

2012 Yearly Examination

FORM V

MATHEMATICS EXTENSION 1

Wednesday 29th August 2012

General Instructions

- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 117 Marks

- All questions may be attempted.

Section I-13 Marks

- Questions 1-13 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 104 Marks

- Questions 14-21 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Fourteen.
- Write your name and master on this question paper and submit it with your answers.

5A: DS	5B: TCW	5C: REP
5D: DNW	5E: LYL	5F: MLS
5G: SO	$5 \mathrm{H}:$ BR	5I: SJE

Checklist

- SGS booklets - 8 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 1000 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The factors of $3 x^{2}-10 x-8$ are:
(A) $(3 x+4)(x-2)$
(B) $(3 x-4)(x+2)$
(C) $(3 x-2)(x+4)$
(D) $(3 x+2)(x-4)$

QUESTION TWO

Which of the following graphs best represents $y=(x+2)^{2}-1$?
(A)

(B)

(C)

(D)

QUESTION THREE

The derivative of $3 x^{4}+x^{5}$ is:
(A) $\frac{3}{5} x^{5}+\frac{1}{6} x^{6}$
(B) $3 x^{3}+x^{4}$
(C) $12 x^{3}+5 x^{4}$
(D) $12 x^{3}+x^{5}$

QUESTION FOUR

The derivative of $e^{3 x}$ is:
(A) $\frac{1}{3} e^{3 x}$
(B) $e^{3 x}$
(C) $3 x e^{3 x-1}$
(D) $3 e^{3 x}$

QUESTION FIVE

When $3 \log p+\log (2 q)$ is simplified, the result is:
(A) $\log (6 p q)$
(B) $\log \left(2 p^{3} q\right)$
(C) $\log \left(3 p q^{2}\right)$
(D) $\log \left(p^{3} q^{2}\right)$

QUESTION SIX

Which of the following is the graph of $y=-\log _{2}(x+1)$?
(A)

(B)

(C)

(D)

QUESTION SEVEN

Here is a table of values for $y=2^{-x^{2}}$.

x	0	1	2
y	1	$\frac{1}{2}$	$\frac{1}{16}$

Applying Simpson's rule to these values, an estimate of $\int_{0}^{2} 2^{-x^{2}} d x$ is:
(A) $\frac{49}{96}$
(B) $\frac{49}{48}$
(C) $\frac{33}{32}$
(D) $\frac{49}{24}$

QUESTION EIGHT

The indefinite integral $\int(2 x+1)^{3} d x$ is equal to:
(A) $(2 x+1)^{4}+C$
(B) $\frac{(2 x+1)^{4}}{2}+C$
(C) $\frac{(2 x+1)^{4}}{4}+C$
(D) $\frac{(2 x+1)^{4}}{8}+C$

QUESTION NINE

The quadratic $Q(x)=a x^{2}+b x+c$ is negative definite. Which of the following is true?
(A) $a>0$ and $\Delta<0$
(B) $a<0$ and $\Delta<0$
(C) $a>0$ and $\Delta>0$
(D) $a<0$ and $\Delta>0$

QUESTION TEN

The derivative of $\sqrt{3 x^{2}-1}$ is:
(A) $\frac{x}{\sqrt{3 x^{2}-1}}$
(B) $\frac{2 x}{\sqrt{3 x^{2}-1}}$
(C) $\frac{3 x}{\sqrt{3 x^{2}-1}}$
(D) $\frac{6 x}{\sqrt{3 x^{2}-1}}$

QUESTION ELEVEN

It is known that $f^{\prime \prime}(x)=(x-1)^{2}(x+1)$.
How many inflexion points does the graph of $y=f(x)$ have?
(A) 0
(B) 1
(C) 2
(D) 3

QUESTION TWELVE

What is the value of $\int_{1}^{2} e^{x-1} d x$?
(A) $\frac{1}{2} e^{2}-e$
(B) $e-1$
(C) e
(D) 1

QUESTION THIRTEEN

Suppose that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for all real values of x. Which of the following graphs best represents $y=f(x)$?
(A)

(B)

(C)

(D)

