

## SYDNEY BOYS HIGH SCHOOL <br> MOORE PARK, SURRY HILLS

## 2012 <br> YEAR 11 Mathematics <br> Yearly

## Mathematics Extension Continuers

## General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer must be given in simplest exact form.

Total Marks - 70

- Attempt questions 1-15

Examiner: P. Bigelow

## Section I (10 marks)

## Answer this section on the Multiple Choice Answer Sheet

(1) Evaluate $\lim _{a \rightarrow 4} \frac{a^{2}-16}{a+4}$
(A) 0
(B) 8
(C) -4
(D) 4
(2) At the origin:
(A) $y^{\prime \prime}>0$
(B) $y^{\prime \prime}<0$
(C) $y^{\prime \prime}=0$
(D) $y^{\prime \prime}$ is undefined

(3) A pair of dice are rolled, the probability the sum of the uppermost faces being greater than 7 is:
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{5}{12}$
(D) $\frac{1}{3}$
(4) The full solution to $\frac{4}{x}>1$ is:
(A) $x<4$
(B) $x>4$
(C) $0<x<4$
(D) $x<0, x\rangle 4$
(5) Which of the following is not equal to $\cos 2 \theta$
(A) $\cos ^{2} \theta-\sin ^{2} \theta$
(B) $1-2 \sin ^{2} \theta$
(C) $2 \cos ^{2} \theta-1$
(D) $1-2 \cos ^{2} \theta$
(6) Which is true for $y=f(x)$ ?
(A) $f^{\prime}(x)<0, f^{\prime \prime}(x)>0$
(B) $f^{\prime}(x)<0, f^{\prime \prime}(x)<0$
(C) $f^{\prime}(x)>0, f^{\prime \prime}(x)>0$
(D) $f^{\prime}(x)>0, f^{\prime \prime}(x)<0$
(7) $3^{x} \times 2^{x}=$

(A) $5^{x}$
(B) $5^{2 x}$
(C) $6^{2 x}$
(D) $6^{x}$
(8) If $\log _{5} x=4$ then $x$ is:
(A) 20
(B) 25
(C) 625
(D) 125
(9) A coin is tossed three times. The probability of getting 2 Heads and a Tail is
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) $\frac{3}{8}$
(D) $\frac{5}{8}$
(10) Given the graph of $y=f(x)$ which is a possible sketch of $y=f^{\prime}(x)$

(A)

(C)

(B)

(D)


## Section II ( 60 marks)

## Answer each Question in a new Writing Booklet

## Question $11 \quad$ [12 marks]

(a) Simplify: $\sin 70^{\circ} \cos 40^{\circ}+\sin 40^{\circ} \cos 70^{\circ}$
(b) Expand $\cos (3 A-2 B)$
(c) From an urn containing 4 white and 5 brown balls, two balls are selected without replacement. Find the probability of selecting
(i) two white balls.
(ii) two different colours.
(iii) at least one brown.
(d) Simplify

$$
\frac{\sin 2 A}{1+\cos 2 A}
$$

## Answer each Question in a new Writing Booklet

## Question 12 [12 marks]

(a)
(i) Show that $\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}$
(ii) Hence find in simplest exact form the value of $\tan \frac{\pi}{12}$.
(b) Simplify
(i) $\log _{6} 3+\log _{6} 2$
(ii) $\log _{5} 100-\log _{5} 4$
(c) Solve for $x$

$$
5^{3 x-4}=25^{x-2}
$$

(d) If $f^{\prime}(x)=3 x^{2}+2 x+4$ and $f(1)=7$, find $f(-1)$.
(e) If $f(x)=x^{2}+3 x$ find $f^{\prime}(x)$ from first principles.

## Answer each Question in a new Writing Booklet

## Question 13 [12 marks]

(a) Solve the following inequations and plot the solutions on separate number lines.
(i) $\frac{3}{|2 x-1|}>1$
(ii) $\frac{4}{2 x-1} \leq \frac{1}{x+2}$
(b) Find $\frac{d y}{d x}$ for the following
(i) $y=\sqrt{7+x^{2}}$
(ii) $y=x \sqrt{2 x-1}$
(iii) $y=\sqrt[3]{x^{2}}+\sqrt{x^{3}}$
(iv) $y=\frac{5 x}{4+x^{2}}$

## Answer each Question in a new Writing Booklet

## Question 14 [12 marks]

(a) Find

$$
\lim _{x \rightarrow \infty} \frac{4 x+3 x^{2}}{5 x-2 x^{2}}
$$

(b) If

$$
f(x)=x^{2}+\frac{1}{x^{2}}
$$

find
(i) $f^{\prime}(x)$
(ii) $f^{\prime \prime}(x)$
(c) For what values of $x$ is $f(x)=x^{3}-3 x^{2}-7 x+10$ concave up?
(d) Given that the graph below is the gradient function of $y=f(x)$. Sketch $y=f(x)$.

