SYDNEY GRAMMAR SCHOOL

2012 Yearly

Examination

FORM V

MATHEMATICS EXTENSION 1

Wednesday 29th August 2012

General Instructions

- Writing time 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 117 Marks

• All questions may be attempted.

Section I – 13 Marks

- Questions 1–13 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 104 Marks

- Questions 14-21 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Fourteen.
- Write your name and master on this question paper and submit it with your answers.

5A:	DS	5B:	TCW	5C:	REP
5D:	DNW	5E:	LYL	5F:	MLS
5G:	SO	5H:	BR	5I:	SJE

Checklist

- SGS booklets 8 per boy
- Multiple choice answer sheet
- Candidature 1000 boys

Examiner DNW

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The factors of $3x^2 - 10x - 8$ are:

(A) (3x+4)(x-2)(B) (3x-4)(x+2)(C) (3x-2)(x+4)(D) (3x+2)(x-4)

QUESTION TWO

Which of the following graphs best represents $y = (x + 2)^2 - 1$?

QUESTION THREE

The derivative of $3x^4 + x^5$	is:		
(A) $\frac{3}{5}x^5 + \frac{1}{6}x^6$	(B) $3x^3 + x^4$	(C) $12x^3 + 5x^4$	(D) $12x^3 + x^5$

QUESTION FOUR

The derivative of e^{3x} is:			
(A) $\frac{1}{3}e^{3x}$	(B) e^{3x}	(C) $3xe^{3x-1}$	(D) $3e^{3x}$

QUESTION FIVE

When $3 \log p + \log(2q)$ is simplified, the result is: (A) $\log(6pq)$ (B) $\log(2p^3q)$ (C) $\log(3pq^2)$ (D) $\log(p^3q^2)$

Exam continues next page ...

QUESTION SIX

Which of the following is the graph of $y = -\log_2(x+1)$?

QUESTION SEVEN

Here is a table of values for $y = 2^{-x^2}$.

x	0	1	2
y	1	$\frac{1}{2}$	$\frac{1}{16}$

Applying Simpson's rule to these values, an estimate of $\int_0^2 2^{-x^2} dx$ is:

(A)
$$\frac{49}{96}$$
 (B) $\frac{49}{48}$ (C) $\frac{33}{32}$ (D) $\frac{49}{24}$

QUESTION EIGHT

The indefinite integral $\int (2x+1)^3 dx$ is equal to:

(A)
$$(2x+1)^4 + C$$

(B) $\frac{(2x+1)^4}{2} + C$
(C) $\frac{(2x+1)^4}{4} + C$
(D) $\frac{(2x+1)^4}{8} + C$

QUESTION NINE

The quadratic $Q(x) = ax^2 + bx + c$ is negative definite. Which of the following is true?

 (A) a > 0 and $\Delta < 0$ (B) a < 0 and $\Delta < 0$

 (C) a > 0 and $\Delta > 0$ (D) a < 0 and $\Delta > 0$

Exam continues overleaf ...

QUESTION TEN

The derivative of $\sqrt{3x^2 - 1}$ is:

(A)
$$\frac{x}{\sqrt{3x^2 - 1}}$$
 (B) $\frac{2x}{\sqrt{3x^2 - 1}}$ (C) $\frac{3x}{\sqrt{3x^2 - 1}}$ (D) $\frac{6x}{\sqrt{3x^2 - 1}}$

QUESTION ELEVEN

It is known that $f''(x) = (x-1)^2(x+1)$. How many inflexion points does the graph of y = f(x) have?

(A) 0 (B) 1 (C) 2 (D) 3

QUESTION TWELVE

What is the value of
$$\int_{1}^{2} e^{x-1} dx$$
?
(A) $\frac{1}{2}e^{2} - e$ (B) $e - 1$ (C) e (D) 1

QUESTION THIRTEEN

Suppose that f'(x) > 0 and f''(x) < 0 for all real values of x. Which of the following graphs best represents y = f(x)?