\qquad

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION FOURTEEN (13 marks) Use a separate writing booklet. Marks
(a) Simplify $|-3|-|7|$.
(b) Determine the exact value of $\cos 150^{\circ}$.
(c) Evaluate $\log _{2} 8$.
(d) Solve $3-2 x \geq 7$.
(e) Find a and b if $(5-\sqrt{2})^{2}=a+b \sqrt{2}$.
(f) Write down the primitive of $x^{2}+3$.
(g) Express $\frac{1}{3-\sqrt{2}}+\frac{1}{3+\sqrt{2}}$ in simplest form.
(h) Determine the coordinates of the mid-point of $A B$, where $A=(3,-4)$ and $B=(7,2)$.
(a) Differentiate:
(i) $\left(3 x^{2}+4\right)^{5}$
(ii) $x \log x$
(iii) $\frac{x}{3 x+1}$
(b) Evaluate:
(i) $\int_{1}^{2} \frac{1}{x^{2}} d x$
(ii) $\int_{0}^{1} e^{2 x+1} d x$
(c)

The graph above shows the shaded region bounded by the x-axis and the parabola $y=4 x-x^{2}$. Find the area of this region.

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.
(a) Determine the gradient of the tangent to $y=2 x^{2}-x^{3}$ at the point where $x=2$.
(b) Find the coordinates of the vertex of the parabola with equation $y=(x-4)(x+1)$.
(c) Let $x=\log _{a} 5$ and $y=\log _{a} 3$. Write $\log _{a} 45$ in terms of x and y.
(d) Consider the integral $I=\int_{1}^{2} \ln x d x$.
(i) Find the approximate value of I using the trapezoidal rule with three function values. Give your answer correct to 2 decimal places.
(ii) Give a reason why the answer to part (i) is less than the exact value of I.
(e) Show that $\int_{0}^{4} \frac{x}{x^{2}+9} d x=\log \frac{5}{3}$.

QUESTION SEVENTEEN (13 marks) Use a separate writing booklet.
(a) Solve $3 \tan ^{2} \theta-5 \sec \theta+1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Approximate your answers to the nearest degree where necessary.
(b) The region between $y=\frac{1}{\sqrt{x}}$ and the x-axis, for $1 \leq x \leq e^{2}$, is rotated about the x-axis to generate a solid of revolution. Find the exact volume of this solid.
(c) (i) Differentiate $y=x e^{x}$.
(ii) Hence evaluate $\int_{-1}^{1} x e^{x} d x$.
(d) Find $\int(3 x+1) e^{3 x^{2}+2 x+1} d x$.

QUESTION EIGHTEEN (13 marks) Use a separate writing booklet.
(a) Consider the function $y=x-\log (x+1)$, where $x>-1$.

You may assume that there is a vertical asymptote at $x=-1$ with $y \rightarrow \infty$.
(i) Find and classify any stationary points.
(ii) Explain why the curve never changes concavity.
(iii) Sketch a graph of $y=x-\log (x+1)$.
(iv) Hence solve $\log (1+x) \geq x$.
(b)

The graph of $y=h(x)$, shown above for $-2 \leq x \leq 2$, consists of a straight line and two quadrants. Use geometrical formulae to evaluate $\int_{-2}^{2} h(x) d x$.
(c) (i) Find the values of a, b and c if

$$
x^{2}+1 \equiv a(x-1)^{2}+b(x-1)+c
$$

for all values of x.
(ii) Hence determine $\int \frac{x^{2}+1}{(x-1)^{2}} d x$.

QUESTION NINETEEN (13 marks) Use a separate writing booklet.
(a) (i) What is the equation of a line through $(4,-4)$ with gradient m ?
(ii) Suppose that the line in part (i) is tangent to $y=\frac{2}{x}$.

Use the discriminant to find the possible values of m.
(b) Solve the following by first reducing it to a quadratic equation.

$$
3\left(x+\frac{1}{x}\right)^{2}-16\left(x+\frac{1}{x}\right)+20=0
$$

(c) By using the substitution $u=x^{2}+1$, or otherwise, determine $I=\int \frac{2 x}{\sqrt{x^{2}+1}} d x$.
(d) In a certain geometric sequence, the sum of the first two terms is 8 and the sum of the first three terms is 26 . Find the possible values of the common ratio.