(e) If $\tan A=\frac{3}{4}$ and $\cos B=\frac{5}{13}$, where A and B are acute. Find:
(i) $\sin 2 A$.
(ii) $\cos (A-B)$.

## Answer each Question in a new Writing Booklet

## Question 15 <br> [12 marks]

(a)
(i) If $\theta+\varphi=45^{\circ}$ show that

$$
\tan \theta+\tan \varphi=1-\tan \theta \tan \varphi
$$

(ii) By letting $\theta=\varphi$ show that $t^{2}+2 t-1=0$ where

$$
t=\tan 22 \frac{1}{2}^{\circ} .
$$

(iii) Hence find the exact value of $\tan 22 \frac{1}{2}^{\circ}$.
(b) A tower CD is of height $h$ metres. From a point A due South of the base the angle of elevation of $D$ is $32^{\circ}$. From $B$, due East of the base the angle of elevation of D is $28^{\circ}$. Given that A and B are 500 metres apart: find the height $h$ to the nearest metre.

(c) Two sides of a rectangle OAPB lie on the $x$ and $y$ axes. The vertex opposite the origin lies in the first quadrant and is on

$$
3 x+2 y-6=0
$$

Find the maximum area of the rectangle.


End of Exam

Student Number:

## Mathematics Extension 2 <br> Trial HSC 2012

Select the alternative $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D $\bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word eorrect and drawing an arrow as follows.
$A$
B

C
$\mathrm{D} \bigcirc$

## Section I: Multiple choice answer sheet.

## Completely colour the cell representing your answer. Use black pen.

1. (B) C D
2. (A) B (C)
3. A (B) D
4. A (B) (D)
5. A (B) C B
6. (B) (C) D
7. A (B) C (10)
8. A (B) D
9. A (B) (D)
10. A (B) C

Q11-2012 YR 11-CONTINLERS-YEARLY.
a) $\sin 70 \cos 40+\sin 40 \cos 7 \phi$

$$
\begin{aligned}
& =\sin (70+40) \\
& =\sin (110)
\end{aligned}
$$

b)

$$
\begin{aligned}
& \cos (3 A-2 B) . \\
& =\frac{\cos 3 A \cos 2 B .2}{+\sin 3 A \sin 2 B} \\
& =1 \frac{1}{2} .
\end{aligned}
$$

c) $4 W 5 B$
i) $P(2$ white $)=\frac{1}{6}$
ii)

$$
\begin{align*}
P & (2 \text { difft })=P(W B)+P(B W)  \tag{2}\\
& =\left(\frac{4}{9} \times \frac{5}{8}\right)+\left(\frac{5}{9} \times \frac{4}{8}\right) \\
& =\frac{5}{9} \tag{2}
\end{align*}
$$

iii) $P($ at least 1 brown $)$

$$
=1-P(\text { no brown })
$$

$$
=1-\frac{1}{6}
$$

$$
\begin{equation*}
=\frac{5}{6} \tag{2}
\end{equation*}
$$

d)

$$
\begin{aligned}
& =\frac{2 \sin A \cos A}{1+\left[2 \cos ^{2} A-1\right]} \\
& =\frac{2 \sin A \cos A}{2 \cos ^{7} A} \\
& =\frac{7 \sin A}{\not 2 \cos A} . \\
& =\tan A
\end{aligned}
$$

2012 YRII Maths extension continuers Yearty.
(12) (a) (i) show $\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}$

$$
\begin{equation*}
\operatorname{RHS} \frac{\pi}{4}-\frac{\pi}{6}=\frac{3 \pi-2 \pi}{12}=\frac{\pi}{12} \tag{1}
\end{equation*}
$$

$$
\text { (ii) } \begin{aligned}
& \tan \frac{\pi}{12}=\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right) \\
&=\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1 \not \tan \frac{\pi}{4} \tan \frac{\pi}{6}} \\
&=\frac{1-\frac{1}{\sqrt{3}}}{1+1 \times \frac{1}{\sqrt{3}}}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} \\
&=\frac{\sqrt{3}-1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)}{(\sqrt{3}+1)} \text { rationatized }
\end{aligned}
$$

$$
\begin{aligned}
\frac{(\sqrt{3}-1)}{(\sqrt{3}+1)} \times \frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}=\frac{3-2 \sqrt{3}+1}{3-1} & =\frac{4-2 \sqrt{3}}{2} \\
& =\frac{2(2-\sqrt{3})}{2} \\
& =2-\sqrt{3} \cdot(2)
\end{aligned}
$$