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION FOURTEEN (13 mark	(xs) Use a separate writing booklet.	Marks
(a) Simplify $ -3 - 7 $.		1
(b) Determine the exact value of cos 150	°.	1
(c) Evaluate $\log_2 8$.		1
(d) Solve $3 - 2x \ge 7$.		2
(e) Find <i>a</i> and <i>b</i> if $(5 - \sqrt{2})^2 = a + b\sqrt{2}$		2
(f) Write down the primitive of $x^2 + 3$.		2
(g) Express $\frac{1}{3-\sqrt{2}} + \frac{1}{3+\sqrt{2}}$ in simples	st form.	2
(h) Determine the coordinates of the mid	l-point of AB , where $A = (3, -4)$ and $B = (7, 2)$.	2

QUESTION FIFTEEN (13 marks) Use a separate writing booklet. Marks

(a) Differentiate:	
(i) $(3x^2+4)^5$	2
(ii) $x \log x$	2
(iii) $\frac{x}{3x+1}$	2

(b) Evaluate:

(i)
$$\int_{1}^{2} \frac{1}{x^{2}} dx$$
 2
(ii) $\int_{0}^{1} e^{2x+1} dx$ 2

Exam continues overleaf ...

SGS Yearly 2012 Form V Mathematics Extension 1 Page 6

QUESTION SIXTEEN

The graph above shows the shaded region bounded by the x-axis and the parabola $y = 4x - x^2$. Find the area of this region.

(13 marks) Use a separate writing booklet.

(a) Determine the gradient of the tangent to $y = 2x^2 - x^3$ at the point where x = 2. $\mathbf{2}$ (b) Find the coordinates of the vertex of the parabola with equation y = (x - 4)(x + 1). $\mathbf{2}$ (c) Let $x = \log_a 5$ and $y = \log_a 3$. Write $\log_a 45$ in terms of x and y. $\mathbf{2}$ (d) Consider the integral $I = \int_{1}^{2} \ln x \, dx$. (i) Find the approximate value of I using the trapezoidal rule with three function 3 values. Give your answer correct to 2 decimal places. (ii) Give a reason why the answer to part (i) is less than the exact value of I. 1 (e) Show that $\int_{0}^{4} \frac{x}{x^{2}+9} dx = \log \frac{5}{3}$. 3 QUESTION SEVENTEEN (13 marks) Use a separate writing booklet. Marks (a) Solve $3\tan^2\theta - 5\sec\theta + 1 = 0$ for $0^\circ \le \theta \le 360^\circ$. 4 Approximate your answers to the nearest degree where necessary. (b) The region between $y = \frac{1}{\sqrt{x}}$ and the x-axis, for $1 \le x \le e^2$, is rotated about the 3 x-axis to generate a solid of revolution. Find the exact volume of this solid. (i) Differentiate $y = xe^x$. 1 (c)(ii) Hence evaluate $\int_{-1}^{1} x e^x dx$. 3 (d) Find $\int (3x+1)e^{3x^2+2x+1} dx$. $\mathbf{2}$

Exam continues next page ...

3

Marks

QUESTION EIGHTEEN (13 marks) Use a separate writing booklet.

- (a) Consider the function $y = x \log(x+1)$, where x > -1. You may assume that there is a vertical asymptote at x = -1 with $y \to \infty$.
 - (i) Find and classify any stationary points.
 - (ii) Explain why the curve never changes concavity.
 - (iii) Sketch a graph of $y = x \log(x+1)$.
 - (iv) Hence solve $\log(1+x) \ge x$.

The graph of y = h(x), shown above for $-2 \le x \le 2$, consists of a straight line and two quadrants. Use geometrical formulae to evaluate $\int_{-2}^{2} h(x) dx$.

(c) (i) Find the values of a, b and c if

$$x^{2} + 1 \equiv a(x - 1)^{2} + b(x - 1) + c$$

for all values of x.

(ii) Hence determine
$$\int \frac{x^2 + 1}{(x-1)^2} dx$$
.

QUESTION NINETEEN (13 marks) Use a separate writing booklet.

- (a) (i) What is the equation of a line through (4, -4) with gradient m?
 - (ii) Suppose that the line in part (i) is tangent to $y = \frac{2}{x}$. Use the discriminant to find the possible values of m.
- (b) Solve the following by first reducing it to a quadratic equation.

$$3\left(x+\frac{1}{x}\right)^{2} - 16\left(x+\frac{1}{x}\right) + 20 = 0$$

(c) By using the substitution $u = x^2 + 1$, or otherwise, determine $I = \int \frac{2x}{\sqrt{x^2 + 1}} dx$.