SGS Yearly 2012 Form V Mathematics Extension 1 Page 8
QUESTION TWENTY (13 marks) Use a separate writing booklet. Marks
(a) (i) Find the equation of the tangent to $y=\log x$ at the point $(a, \log a)$.
(ii) This tangent passes through the origin. Find the value of a.
(b)

The graph above shows the gradient function of the curve $y=f(x)$.
What is the value of x for which the graph of $y=f(x)$ has a maximum turning point. Justify your answer.
(c) Factorise $p^{3}+q^{3}$.
(d) The quadratic equation $2 x^{2}-3 x-4=0$ has roots p and q.
(i) Without solving the equation, determine:
(α) $p+q$
(β) $p q$
($\gamma) p^{3}+q^{3}$
(ii) Hence or otherwise find a quadratic equation with integer coefficients which has roots p^{3} and q^{3}.
(e) The function $f(t)$ is even and hence

$$
\int_{-x}^{x} f(t) d t=2 \int_{0}^{x} f(t) d t
$$

Let $F(x)=\int_{0}^{x} f(t) d t$.
By considering $F(x)-F(-x)$, and using the properties of definite integrals, show that $F(x)$ is odd.

QUESTION TWENTY ONE (13 marks) Use a separate writing booklet. Marks
(a) The function $f(x)$ is defined as follows:

$$
f(x)= \begin{cases}e^{2 x} & \text { for } x<0 \\ a x^{2}+b x+c & \text { for } x \geq 0\end{cases}
$$

It is known that $f(x)$ is continuous and differentiable for all real values of x. It is also known that $f(1)=0$.
(i) Find $f^{\prime}(x)$.
(ii) Show that $a=-3, b=2$ and $c=1$.
(iii) Sketch a graph of $y=f(x)$.
(iv) Hence determine the global maximum of $f(x)$.
(b) (i) Write a^{x} as a power of e.
(ii) Hence show that $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$.
(c) Let $g(x)=a^{x}-x^{a}$ where $a>e$ and is constant, and $x \geq 0$.

You may assume that $g(x)$ is continuous for all $x \geq 0$.
Note that $g(a)=0$.
(i) Evaluate $g(0)$.
(ii) Show that $g^{\prime}(a)>0$.
(iii) Explain why $y=g(x)$ has at least two x-intercepts.
(iv) In this part assume that $y=g(x)$ has exactly two x-intercepts. One is at $x=a$.

Let the other be at $x=b$. By considering the sign of $g^{\prime}(b)$, show that

$$
b<\frac{a}{\log a} .
$$

SGS Yearly 2012 Form V Mathematics Extension 1 Page 10

BLANK PAGE

SGS Yearly 2012 Form V Mathematics Extension 1 Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

NAME: \qquad

Class: \qquad Master:

Question One

2012
Yearly Examination
FORM V
MATHEMATICS EXTENSION 1
Wednesday 29th August 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B

$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

A
B

C

D \bigcirc

Question Four

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

A

B
C

D \bigcirc

Question Seven

A \bigcirc
BD \bigcirc

Question Eight

A \bigcirc
B \qquad $\mathrm{C} \bigcirc$
D \bigcirc

Question Nine

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten

$\mathrm{A} \bigcirc$
B
C

D \bigcirc

Question Eleven

A \bigcirc
B

C

D \square

Question Twelve

AB

Question Thirteen

ABC
D \bigcirc

Multiple Choice (with explanations of errors)

