

## 2011 Annual Examination

## FORM V

## MATHEMATICS EXTENSION 1

Wednesday 31st August 2011

## General Instructions

- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question on a new leaflet.


## Structure of the paper

- Total marks - 135
- All nine questions may be attempted.
- All nine questions are of equal value.


## Collection

- Write your name, class and master clearly on each leaflet.
- Hand in the nine questions in a single well-ordered pile.
- Hand in a leaflet for each question, even if it has not been attempted.
- If you use a second leaflet for a question, place it inside the first.
- Write your name on the question paper and place it inside your leaflet for Question One.

| 5A: BDD | 5B: PKH | 5C: FMW |
| :--- | :--- | :--- |
| 5D: MK | 5E: SJE | 5F: RCF |
| 5G: LJF | 5H: SO | 5I: MLS |

## Checklist

- Writing leaflets: 9 per boy.


## Examiner

- Candidature - 142 boys

RCF

SGS Annual 2011 .............. Form $V$ Mathematics Extension 1 ............... Page 2
QUESTION ONE (15 marks) Start a new leaflet.
(a) Write down the exact value of $\sin 315^{\circ}$.
(b) Express $\frac{1-\sqrt{3}}{\sqrt{2}}$ with a rational denominator.
(c) Factorise $x^{2}-7 x+12$.
(d) Evaluate $\log _{3} \frac{1}{9}$.
(e) Differentiate:
(i) $x^{5}+2 x$
(ii) $e^{2 x+1}$
(f) Write down a primitive of $x^{3}-2$.
(g) What is the nature of a stationary point if $\frac{d^{2} y}{d x^{2}}>0$ at that point.
(h) Simplify $\ln \left(e^{3}\right)$.
(i) What is the natural domain of the function $f(x)=\ln (x+2)$ ?
(j) Write as a single logarithm $2 \log _{10} a+\log _{10} 3 b$.
(k) Sketch the graph of $(x-2)^{2}+y^{2}=4$, clearly indicating any intercepts with the axes.
(l) Solve $\tan \theta+\sqrt{3}=0$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.

QUESTION TWO (15 marks) Start a new leaflet.
(a) (i) Sketch the parabola $y^{2}=4 x$.
(ii) State the co-ordinates of the focus.
(b) Find the monic quadratic equation with roots 2 and -4 .
(c) The limiting sum of a GP with first term $\frac{1}{2}$ is 2 . Find the common ratio.
(d)


Which point labelled in the diagram above has:
(i) $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$,
(ii) $f^{\prime \prime}(x)=0$.
(e) Given points $A(-2,4)$ and $B(3,-11)$, find the co-ordinates of the point $P$ which divides the interval $A B$ internally in the ratio $2: 3$.
(f) (i) Complete the square on the expression $x^{2}+6 x-1$.
(ii) Hence, or otherwise, find the co-ordinates of the vertex of the parabola $y=x^{2}+6 x-1$.
(g) (i) Graph the function $f(x)=\sqrt{4-x^{2}}$.
(ii) Hence evaluate the definite integral $\int_{-2}^{2} \sqrt{4-x^{2}} d x$ without using calculus.
(a)


The points $A, B$ and $C$, shown in the diagram above, have co-ordinates $(-1,-1),(-2,7)$ and $(5,3)$ respectively. The angle between $A C$ and the $x$-axis is $\theta$.
(i) Find the gradient of $A C$.
(ii) Calculate the size of angle $\theta$ to the nearest degree.
(iii) Find the equation of line $A C$. Give your answer in general form.
(iv) Find the co-ordinates of $D$, the midpoint of $A C$.
(v) Show that $A C$ is perpendicular to $B D$.
(vi) Explain why $\triangle A B C$ is isosceles.
(vii) Find the area of $\triangle A B C$.
(viii) Write down the co-ordinates of point $E$ such that $A B C E$ is a rhombus.
b) (i) Differentiate $y=\log _{e}(2 x-1)$.
(ii) Hence find the gradient of the tangent to the curve $y=\log _{e}(2 x-1)$ at the point where $x=3$.
(c) (i) Graph $y=|2 x-2|$. Use at least one third of a page in your answer booklet for the graph.
(ii) Hence, or otherwise, solve the inequation $|2 x-2| \geq 4$.

QUESTION FOUR (15 marks) Start a new leaflet.
(a) Differentiate:
(i) $y=(5-2 x)^{7}$
(ii) $y=\frac{x^{4}+2 x^{2}}{x}$
(b) Find:
(i) $\int x \sqrt{x} d x$
(ii) $\int \frac{1}{2 x^{3}} d x$
(iii) $\int \frac{1}{x-3} d x$
(iv) $\int e^{4 x-2} d x$
(c) Evaluate $\int_{-1}^{3} x(x-2) d x$.
(d) Shade the region where the inequalities $x \geq 3, y \leq 10$ and $2 x-y>0$ are simultaneously satisfied. Clearly indicate on your diagram the inclusion or exclusion of points on the boundary lines and corners.

