sin 2A}{1+\cos 2A}=\tan A.$$

Solution: L.H.S. =
$$\frac{2 \sin A \cos A}{1 + 2 \cos^2 A - 1},$$
$$= \frac{2 \sin A \cos A}{2 \cos^2 A},$$
$$= \frac{\sin A}{\cos A},$$
$$= \tan A,$$
$$= R.H.S.$$

(e) Solve $4\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 1$ for $0 \le \theta \le 2\pi$. [HINT: use a double angle result.]

Solution:
$$4 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \sin \theta$$
.
So $\sin \theta = \frac{1}{2}$, $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$.

Question 4 (14 marks)

(a) The graph of
$$y = f(x)$$
 passes through $(2, 1)$ and $f'(x) = \frac{x^3 - 4}{x^2}$. Find $f(x)$.

Solution:
$$\int \frac{x^3 - 4}{x^2} dx = \int (x - 4x^{-2}) dx,$$
$$= \frac{x^2}{2} - \frac{4x^{-1}}{-1} + c,$$
$$= \frac{x^2}{2} + \frac{4}{x} + c.$$
So at (2, 1) we have
$$1 = \frac{2^2}{2} + \frac{4}{2} + c,$$
$$i.e., c = -3.$$
Hence
$$f(x) = \frac{x^2}{2} + \frac{4}{x} - 3.$$

CT is a tower of height h. From A, due south of the base of the tower, the angle of elevation of T, the top of the tower, is 25°. From B, due east, the angle of elevation of T is 30°. Given that AB is 200 m, find h to the nearest metre.

Solution:
$$\frac{h}{AC} = \tan 25^{\circ} \implies AC = h \cot 25^{\circ},$$

$$\frac{h}{BC} = \tan 30^{\circ} \implies BC = h \cot 30^{\circ}.$$

$$AC^{2} + BC^{2} = 200^{2},$$

$$h^{2} \cot^{2} 25^{\circ} + h^{2} \cot^{2} 30^{\circ} = 40000,$$

$$h^{2} = \frac{40000}{\cot^{2} 25^{\circ} + \cot^{2} 30^{\circ}},$$

$$\approx 5263.912898.$$

$$\therefore h \approx 73 \text{ m (nearest metre)}.$$

(c) Let
$$f(x) = \frac{2x}{(1+x^2)^2}$$
.

(i) Copy this table and complete it in decimal form.

x	1	2	3
f(x)			

Solution:

x	1	2	3
f(x)	0.5	0.16	0.06

- (ii) Use the table to find values for $\int_{1}^{3} f(x) dx$ using
 - (α) the Trapezoidal rule,

Solution:
$$\int_{1}^{3} f(x) dx \approx \frac{1}{2} \{0.5 + 2 \times 0.16 + 0.06\},$$
 $\approx 0.44.$

 (β) Simpson's rule.

Solution:
$$\int_{1}^{3} f(x) dx \approx \frac{1}{3} \{0.5 + 4 \times 0.16 + 0.06\},$$
 $\approx 0.4.$

(iii) Find $\frac{d}{dx} \left(\frac{1}{x^2 + 1} \right)$.

Solution:
$$\frac{d}{dx}((x^2+1)^{-1}) = -1 \times 2x(x^2+1)^{-2},$$

= $\frac{-2x}{(1+x^2)^2}.$

(iv) Using (iii), find the exact value of the integral in (ii).

Solution:
$$\int_{1}^{3} f(x) dx = -\int_{1}^{3} \frac{-2x}{(1+x^{2})^{2}} dx,$$
$$= -\left[\frac{1}{x^{2}+1}\right]_{1}^{3},$$
$$= -\left\{\frac{1}{10} - \frac{1}{2}\right\},$$
$$= 0.4.$$

End of Paper