Q 1 (D)
(A) $3 x^{2}-2 x-8$,
(B) $3 x^{2}+2 x-8$,
(C) $3 x^{2}+10 x-8$
Q 2 (A)
(B) $y=(x+2)^{2}+1$,
(C) $y=(x-2)^{2}-1$,
(D) $y=(x-2)^{2}+1$
Q 3 (C)
(A) primitive,
(B) failure to multiply by index,
(D) only first term
Q 4 (D)
(A) primitive,
(B) f^{\prime} missing from $f^{\prime} e^{f}$,
(C) confused with $\frac{d}{d x}\left(x^{3}\right)$
Q 5 (B)
(A) $3 \log p \neq \log (3 p)$,
(C) $3 \log p \neq \log (3 p)$ and $\log (2 q) \neq \log \left(q^{2}\right)$,
(D) $\log (2 q) \neq \log \left(q^{2}\right)$
Q 6 (C)
(A) $y=\log _{2}(x+1)$,
(B) $y=\log _{2}(x-1)$,
(D) $y=-\log _{2}(x-1)$
Q 7 (B)
(A) $\frac{1}{6} h\left(f_{0}+4 f_{1}+f_{2}\right)$,
(C) $\frac{1}{2} h\left(f_{0}+2 f_{1}+f_{2}\right)$ (Trapezoidal rule)
(D) $\frac{2}{3} h\left(f_{0}+4 f_{1}+f_{2}\right)$
Q 8 (D)
(A) $\int 8(2 x+1)^{3} d x$
(B) $\int 4(2 x+1)^{3} d x$
(C) $\int 2(2 x+1)^{3} d x$
Q 9 (B)
(A) positive definite
(C) indefinite
(D) indefinite
Q 10 (C)
(A) $\frac{d}{d x}\left(\frac{1}{3} \sqrt{3 x^{2}-1}\right)$
(B) $\frac{d}{d x}\left(\frac{2}{3} \sqrt{3 x^{2}-1}\right)$
(D) $\frac{d}{d x}\left(2 \sqrt{3 x^{2}-1}\right)$
Q 11 (B) (A) $f^{\prime \prime}$ changes sign at $x=-1 \quad$ (C) $f^{\prime \prime}$ does not change sign at $x=1$
(D) $f^{\prime \prime}$ only has two zeros
Q 12 (B)
(A) $\int e^{x-1} d x \neq \frac{e^{x}}{x}$
(C) $e^{0} \neq 0$
(D) $\int e^{x-1} d x \neq(x-1) e^{x-2}$
Q 13 (D)
(A) $f^{\prime \prime}>0$
(B) $f^{\prime \prime}>0, f^{\prime}<0$
(C) $f^{\prime}<0$

QUESTION FOURTEEN (13 marks)
(a) $\quad|-3|-|7|=-4$
(b) $\cos 150^{\circ}=-\frac{\sqrt{3}}{2}$
(c) $\quad \log _{2} 8=3$
(d) $3-2 x \geq 7$

$$
\begin{aligned}
-2 x & \geq 4 \\
x & \leq-2
\end{aligned}
$$

(e) $\quad(5-\sqrt{2})^{2}=25-10 \sqrt{2}+2$

$$
=27-10 \sqrt{2}
$$

so $\quad a=27$ and $b=-10$.
(f) $\quad \int x^{2}+3 d x=\frac{1}{3} x^{3}+3 x+C$
[2nd mark for constant.]
(g) $\frac{1}{3-\sqrt{2}}-\frac{1}{3+\sqrt{2}}=\frac{3+\sqrt{2}-(3-\sqrt{2})}{3^{2}-2}$

$$
=\frac{2 \sqrt{2}}{7}
$$

(h) mid-point $=\left(\frac{3+7}{2}, \frac{-4+2}{2}\right)$

$$
=(5,-1)
$$

Total for Question 14: 13 Marks

QUESTION FIFTEEN (13 marks)
(a) (i) $\frac{d}{d x}\left(3 x^{2}+4\right)^{5}=5 \times\left(3 x^{2}+4\right)^{4} \times 3 x \times 2 \quad$ (chain rule)

$$
=30 x\left(3 x^{2}+4\right)^{4}
$$

(ii) $\frac{d}{d x}(x \log x)=1 \times \log x+x \times \frac{1}{x} \quad$ (product rule)

$$
=\log x+1
$$

(iii) $\frac{d}{d x}\left(\frac{x}{3 x+1}\right)=\frac{(3 x+1) \times 1-x \times 3}{3 x+1)^{2}} \quad$ (quotient rule)

$$
=\frac{1}{(3 x+1)^{2}}
$$

(b) (i) $\int_{1}^{2} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{1}^{2}$

$$
=-\frac{1}{2}+1
$$

$$
=\frac{1}{2}
$$

(ii) $\quad \int_{0}^{1} e^{2 x+1} d x=\left[\frac{1}{2} e^{2 x+1}\right]_{0}^{e}$

$$
\begin{aligned}
& =\frac{1}{2} e^{3}-\frac{1}{2} e \\
& =\frac{1}{2} e\left(e^{2}-1\right) .
\end{aligned}
$$

(c) \quad Area $=\int_{0}^{4} 4 x-x^{2} d x$

$$
\begin{aligned}
& =\left[2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{4} \\
& =\frac{32}{3}
\end{aligned}
$$

Total for Question 15: $\overline{13 \text { Marks }}$

QUESTION SIXTEEN (13 marks)