QUESTION FIVE (15 marks) Start a new leaflet.
(a) Solve $\sin \left(\alpha+45^{\circ}\right)=\frac{1}{2}$, for $0^{\circ} \leq \alpha \leq 360^{\circ}$.
(b) The second term of a geometric series is 16 and the fifth term is 2 .
(i) Find the common ratio.
(ii) Find the first term.
(iii) Find the sum of the first fifteen terms. Write your answer as a rational number in simplest form.
(c)


The diagram above shows the graph of $y=|x|-1$. Find the value of $\int_{0}^{2}|x|-1 d x$.
(d) Solve $\frac{2 x-6}{x} \leq 1$
(e) Consider the parabola with equation $(y-4)^{2}=-16(x+2)$.
(i) What is the focal length?
(ii) Sketch the curve, clearly showing the focus, the directrix and any intercepts with the axes.

QUESTION SIX (15 marks) Start a new leaflet.
(a)


The diagram above shows the graph of the gradient function $y=f^{\prime}(x)$ of the curve $y=f(x)$. Given that $f(0)=0$, sketch the curve $y=f(x)$.
(b) Let $f(x)=\ln \left(x^{2}+1\right)$.
(i) Use the trapezoidal rule with three function values to estimate $\int_{0}^{8} f(x) d x$. Write your answer correct to one decimal place.
(ii) Use Simpson's rule with five function values to estimate $\int_{0}^{8} f(x) d x$. Write your answer correct to three decimal places.
(c) Differentiate:
(i) $y=\frac{\ln x}{x^{2}}$
(ii) $y=e^{2 x}\left(2-x^{2}\right)$
(d) Evaluate $\int_{-1}^{0} \frac{4 x}{x^{2}+3} d x$.
(e) Solve the equation $9^{x}-10 \times 3^{x}+9=0$.

QUESTION SEVEN (15 marks) Start a new leaflet.
(a) Suppose that the equation $2 x^{2}+4 x-1=0$ has roots $\alpha$ and $\beta$. Without solving the equation, find the values of:
(i) $\alpha \beta$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iii) $(\alpha-\beta)^{2}$
(iv) $|\alpha-\beta|$
(b) (i) By forming a suitable arithmetic sequence, find how many multiples of 7 lie between 100 and 1000 ?
(ii) What is the sum of these multiples?
(c)


Consider the diagram above showing the parabola $y=2 x^{2}-4 x-6$ and the straight line $y=8 x-16$.
(i) Find the $x$ co-ordinates of the points of intersection of the parabola and the line.
(ii) Find the area enclosed between the parabola and the line.
(d) (i) Show that the $x$ co-ordinates of the points of intersection of the line $y=m x$ and the circle $(x+3)^{2}+y^{2}=1$ satisfy the equation $\left(1+m^{2}\right) x^{2}+6 x+8=0$.
(ii) Hence find the equations of the two tangents to the circle $(x+3)^{2}+y^{2}=1$ that pass through the origin.
(a)


In the diagram above the shaded region is bounded by the curve $y=\frac{1}{2} \ln (3-x)$ and the co-ordinate axes.
(i) Find $x$ as a function of $y$.
(ii) Hence find the volume of the solid of revolution formed when the shaded region is rotated about the $y$-axis.
(b) Consider the curve $y=(x-2) e^{-x}$.
(i) Find any $x$ or $y$ intercepts.
(ii) Find any stationary points and determine their nature.
(iii) Find any points of inflection.
(iv) By considering the behaviour of the function for large values of $x$, determine the equation of the horizontal asymptote.
(v) Sketch the curve $y=(x-2) e^{-x}$, clearly showing all the above information.

QUESTION NINE (15 marks) Start a new leaflet.
(a)


In the diagram above, $\angle B A D=\alpha, \angle B A C=\beta$ and sides $A B, A D$ and $A C$ have lengths $a, b$ and $c$ respectively.
(i) Write down an expression for the area of $\triangle A C D$ in terms of $b, c, \alpha$ and $\beta$.
(ii) Hence show that $\sin (\beta-\alpha)=\sin \beta \cos \alpha-\sin \alpha \cos \beta$.
(b) (i) Differentiate $\sqrt{x} e^{\sqrt{x}}$.
(ii) Hence find $\int e^{\sqrt{x}} d x$.
(iii) Evaluate $\int_{0}^{4} e^{\sqrt{x}} d x$.
(c)


