SYDNEY BOYS HIGH SCHOOL modre pari, surry hills

2013

Year 11 Mathematics Yearly

Mathematics Extension Continuers

General Instruction

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Start each NEW question in a separate answer booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 67

SECTION I - 7 Marks

- Attempt Questions 1-7

SECTION II - 60 Marks

- Attempt Questions 8-12

[^0]
STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin -\frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

SECTION I-7 Marks

Attempt Questions 1 - 7
Answer this section on the Multiple Choice Answer Sheet
1)
$\int\left(x^{-1 / 2}+4\right) \cdot d x=$
(A) $-\frac{3}{2} x^{-3 / 2}+4 x+C$
(B) $\frac{1}{2} \sqrt{x}+4 x+C$
(C) $2 \sqrt{x}+4 x+C$
(D) $\frac{2}{3} x^{-3 / 2}+4 x+C$
2) In the figure, $O A B$ and $O C D$ are sectors with centre O. If the area of sector $O A B=6 \pi \mathrm{~cm}^{2}$, the area of $A B C D=\frac{14}{3} \pi \mathrm{~cm}^{2}$ and $O A=6 \mathrm{~cm}$, then $A C=$

(A) 2 cm
(B) 4 cm
(C) 6 cm
(D) 8 cm
3) $\frac{\sin 120^{\circ}}{1+\sin \left(90^{\circ}+\theta\right)}-\frac{\sin 240^{\circ}}{1-\cos (-\theta)}=$
(A) $\frac{1}{\sin ^{2} \theta}$
(B) $\frac{\sqrt{3}}{\sin ^{2} \theta}$
(C) $\frac{\sqrt{3}}{1+\cos \theta}$
(D) $\frac{\sqrt{3}}{2(1+\sin \theta)(1+\cos \theta)}$
4) If $A=\frac{16}{r^{2}}-\pi \sqrt{r}$, then $\frac{d A}{d r}=$
(A) $\frac{8}{r}-\frac{\pi}{2 \sqrt{r}}$
(B) $-\frac{8}{r}-\frac{\pi}{2 \sqrt{r}}$
(C) $-\frac{32}{r^{3}}-\frac{\pi}{2 \sqrt{r}}$
(D) $\frac{32}{r^{3}}+\frac{\pi}{2 \sqrt{r}}$
5) If $2 \ln x=6$, then x equals
(A) e^{3}
(B) $\sqrt{e^{3}}$
(C) e^{36}
(D) $2 e^{6}$
6)
$\int \frac{2}{3 x+1} \cdot d x=$
(A) $2 \log _{e}(3 x+1)+C$
(B) $\frac{2}{3} \log _{e}(3 x+1)+C$
(C) $6 \log _{e}(3 x+1)+C$
(D) $\frac{3}{2} \log _{e}(3 x+1)+C$
7) $\frac{d}{d x}[\cos (3 x+1)]=$
(A) $\sin (3 x+1)$
(B) $-\sin (3 x+1)$
(C) $3 \sin (3 x+1)$
(D) $-3 \sin (3 x+1)$

SECTION II - 60 Marks

Attempt Questions 8 - 12
Answer each question in a SEPARATE writing booklet.
QUESTION 8 (12 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of $\tan 75^{\circ}$.
(b) Solve the equation $2 \cos \theta=\sqrt{3}$, where $0 \leq \theta \leq 2 \pi$.
(c) Let $y=x+\sin k x$. It is given that $\frac{d y}{d x}=3$, when $x=0$.
(i) Find the value of k. 2
(ii) Find $\frac{d^{2} y}{d x^{2}}$
(d) Solve

$$
\frac{1}{x+1} \geq 1
$$

(e) Evaluate

$$
\lim _{h \rightarrow 2} \frac{2 h-4}{h^{2}-4}
$$

End of Question 8

QUESTION 9 (12 marks) Use a SEPARATE writing booklet.
(a) Prove that

$$
2 \sin A \sin B=\cos (A-B)-\cos (A+B)
$$

(b) The region bounded by the curve $y=2+e^{-x}$, the x-axis, the y-axis and the line $x=1$