(a)

$$
\begin{aligned}
& y=2 x^{2}-x^{3} \\
& \text { so } \\
& \text { at } x=2: \quad \frac{d y}{d x}=4 x-3 x^{2} \\
& \frac{d y}{d x}=4 \times 2-3 \times 2^{2} \\
&=-4
\end{aligned}
$$

(b) $\quad x$-intercepts $=-1,4$
so vertex is at $x=\frac{-1+4}{2}=\frac{3}{2}$
where $y=-6 \frac{1}{4}$
[or any other valid method.]
(c) $\quad \log _{a} 45=\log _{a} 3^{2}+\log _{a} 5$

$$
\begin{aligned}
& =2 \log _{a} 3+\log _{a} 5 \\
& =2 y+x
\end{aligned}
$$

(d) (i) Let $y=\ln x$ then:

x	1	$\frac{3}{2}$	2
y	0	$\ln \frac{3}{2}$	$\ln 2$

$$
\text { so } \begin{aligned}
I & \doteqdot \frac{\left(\frac{1}{2}\right)}{2}\left(0+2 \times \ln \frac{3}{2}+\ln 2\right) \\
& \doteqdot 0.38 \quad \text { (to two decimal places })
\end{aligned}
$$

(ii) $y^{\prime}=\frac{1}{x}$ so $y^{\prime \prime}=-\frac{1}{x^{2}}$. Thus $y^{\prime \prime}<0$ for all x in the domain and the curve is concave down.
(e) $\quad \int_{0}^{4} \frac{x}{x^{2}+9} d x=\frac{1}{2}\left[\log \left(x^{2}+9\right)\right]_{0}^{4}$

$$
\begin{aligned}
& =\frac{1}{2}(\log 25-\log 9) \\
& =\log 5-\log 3 \\
& =\log \frac{5}{3} .
\end{aligned}
$$

QUESTION SEVENTEEN (13 marks)

(a)

$$
\text { so } \begin{aligned}
3 \tan ^{2} \theta-5 \sec \theta+1 & =0 \\
3\left(\sec ^{2} \theta-1\right)-5 \sec \theta+1 & =0 \\
3 \sec ^{2} \theta-5 \sec \theta-2 & =0 \\
(3 \sec \theta+1)(\sec \theta-2) & =0
\end{aligned}
$$

thus

$$
\sec \theta=-\frac{1}{3} \text { or } 2
$$

$\sec \theta=-\frac{1}{3}$ has no real solutions.
$\sec \theta=2$ has solutions $\theta=60^{\circ}$ or 300°.
(b) \quad Volume $=\pi \int_{1}^{e^{2}} y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{1}^{e^{2}} \frac{1}{x} d x \\
& =\pi[\log x]_{1}^{e^{2}} \\
& =\pi\left(\log e^{2}-\log 1\right) \\
& =2 \pi
\end{aligned}
$$

(c) (i) $y=x e^{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =1 \times e^{x}+x \times e^{x} \quad(\text { product rule }) \\
& =e^{x}+x e^{x}
\end{aligned}
$$

(ii) Rearrange part (i) to get

$$
\begin{aligned}
x e^{x} & =\frac{d y}{d x}-e^{x} \\
\text { so } \int_{-1}^{1} x e^{x} d x & =\int_{-1}^{1} \frac{d y}{d x}-e^{x} d x \\
& =\left[y-e^{x}\right]_{-1}^{1} \\
& =(e-e)-\left(-e^{-1}-e^{-1}\right) \\
& =2 e^{-1}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int(3 x+1) e^{3 x^{2}+2 x+1} d x & =\frac{1}{2} \int(6 x+2) e^{3 x^{2}+2 x+1} d x \\
& =\frac{1}{2} e^{3 x^{2}+2 x+1}+C
\end{aligned}
$$

[Do not penalise lack of a constant.]
Total for Question 17: $\overline{13 \text { Marks }}$

QUESTION EIGHTEEN (13 marks)

(a) (i) $y=x-\log (x+1)$
so $\quad y^{\prime}=1-\frac{1}{x+1}$

$$
=\frac{x}{x+1}
$$

thus there is a stationary point at $(0,0)$.

$$
y^{\prime \prime}=\frac{1}{(x+1)^{2}}
$$

so at $x=0, y^{\prime \prime}=1$ and it is a minimum stationary point.
(ii) $y^{\prime \prime}>0$ for all x in the domain,
thus $y^{\prime \prime}$ never changes sign,
hence the concavity never changes.
(iii)