(12)
(b)

$$
\text { (i) } \begin{align*}
\log _{6} 3+\log _{6} 2 & =\log _{6}(3 \times 2) \\
& =\log _{6} 6=1 \tag{1}
\end{align*}
$$

$$
\text { (ii) } \begin{aligned}
\log _{5} 100-\log _{5} 4 & =\log _{5}\left(\frac{100}{4}\right) \\
& =\log _{5} 25 \\
& =\log _{5} 5=2 \log _{5} 5=2(1)
\end{aligned}
$$

(12) (c).

$$
\begin{array}{ll}
5^{3 x-4}=25^{x-2} & \\
5^{3 x-4}=5^{2(x-2)} & \Rightarrow 3 x-4=2 x-4 \\
& x=0
\end{array}
$$

(d)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+2 x+4 \\
& f(x)=\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}+4 x+e \\
& f(x)=x^{3}+x^{2}+4 x+0
\end{aligned}
$$

$f(1)=7$

$$
\begin{gather*}
7=1+1+4+0 \\
c=1 \\
f(x)=x^{3}+x^{2}+4 x+1
\end{gather*}
$$

So $f(-1)=-1+1-4+1=2-5=-3$
(e)

$$
\begin{aligned}
& f(-1)==-1+1(x)= \\
& \lim _{\rightarrow 0} \frac{(x+h)^{2}+3(x+h)-\left(x^{2}+3 x\right)}{\frac{x^{2}+2 x h+h^{2}+3 x+3 h-x^{2}-3 x}{2}} \\
& \lim _{h \rightarrow 0} \frac{x(2 x+k+3)}{k} \\
& \lim _{h \rightarrow 0} \frac{x}{} \\
& f^{\prime}(x)=2 x+3 .
\end{aligned}
$$

(13)

$$
\begin{align*}
& \text { (a) } \begin{array}{l}
\text { a) } \frac{3}{|2 x-1|}>1 \quad x \neq \frac{1}{2} \\
3>1 / 2 x-1 \mid \\
|2 x-1|<3 \\
1
\end{array} \\
& 2 x-1<3 \quad 2 x-1>-3 \\
& 2 x<4 \quad 2 x>-2 \\
& x<2 \quad x>-1 \\
& -\infty=\frac{1}{2} \quad 2
\end{align*}
$$

$$
\begin{aligned}
& \text { (ii) } \frac{4}{(2 x-1)} \leq \frac{1}{(x+2)} \quad x \neq \frac{1}{2}, x \neq-2 . \\
& \times(2 x-1)^{2}(x+2)^{2} \quad(2 x-1)^{2}(x+2)^{2} \times \frac{4}{(2 x-1)} \leq \frac{1}{(x+2)} \times(2 x-1)^{2}(x+2)^{2} \\
& 4(2 x-1)(x+2)^{2} \leq(2 x-1)^{2}(x+2) \\
& 4(2 x-1)(x+2)^{2}-(2 x-1)^{2}(x+2) \leq 0 \\
& (2 x-1)(x+2)[4(x+2)-(2 x-1)] \leq 0 \\
& (2 x-1)(x+2)[4 x+8-2 x+1] \leq 0 \text { jurg } \\
& (2 x-1)(x+2)[2 x+9] \leq 0 \\
&
\end{aligned}
$$

(13) (b)

$$
\text { i) } \begin{align*}
y & =\sqrt{7+x^{2}} \\
& =\left(7+x^{2}\right)^{\frac{1}{2}} \\
y^{\prime} & =\frac{1}{2}\left(7+x^{2}\right)^{-\frac{1}{2}} \times 2 x \\
& =\frac{x}{\sqrt{7+x^{2}}} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { (ii) } y= x \cdot \sqrt{2 x-1} \\
&=x(2 x-1)^{\frac{1}{2}} \\
& y^{\prime}=x \times \frac{1}{2 x}(2 x-1)^{-\frac{1}{2}} \times 2+(2 x-1)^{\frac{1}{2}} \times 1 \\
&=\frac{x}{\sqrt{2 x-1}}+\frac{\sqrt{2 x-1}}{1}=\frac{x+2 x-1}{\sqrt{2 x-1}}=\frac{3 x-1}{\sqrt{2 x-1}}
\end{align*}
$$