2 is rotated about the x-axis. Find the volume of the solid generated.
(c) Evaluate the following integrals.
(i)

$$
\begin{equation*}
\int_{-1}^{0} \frac{1}{\sqrt{1-2 x}} \cdot d x \tag{2}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{2}^{4} \frac{x}{x-1} d x \tag{2}
\end{equation*}
$$

(d) The value of a car $\$ C$ can be represented by the formula

$$
C=1000+A e^{-k t}
$$

where t is the age in years from new.
(i) The price of a brand new car is $\$ 18000$ and after 3 years, the same car has depreciated to $\$ 7500$. Find the value of A and k.
(ii) Find the age of the car when its value first falls below $\$ 3000$.

End of Question 9

QUESTION 10 (12 marks) Use a SEPARATE writing booklet.
(a) Let $y=x^{2} e^{-x}$, where $x>0$. Show that $x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-(x-3) y=0$.
(b)
(i) Show that $\sin ^{2} x \cos ^{2} x=\frac{1-\cos 4 x}{8}$.
(ii) Hence find

$$
\int \sin ^{2} x \cos ^{2} x . d x
$$

(c) The figure below shows a right circular cylindrical can without cover and its volume is $27 \pi \mathrm{~cm}^{3}$. Let $A \mathrm{~cm}^{2}$ be the outer surface area of the circular cylindrical can and $r \mathrm{~cm}$ be the radius of the can.

(i) Show that $A=\pi\left(\frac{54}{r}+r^{2}\right)$.
(ii) Find r if A is minimum.

QUESTION 11 (12 marks) Use a SEPARATE writing booklet.
(a) The diagram below shows the graphs of the curve $C: y=x^{3}+p x+q$ and the line $L: y=2 x+5$. L touches C at $x=1$.

(i) Find the values of p and q.
(ii) Find the area of the shaded region.
(b) Find $\frac{d y}{d x}$ of the following functions.
(i) $\quad y=\frac{x-2}{\sqrt{x+1}}$, where $x>-1$.
(ii) $y=\ln [\ln (2 x+1)]$, where $x>0$.

End of Question 11

QUESTION 12 (12 marks) Use a SEPARATE writing booklet.
(a) Let

$$
\int_{a}^{b} \frac{f(x)}{f(x)-g(x)} d x=5
$$

Find the value of

$$
\int_{a}^{b} \frac{g(x)}{f(x)-g(x)} d x
$$

in terms of a and b.
(b) The figure below shows two vertical towers $A B$ and $C D$. The height of tower $A B$ is 100 m . The tower CD is 40 m away from AB . The angle of depression of D from B is 45°. A canopy BDE is constructed to cover the two towers. A, C and E are on the horizontal ground such that $\angle \mathrm{ACE}=150^{\circ}$. The angle of depression of E from D is 30°.

(i) Find the angle of elevation of B from E, correct your answer to nearest degree.
(ii) Find the area of canopy BDE, correct your answer to 3 significant figures.

End of Question 12 End of Exam

Ext Continuers "Youly 13

1) C
2) D
3) B
4) C
5) A
b) B
6) D
(b) $2 \cos \theta=\sqrt{3}$

$$
\cos \theta=\frac{\sqrt{3}}{2}
$$

$$
\theta=\pi / 6,11 \pi \quad[2]
$$

(c)

$$
\begin{aligned}
& y=x+\sin k x \\
& \frac{d y}{d x}=1+k \cos k x
\end{aligned}
$$

(i) When $x=0$

$$
\frac{d y}{d x}=3=1+k+1
$$

$$
\begin{equation*}
\therefore k=2 \tag{2}
\end{equation*}
$$

(ii)

$$
\begin{aligned}
& \frac{d y}{d x}=1+2 \cos 2 x \\
& \frac{d^{2} y}{d x^{2}}=-4 \sin 2 x \\
& {[2] }
\end{aligned}
$$

(d) $\frac{1}{x+1} \geqslant 1, x \neq-1$

Multipity by $(x+1)^{2}$

$$
\begin{aligned}
x+1 & \geqslant(x+1)^{2} \\
x+1 & \geqslant x^{2}+2 x+1 \\
0 & \geqslant x^{2}+x \\
0 & \geqslant x(x+1) \\
\therefore-1 & <x \leqslant 0 \quad[2]
\end{aligned}
$$