(iv) If $\log (x+1) \geq x$
then

$$
0 \geq x-\log (x+1)
$$

which, from the graph, is only true when $x=0$.
(b) In this case, areas below the x-axis are negative,

$$
\begin{aligned}
\text { area quadrant } & =\frac{\pi}{4} \\
\text { area triangle } & =\frac{1}{2}, \\
\int_{2}^{2} h(x) d x & =-\left(\left(1-\frac{\pi}{4}\right)+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{\pi}{4}\right) \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

hence
(c) (i) Since $x^{2}+1 \equiv a(x-1)^{2}+b(x-1)+c$
at $x=1: \quad 2=c$
at $x=2: \quad 5=a+b+c$
at $x=0: \quad 1=a-b+c$
solving simultaneously,

$$
\begin{aligned}
a & =1 \\
b & =2
\end{aligned}
$$

and
(ii) From part (i):

$$
\begin{aligned}
\int \frac{x^{2}+1}{(x-1)^{2}} d x & =\int \frac{(x-1)^{2}+2(x-1)+2}{(x-1)^{2}} d x \\
& =\int 1+\frac{2}{x-1}+\frac{2}{(x-1)^{2}} d x \\
& =x+2 \log (x-1)-\frac{2}{x-1}+C
\end{aligned}
$$

[Do not penalise lack of a constant.]
Total for Question 18: $\overline{13 \text { Marks }}$

QUESTION NINETEEN (13 marks)

(a) (i) $y=m x-4(m+1)$
[or equivalent.]
(ii) Substitute $y=\frac{2}{x}$ into part (i) to get:

$$
\frac{2}{x} m x-4(m+1)
$$

or $\quad m x^{2}-4(m+1) x-2=0$
$\Delta=0$ since the two are tangent, so:

$$
\begin{array}{rlrl}
& & 16(m+1)^{2}+8 m & =0 \\
& \text { or } & 2 m^{2}+5 m+2 & =0 \\
\text { so } & (2 m+1)(m+2) & =0 \\
& \text { thus } & m & =-\frac{1}{2} \text { or }-2 .
\end{array}
$$

(b)

$$
3\left(x+\frac{1}{x}\right)^{2}-16\left(x+\frac{1}{x}\right)+20=0
$$

Put $\lambda=\left(x+\frac{1}{x}\right)$ to get:

$$
3 \lambda^{2}-16 \lambda+20=0
$$

or

$$
(3 \lambda-10)(\lambda-2)=0 \quad \text { (or equivalent.) }
$$

thus

$$
\lambda=2 \text { or } \frac{10}{3} .
$$

When $\lambda=2$

$$
x+\frac{1}{x}=2
$$

$$
x^{2}-2 x+1=0
$$

so

$$
x=1 .
$$

When $\lambda=\frac{10}{3}$

$$
\begin{aligned}
x+\frac{1}{x} & =\frac{10}{3} \\
3 x^{2}-10 x+3 & =0 \\
(3 x-1)(x-3) & =0
\end{aligned}
$$

so

$$
x=3 \text { or } \frac{1}{3} \text {. }
$$

(c) $\quad I=\int \frac{2 x}{\sqrt{x^{2}+1}} d x$

$$
\begin{aligned}
& =2 \int \frac{x}{\sqrt{x^{2}+1}} d x \\
& =2 \sqrt{x^{2}+1}+C
\end{aligned}
$$

(d)

$$
a\left(r^{2}+r+1\right)=26
$$

$$
a(r+1)=8
$$

Dividing the first by the second:

$$
\frac{r^{2}+r+1}{r+1}=\frac{13}{4}
$$

so $\quad 4 r^{2}+4 r+4=13 r+13$
or $\quad 4 r^{2}-9 r-9=0$
thus $(4 r+3)(r-3)=0$
hence $\quad r=-\frac{3}{4}$ or 3

QUESTION TWENTY (13 marks)
(a) (i) $\quad y=\log x$

$$
\begin{aligned}
& \text { so } \quad \begin{aligned}
y^{\prime} & =\frac{1}{x} \\
\text { and } y^{\prime}(a) & =\frac{1}{a}
\end{aligned},=\text {. }
\end{aligned}
$$

Thus the tangent has equation:

$$
y=\frac{1}{a} x+\log a-1 \quad \text { (or equivalent) }
$$

(ii) At the origin:

$$
\begin{array}{rlrl}
0 & =\log a-1 \\
& & & \\
\text { so } & \log a & =1 \\
& \text { or } & a & =e .
\end{array}
$$

(b) There is a stationary point at $x=-1$ where $f^{\prime}(x)=0$.