The diagram above shows the curve $y=\sqrt[3]{x}$, together with a set of $n$ rectangles of unit width.
(i) By considering the areas of these rectangles, explain why

$$
\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[3]{n}>\int_{0}^{n} \sqrt[3]{x} d x
$$

(ii) By drawing another set of rectangles and considering their areas, show that

$$
\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[3]{n}<\int_{1}^{n+1} \sqrt[3]{x} d x
$$

(iii) Using parts (i) and (ii) find the value of $\sum_{n=1}^{100} \sqrt[3]{n}$, giving your answer accurate to as many significant figures as can be justified.
(d) Given that $e^{x}$ is the limiting sum of the infinite series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

where $n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1$,
find an expression for the limiting sum of the infinite series

$$
1+2 x+\frac{3 x^{2}}{2!}+\frac{4 x^{3}}{3!}+\cdots+\frac{(n+1) x^{n}}{n!}+\cdots
$$

## END OF EXAMINATION

SGS Annual 2011 ............. Form $V$ Mathematics Extension 1 .............. Page 12

BLANK PAGE

SGS Annual 2011 ............. Form V Mathematics Extension 1 .............. Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$


Questonn 4

$$
\begin{aligned}
& \text { a) (i) } y=(5-2 x)^{7} \\
& \begin{aligned}
\frac{d y}{d x} & =7(5-2 x)^{6} \times(-2) \\
& =-14(5-2 x)^{6}
\end{aligned} \\
& \text { (ii) } y=\frac{x^{4}+2 x^{2}}{x} \\
& \text { b) (i) } \int x^{\frac{3}{2}} d x /=\frac{x^{5 / 2}}{5 / 2}+c \\
& =\frac{2 x^{3 / 2}}{5}+C l
\end{aligned}
$$

(ii) $\int \frac{1}{2} x^{-3} d x=\frac{1}{2} \frac{x^{-2}}{-2}+c$

(iii) $\left.\int \frac{1}{x-3} d x=\ln |x-3|+c \right\rvert\,$
(iv) $\int e^{4 x-2} d x=\frac{e^{4 x-2}}{4}+c /$
c) $\int_{-1}^{3} x(x-2) d x=\int_{-1}^{3} x^{2}-2 x d x$

$$
\begin{aligned}
& =\left[\frac{x^{3}}{3}-x^{2}\right]_{-1}^{3} / \\
& =(9-9)-\left(-\frac{1}{3}-1\right) \\
& =4 / 3
\end{aligned}
$$


b)(i) GP $t_{2}=a r=16$ (1) $t_{5}=a r^{4}=2$ (2)
(ㄷ) ( ()) - (1)

$$
\mu^{3}=\frac{2}{16}=\frac{1}{8}
$$

$$
\begin{aligned}
& \text { (ii) } \\
& \text { ar }=16^{\mathrm{r}=\frac{y}{2}} \\
& =16 \\
& \begin{array}{ll}
2=32 & t=32 \downarrow \\
15
\end{array} \\
& \text { (iii) } \\
& S_{15}=\frac{a(t-r)}{1-r-r i s} \\
& =\frac{32\left(1-\left(\frac{12}{2}\right)^{15}\right)}{1 / 2} \\
& \begin{array}{l}
=64(1 / 1-(\sqrt{2}))=\frac{32767}{512} / \\
\left.\div 63.99)^{2}\right)
\end{array} \\
& (\div 63.998)
\end{aligned}
$$

c) $\int_{0}^{2}|x|-1 d x=0$ I $\sqrt{\text { sine }}$ but one abbe \& one below xacci)
d
$\frac{2 x-6}{x} \leqslant 1 \quad$ Domin
$\left(x x^{2}\right)$
$(2 x-6) x \leqslant x^{2} \quad$
$2 x^{2}-6 x-x^{2} \leqslant 0$
$x^{2}-6 x \leqslant 0$
$x(x-6) \leqslant 0$

e) (i) $4 a=16$
$a=4$. Towl Lengte is tyy


Question 6
a) Stattots © $x=2$ and $x=6$
$\sqrt{x=2} \quad$ Maxtp. 1

b) (i)

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|}
\hline x & 0 & 2 & 4 & 6 \\
\hline
\end{array} \\
& \begin{aligned}
\int_{0}^{3}(x) d x & =12 \times 4[\ln 1+\ln 17] \\
& +2 \times 4[\ln 17+\ln 65] \\
& \doteqdot 2[2 \ln 17+\ln 15] \\
& =19.7(12 p)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } 1 \times 4 \times(0+4 \ln 5+\ln 17) \\
& +1 / 6 \times 4(\ln 17+4 \ln 37+\ln 65) \\
& \doteqdot 20.481 \text { (3dp) } \\
& \text { c) } 0 y=\frac{\ln x}{x^{2}} \\
& \frac{d y}{d x}=\frac{x^{2}(x)-\ln x(2 x)}{x^{4}} / \\
& =\frac{x-2 x \ln x}{x^{2}} \\
& =\frac{1-2 \ln x}{x^{3}}
\end{aligned}
$$