Qll (cont'd)
(e)

$$
\begin{aligned}
\lim _{h \rightarrow 2} \frac{2 h-4}{h^{2}-4} & =\lim _{h \rightarrow 2} \frac{2(n-2)}{(h+2)(h-2)} \\
& =\lim _{h \rightarrow 2} \frac{2}{n+2} \\
& =\frac{1}{2} \quad[2]
\end{aligned}
$$

Q12 Actually Q9 solutions

$$
\begin{aligned}
\text { (a) } \quad \cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\therefore & \cos (A-B)-\cos (A+B)=2 \sin A \sin B
\end{aligned}
$$

[2]
(b)

$$
\begin{align*}
V & =\pi \int_{0}^{1}\left(2+e^{-x}\right)^{2} d x \\
& =\pi \int_{0}^{1}\left(4+24 e^{-x}+e^{-2 x}\right) d x \\
& =\pi\left[4 x-4 e^{-2 x}-\frac{1}{2} e^{-2 x}\right]_{0}^{1} \\
& =\pi\left[\left(4-\frac{4}{e}-\frac{1}{2 e^{2}}\right)-\left(0-2-\frac{1}{2}\right)\right] \\
& =\pi\left(8 \frac{1}{2}-\frac{4}{e}-\frac{1}{2 e^{2}}\right) \\
& \div 21.868 \tag{2}
\end{align*}
$$

(c)

$$
\text { (i) } \begin{align*}
& \int_{-1}^{0} \frac{1}{\sqrt{1-2 x}} d x \\
= & \int_{-1}^{0}(1-2 x)^{1 / 2} d x \\
= & {\left[-\frac{1}{2}(1-2 x)^{1 / 2}\right]_{-1}^{0} } \\
= & {[-\sqrt{1-2 x}]_{-1}^{0} } \\
= & (-\sqrt{1-0})-(-\sqrt{1+2}) \\
= & \sqrt{3}-1 \tag{2}
\end{align*}
$$

(11)

$$
\begin{aligned}
\int_{2}^{4} \frac{x}{x-1} d x & =\int_{2}^{4} \frac{x-1+1}{x-1} d x \\
& =\int_{2}^{4}\left(1+\frac{1}{x-1}\right) d x \\
& =[x+\ln (x-1)]_{2}^{4} \\
& =(4+\ln 3)- \\
& =2+\ln 3[2]
\end{aligned}
$$

(d) $C=1000+A e^{-k t}$
(1) When $t=0, c=18000$

$$
\therefore 18000=1000+A .1
$$

$$
A=17000
$$

Q12 (coutd)
When $t=3, C=7500$

$$
\begin{aligned}
\therefore 7500 & =1000+17000 e^{-3 k} \\
e^{-3 k} & =\frac{6500}{17000} \\
-3 k & =\ln \left(\frac{6500}{17000}\right) \\
k & =\frac{\ln \left(\frac{65}{170}\right)}{-3} \\
\therefore k & =0.32047 \ldots[2]
\end{aligned}
$$

(in)

$$
\begin{aligned}
3000 & >1000+17000 e^{-k t} \\
\frac{2000}{17000} & >e^{-k t} \\
-k t & <\ln \frac{2}{17} \\
t & >\frac{\ln \frac{2}{17}}{-k} \\
& >6.677 \ldots
\end{aligned}
$$

\therefore byrs 9 monthe or 7 yos to neareet year.