(iii)

$$
\begin{align*}
y & =\sqrt[3]{x^{2}}+\sqrt{x^{3}} \\
& =x^{\frac{2}{3}}+x^{3 / 2} \\
y^{\prime} & =\frac{2}{3} x^{-\frac{1}{3}}+\frac{3}{2} x^{\frac{1}{2}} \\
& =\frac{2}{3 \sqrt[3]{x}}+\frac{3 \sqrt{x}}{2} \tag{2}
\end{align*}
$$

(iv) $y=\frac{5 x}{4+x^{2}}$

$$
\begin{align*}
y^{\prime} & =\frac{\left(4+x^{2}\right) \times 5-5 x \times 2 x}{\left(4+x^{2}\right)^{2}}  \tag{2}\\
& =\frac{20+5 x^{2}-10 x^{2}}{\left(4+x^{2}\right)^{2}}=\frac{20-5 x^{2}}{\left(4+x^{2}\right)^{2}} \frac{0^{2}}{\frac{5\left(4-x^{2}\right)}{\left(4+x^{2}\right)^{2}}}
\end{align*}
$$

14(a)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow \infty} \frac{4 x+3 x^{2}}{5 x-2 x^{2}} & =\lim _{x \rightarrow \infty}\left(\frac{\frac{4}{x}+3}{\frac{5}{x}-2}\right) \\
& =-\frac{3}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(x)=x^{2}+x^{-2} \\
& f(x)=2 x-2 x^{-3}=2 x-\frac{2}{x^{3}} \\
& f^{\prime \prime}(x)=2+6 x^{-4}=2+\frac{6}{x^{4}}
\end{aligned}
$$

(c) $f(x)$ concave up when $f^{\prime \prime}(x)>0$

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}-7 x+10 \\
& f^{\prime}(x)=3 x^{2}-6 x-7 \\
& f^{\prime \prime}(x)=6 x-6
\end{aligned}
$$

Concave up $6 x-6>0$ $x>1$
(o) $y_{1}^{\prime}>0$ y increasing $y^{\prime}$ increasing $y$ concaveup y'decreasily y concavee down
(e)


$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A=2 \times \frac{3}{5} \times \frac{4}{5}=\frac{24}{25} \\
\operatorname{Cos}(A-B) & =\cos A \cos B+\sin A \sin B \\
& =\frac{4}{5} \times \frac{5}{13}+\frac{3}{5} \times \frac{12}{13} \\
& =\frac{56}{65}
\end{aligned}
$$

15(1)(i) $\operatorname{Tan}(\theta+\alpha)=\frac{\tan \theta+\tan \alpha}{1-\tan \theta \tan \alpha}$
$\tan 45^{\circ}=1=\frac{\tan \theta+\tan \alpha}{1-\tan \theta \cdot \tan \alpha}$
$\therefore \tan \theta+\tan \alpha=1-\tan \theta \tan \alpha$
(ii) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$$
\begin{gathered}
20=45 \quad \delta=22 \frac{1}{2} \quad t=\tan 22 \frac{1}{2} \\
1=\frac{2 t}{1-t^{2}} \\
2 t=1-t^{2} \\
t^{2}+2 t-1=0
\end{gathered}
$$

(iii) from(ii) $t=\frac{-2 \pm \sqrt{4-4 \times / \times-1}}{2}$
(b)

$\tan \frac{32}{}=\frac{h}{A C} \quad \tan \quad 28=\frac{h}{B C}$

$$
\begin{aligned}
& A C^{2}+B C^{2}=500^{2} \\
& h^{2} \cot ^{2} 32+h^{2} \cot ^{2} 28=500^{2} \\
& h^{2}=\frac{500^{2}}{\cot ^{2} 32+\cot ^{2} 28} \\
& h=202 \mathrm{~m} \text { nearest } m
\end{aligned}
$$

(c)

$$
\begin{gathered}
A=x y, 2 y=6-3 x \\
y=3-\frac{3}{2} x \\
A=3 x-\frac{3}{2} x^{2} \\
\frac{d A}{d x}=3-3 x \\
\max 3-3 x=0 \\
x=1, y=3 / 2 \\
\operatorname{Max} A=\frac{3}{2} u^{2}
\end{gathered}
$$