(ii) $y=e^{2 x}\left(2-x^{2}\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =2 e^{2 x}\left(2-x^{2}\right)+e^{2 x}(-2 x) \\
& =2 e^{2 x}\left[2-x-x^{2}\right] \\
& =-2 e^{2 x}\left(x^{2}+x-2\right) \\
& =-2 e^{e^{2 x}(x+2)(x-1)}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \int_{-=1}^{0} \frac{4 x}{x^{2}+3} d x=2 \int^{0} \frac{2 x}{x^{2}+3} d x \\
& =\left[2 \ln \left(x^{2}+3\right)\right]_{-1}^{-1}
\end{aligned}
$$

$=2 \ln 3-2 \ln 4$
$=2 \ln \frac{3}{4}$ or $-2 \ln 4$
e) $9^{x}-10 \times 3^{x}+9=0$
$\left(3^{x}\right)^{2}-10 \times 3^{x}+9=0$

$3^{x}=9$ or $3^{x}=1$

$$
\therefore x=2 \text { or } x=01
$$

Question 7
a) $2 x^{2}+4 x-1=0$ $\begin{array}{lll}a=2 & b=4 \quad c=(-1)\end{array}$
(i) $\alpha \beta=c / a=(-1 / 2)$
(ii) $\frac{1}{\alpha}+\frac{1}{p}=\frac{\beta+\alpha}{\alpha \beta}$
$=\frac{-b / a}{+9 / a}$
$=-b / c$
$=4$

$$
\text { (ii) } \begin{aligned}
&(\alpha-\beta)^{2}=\alpha^{2}-2 \alpha \beta+\beta^{2} \\
&=\alpha^{2}+2 \alpha \beta+\beta^{2}-4 \alpha \beta \\
&=(\alpha+\beta)^{2}-4 \alpha \beta \\
&=(-2)^{2}-4 \times\left(-\frac{1}{2}\right) \\
&=4+2=6 \\
& \text { (i) } \begin{aligned}
|\alpha-\beta| & =\sqrt{(\alpha-\beta)^{2}} \\
& =\sqrt{6}
\end{aligned} .
\end{aligned}
$$

b) (i) AP $a=105 \quad d=7$ $t_{n}=a+(n-1) d$

$$
=105+7(n-1)
$$

$$
t_{n}<1000
$$

$$
105+7(n-1)<1000
$$

$$
98+7 n<1000
$$

$$
7_{n}<902
$$

$$
n<\frac{902}{7}
$$

$$
n<128^{6} 7
$$

$$
\begin{aligned}
t_{188} & =105+7 \times 128 \\
& =155+889
\end{aligned}
$$

$$
\begin{aligned}
& =105+88 \\
& =994
\end{aligned}
$$

$\therefore 128$ mithiles of 7 .
betreen 100 and 1000.
(ii) $S_{128}=\frac{n}{2}(a+l)$
$=\frac{128}{2}(105+994)$

$$
=70336
$$



Quetion 8

$$
\begin{gathered}
\text { axiD } y=\frac{1}{2} \ln (3-x)(1) \\
V=\pi \int x^{2} d y \\
f o m A 2 y=\ln (3-x) \\
e^{2 \pi}=(3-x) \\
x=3-e^{2 y}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (ii) } x=3-2 y \\
& \text { (i) } x^{2}=9-6 e^{2 y}+e^{4 y}
\end{aligned}
$$

$$
V=\pi \int_{0}^{\pi} 9 e^{2}-6 e^{2 y}+e^{4 y} d y J
$$

$$
=\pi\left[9 y-\frac{6 e^{2 y}}{2}+\frac{e^{4 y}}{4}\right]_{0}^{2^{n} y^{3}}
$$

$$
=\pi\left[\left(\frac{2}{2} \ln 3-9+\frac{9}{4}\right)-\left(0-3+\frac{1}{4}\right)\right]
$$

$$
=\pi(2 \ln 3-4) u^{3}
$$

b) $y=(x-2) e^{-x}$
(i) $y$ ints. $x=0$

$$
\begin{aligned}
& y \text { ins. } x=0 \\
& y=-2 \times e^{-0}=-2(0,-2) / \\
& x=y=0 \\
& e^{-x} \neq 0: x=2=0 \\
& x=2
\end{aligned}
$$

(ii) $\frac{d}{d}$

$$
(2,0)^{x}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =e^{-x}(x-2)+1 x e^{-x} \\
& =e^{-x}[3-x]
\end{aligned}
$$

Stat $\frac{d}{p} \frac{d y}{d x}=0$.