Q10 Solutions
$Q 13$
(a)

$$
\begin{aligned}
y & =x^{2} e^{-x} \quad, x>0 . \\
\frac{d y}{d x} & =2 x e^{-x}-x^{2} e^{-x} \\
\frac{d^{2} y}{d x^{2}} & =-2 x e^{-x}+2 e^{-x}+x^{2} e^{-x}-2 x e^{-x} \\
& =e^{-x}\left(x^{2}-4 x+2\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { LHS } & =x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-(x-3) y \\
& =x e^{-x}\left(x^{2}-4 x+2\right)-x e^{-x}(2-x)-(x-3) x^{2} e^{-x} \\
& =x e^{-x}\left[x^{2}-4 x+2-2+x-x^{2}+3 x\right] \\
& =x e^{-x}\left[x^{2}-x^{2}-4 x+4 x+2-2\right] \\
& =x e^{-x} \times 0 \\
& =0 \\
& =\text { R14S } .
\end{aligned}
$$

$Q 13 /(b+0+\infty)$
(b)
(1).

$$
\begin{aligned}
R_{\text {HS }} & =\frac{1-\cos 4 x}{8} \\
& =\frac{1-\left(1-2 \sin ^{2} 2 x\right)}{8 .} \\
& =\frac{2 \sin ^{2} 2 x}{8} \\
& =\frac{\sin ^{2} 2 x}{4} \\
& =\frac{(2 \sin x \cos x)^{2}}{4} \\
& =\sin ^{2} x \cos ^{2} x . \\
& =41+5 .
\end{aligned}
$$

(")

$$
\begin{aligned}
\int \operatorname{tin}^{2} x \cos ^{2} x d x & =\int \frac{(1-\cos +x)}{8} \cdot d x \\
& =\frac{1}{8} \int(1-\cos 4 x \mid d x \\
& =\frac{1}{8}\left(x-\frac{1}{4} \sin 4 x\right)+c \\
& =\frac{x}{8}-\frac{1}{32} \sin 4 x+c
\end{aligned}
$$

(c) (i) $V=\pi r^{2} h$

$$
\begin{aligned}
& \therefore 27 \pi=\pi r^{2} h \\
& r^{2} h=27 \\
& h=\frac{27}{r^{2}} \\
& V
\end{aligned}
$$

Q13 $(\operatorname{cont} \pi)$

$$
\begin{aligned}
\text { new } A & =2 \pi r h+\pi r^{2} \\
& =2 \pi r \cdot \frac{27}{r^{2}}+\pi r^{2} \\
& =\frac{54 \pi}{r}+\pi r^{2} \\
& =\pi\left(\frac{54}{r}+r^{2}\right)
\end{aligned}
$$

(11)

$$
\begin{aligned}
\frac{d A}{d r} & =-54 \pi r^{-2}+2 \pi r \\
\Delta \frac{d^{2} A}{d^{2}} & =108 \pi r^{-3}+2 \pi,>0 \text { pos aur.r. }
\end{aligned}
$$

Tor max/rin. Let $\frac{d A}{d r}=0$

$$
\begin{aligned}
-\frac{54 \pi}{r^{2}}+2 \pi r & =0 \\
\frac{54 \pi}{r^{2}} & =2 \pi r \\
r^{3} & =27 \\
r & =3
\end{aligned}
$$

Rence $\frac{d^{2} A}{d d^{2}}>0$ MINax

$$
f r=3
$$

Q11 Solutions
Q14.

$$
\begin{aligned}
y & =x^{3}+p x+q \\
\frac{d y}{d x} & =3 x^{2}+p
\end{aligned}
$$

Now slepe of L is 2

$$
\begin{aligned}
\therefore \text { at }(1,7) \text { m } & =2 \\
\therefore 3+p & =2 \\
1 p & =-1
\end{aligned}
$$

$$
\text { And } 7=\frac{1^{3}+-1 \times 1+q}{q=7}
$$

$$
\begin{aligned}
A & =\int_{0}^{1}\left[\left(x^{3}-x+7\right)-(2 x+5)\right] d x \\
& =\int_{0}^{1}\left(x^{3}-3 x+2\right) d x \\
& =\left[\frac{x^{4}}{4}-\frac{3 x^{2}}{2}+2 x\right]_{0}^{1} \\
& =\frac{1}{4} \frac{-3 x+2}{r^{2}} \\
& =\left|\frac{3}{4} x^{2}\right|
\end{aligned}
$$