Since the sign of f^{\prime} changes from positive to negative, it is a maximum stationary point (local maximum).
(c) $p^{3}+q^{3}=(p+q)\left(p^{2}-p q+q^{2}\right)$
(d) (i) $(\alpha) \quad p+q=\frac{-b}{a}$

$$
=\frac{3}{2}
$$

(β) $\quad p q=\frac{c}{a}$

$$
=-2
$$

$$
\begin{align*}
p^{3}+q^{3} & =(p+q)\left((p+q)^{2}-3 p q\right) \\
& =\frac{99}{8}
\end{align*}
$$

(ii) $(p q)^{3}=-8$, so an equation with those roots is

$$
\begin{aligned}
x^{2}-\frac{99}{8} x-8 & =0 \\
\text { hence } \quad 8 x^{2}-99 x-64 & =0
\end{aligned}
$$

(e)

$$
\begin{aligned}
F(x)-F(-x) & =\int_{0}^{x} f(t) d t-\int_{0}^{-x} f(t) d t \\
& =\int_{0}^{x} f(t) d t+\int_{-x}^{0} f(t) d t \quad \text { (reversing the direction) } \\
& =\int_{-x}^{x} f(t) d t \quad \text { (combining regions) } \\
& =2 \int_{0}^{x} f(t) d t \\
& =2 F(x) \\
-F(-x) & =F(x)
\end{aligned}
$$

Hence that is, $F(x)$ is odd.

Total for Question 20: $\overline{13 \text { Marks }}$

QUESTION TWENTY ONE (13 marks)

(a) (i) $\quad f^{\prime}(x)= \begin{cases}2 e^{2 x} & \text { for } x<0 \\ 2 a x+b & \text { for } x>0\end{cases}$
(ii) $f(x)$ is continuous so $f(0)=\lim _{x \rightarrow 0^{-}} f(x)$
i.e. $\quad c=1$
$f(x)$ is differentiable so $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$
i.e. $\quad 2=b$
$f(1)=0$ so
$a+b+c=0$
thus $\quad a=-3$
(iii)

[Vertex coordinates may be omitted.]
(iv) The global maximum is at the vertex of the parabola, where $x=\frac{1}{3}$ thus $f_{\text {max }}=\frac{4}{3}$
(b) (i) $a^{x}=e^{x \log a}$
(ii) $y=a^{x}$

$$
\begin{aligned}
& =e^{x \log a} \\
\text { so } \quad y^{\prime} & =e^{x \log a} \times \log a \\
& =a^{x} \log a
\end{aligned}
$$

(c) For $g(x)=a^{x}-x^{a}$
(i) $\quad g(0)=a^{0}-0^{a} \quad(a>0)$

$$
=1
$$

(ii) $\quad g^{\prime}(x)=a^{x} \log a-a x^{a-1} \quad$ (by part (i))
so

$$
\begin{aligned}
g^{\prime}(a) & =a^{a} \log a-a a^{a-1} \\
& =a^{a}(\log a-1) .
\end{aligned}
$$

Now $\quad a>e$
so $\quad \log a>1$
hence $g^{\prime}(a)>0$.
(iii) $g(a)=0$ so $x=a$ is an x-intercept
$g^{\prime}(a)>0$ so there is at least one value $x=c$,
$c<a$, for which $g(c)<0$.
But $g(0)=1$ and $g(x)$ is continuous.
Thus $g(x)$ changes sign between c and 0 .
Hence $g(x)$ must have another x-intercept.
[Or any other valid argument.]

(iv) It follows that $g^{\prime}(b)<0$.
now $\quad g^{\prime}(b)=a^{b} \log a-a b^{a-1}$

$$
\begin{aligned}
& =a^{b} \log a-\frac{a}{b} \times b^{a} \\
& =a^{b} \log a-\frac{a}{b} \times a^{b} \quad(\text { since } g(b)=0) \\
& =a^{b}\left(\log a-\frac{a}{b}\right)
\end{aligned}
$$

thus $\log a-\frac{a}{b}<0$
hence

$$
b<\frac{a}{\log a}
$$

Total for Question 21: $\overline{13 \text { Marks }}$