Qiv((CuNTD)
(1) $y=\frac{x-2}{\sqrt{x+1}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sqrt{x+1} \cdot 1-(x-2) \times \frac{1}{2}(x+1)^{-\frac{1}{2}}}{x+1} \\
& =\frac{\sqrt{x+1}-\frac{(x-2)}{2 \sqrt{x+1}}}{x+1} \\
& =\frac{2(x+1)-(x-2)}{2 \sqrt{x+1}(x+1)} \\
y^{\prime} & =\frac{x+4}{2(x+1) \sqrt{x+1}}
\end{aligned}
$$

(11) $y=\ln (\ln (2 x+1))$

$$
\begin{aligned}
& y^{\prime}=\frac{\frac{2}{2 x+1}}{\ln (2 x+1)} \\
& y^{\prime}=\frac{2}{(2 x+1) \ln (2 x+1)}
\end{aligned}
$$

Q12- (a) new $\int_{a}^{b} \frac{f(x)-g(x)}{f(x)-g(x)} \cdot d x$.

$$
\begin{aligned}
& =\int_{a}^{b} 1 \cdot d x . \\
& =[x]_{a}^{b} \\
& =b-a .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \int_{a}^{b} \frac{f(x)-g(x)}{f(x)-g(x)} d x=\int_{a}^{b} \frac{f(x)}{f(x)-g(x)} \cdot d x- \\
&=5-\int_{a}^{b} \frac{g(x)}{f(x)-g a r} \cdot \frac{g(x)}{f(x)-g a r} \cdot d x \\
& b-\int_{a}^{b} \\
& \therefore b-a=5-\int_{a}^{b} \frac{g(x)}{f(x)-g(x)} \cdot d x \\
& \therefore b=5-(b-a) \\
& \int_{a} \frac{f(x)}{f(x)-g(x)} a r=5+a-b)
\end{aligned}
$$

Qu 1 (COMTD
(b) (1)

$$
\begin{aligned}
\therefore \quad E_{C} & =60 \tan 60^{\circ} \\
& =60 \sqrt{ } 3
\end{aligned}
$$

E

$$
\begin{aligned}
E A^{2} & =(60 \sqrt{3})^{2}+40^{2}-2 \times 60 \sqrt{3} \times 40 \times \cos 150^{\circ} \\
& =10800+1600-2 \times 60 \sqrt{3 \times 40} \times \frac{-\sqrt{3}}{2} \\
& =12400+7200 \\
& =19600 \\
\therefore E A & =140 .
\end{aligned}
$$

(1)

The angle of elevation
YB Nexm E.

$$
\begin{aligned}
\text { is } \angle B E A= & \tan ^{-1} \frac{100}{146^{\circ}} \\
& =\tan ^{-1} \frac{5}{7} \\
& \div 35^{\circ} 32!
\end{aligned}
$$

Qís fonto)

$$
\begin{aligned}
& D B^{2}=40^{2}+40^{2} \\
& \therefore D B=40 \sqrt{ } .
\end{aligned}
$$

$$
\begin{aligned}
E B^{2} & =140^{2}+100^{2} \\
& =29600 \\
\therefore E B & =20 \sqrt{74}
\end{aligned}
$$

Cos

$$
\begin{aligned}
\angle E D B & =\frac{120^{2}+(40 \sqrt{2})^{2}-(20 \sqrt{74})^{2}}{2 \times 120 \times 40 \sqrt{r}} \\
& =\frac{14400+3200-29600}{9600 \sqrt{2}} \\
\cos \theta & =-\frac{5 \sqrt{2}}{2 .} \\
\operatorname{son} \sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin ^{2} \theta+\frac{50}{64} & =1 \\
\sin ^{2} \theta & =1-\frac{25}{32} \\
& =\frac{7}{32} \\
\sin ^{2} \theta & =\frac{\sqrt{7}}{4 \sqrt{2}} \\
& =\frac{\sqrt{14}}{8} .
\end{aligned}
$$

Q15 (conta)
(11)
\therefore Area $y>E D B$

$$
\begin{aligned}
& =\frac{1}{2} \times 120 \times 40 \sqrt{2} \times \frac{\sqrt{14}}{8} \\
& =600 \sqrt{7} m^{2}\left(190000 \times 1587.5^{\prime}\right)
\end{aligned}
$$

[^0]: Examiner
 J. Chen