(d) In a certain geometric sequence, the sum of the first two terms is 8 and the sum of the first three terms is 26. Find the possible values of the common ratio.

Exam continues overleaf ...

Marks

2	
1	
1	
1]
3	1

3

Marks

1

4

 $\mathbf{2}$

QUESTION TWENTY (13 marks) Use a separate writing booklet.

- (a)(i) Find the equation of the tangent to $y = \log x$ at the point $(a, \log a)$.
 - (ii) This tangent passes through the origin. Find the value of a.
- (b) V \hat{x} y = f'(x)

The graph above shows the gradient function of the curve y = f(x).

What is the value of x for which the graph of y = f(x) has a maximum turning point. Justify your answer.

- (c) Factorise $p^3 + q^3$.
- (d) The quadratic equation $2x^2 3x 4 = 0$ has roots p and q.
 - (i) Without solving the equation, determine:
 - (α) p + q
 - $(\beta) pq$

Let

$$(\gamma) p^{3} + q^{3}$$

- (ii) Hence or otherwise find a quadratic equation with integer coefficients which has roots p^3 and q^3 .
- (e) The function f(t) is even and hence

$$\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt.$$
$$F(x) = \int_{0}^{x} f(t) dt.$$

By considering F(x) - F(-x), and using the properties of definite integrals, show that F(x) is odd.

1

3

Marks

QUESTION TWENTY ONE (13 marks) Use a separate writing booklet. Marks

(a) The function f(x) is defined as follows:

$$f(x) = \begin{cases} e^{2x} & \text{for } x < 0\\ ax^2 + bx + c & \text{for } x \ge 0 \end{cases}$$

It is known that f(x) is continuous and differentiable for all real values of x. It is also known that f(1) = 0.

- (i) Find f'(x).
- (ii) Show that a = -3, b = 2 and c = 1.
- (iii) Sketch a graph of y = f(x).
- (iv) Hence determine the global maximum of f(x).
- (b) (i) Write a^x as a power of e.
 - (ii) Hence show that $\frac{d}{dx}(a^x) = a^x \log a$.
- (c) Let $g(x) = a^x x^a$ where a > e and is constant, and $x \ge 0$. You may assume that g(x) is continuous for all $x \ge 0$. Note that g(a) = 0.
 - (i) Evaluate g(0).
 - (ii) Show that g'(a) > 0.
 - (iii) Explain why y = g(x) has at least two x-intercepts.
 - (iv) In this part assume that y = g(x) has exactly two x-intercepts. One is at x = a. Let the other be at x = b. By considering the sign of g'(b), show that

$$b < \frac{a}{\log a}$$

End of Section II

END OF EXAMINATION

ļ	1	
	1	
	1	
1	2	

1

3

1

1

1

1

BLANK PAGE

BLANK PAGE

The following list of standard integrals may be used:

J

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

Sydney Grammar School

2012 Yearly Examination FORM V MATHEMATICS EXTENSION 1 Wednesday 29th August 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One					
A ()	В ()	С ()	D ()		
Question 7	Γwo				
A 🔾	В ()	$C \bigcirc$	D ()		
Question 7	Three				
A 🔿	В ()	$C \bigcirc$	D ()		
Question H	Four				
A 🔿	В ()	$C \bigcirc$	D ()		
Question H	Five				
A 🔾	В ()	С ()	D ()		
Question S	Six				
A 🔿	В ()	С ()	D ()		
Question S	Seven				
A 🔾	В ()	С ()	D ()		
Question Eight					
A 🔿	В ()	С ()	D ()		
Question Nine					
A 🔿	В ()	С ()	D ()		
Question Ten					
A 🔿	В ()	С ()	D ()		
Question Eleven					
A 🔿	В ()	С ()	D ()		
Question Twelve					
A 🔿	В ()	С ()	D ()		
Question Thirteen					
A 🔾	В ()	С ()	D ()		

Multiple Choice (with explanations of errors) (A) $3x^2 - 2x - 8$, (B) $3x^2 + 2x - 8$, (C) $3x^2 + 10x - 8$ **Q 1** (D) (B) $y = (x+2)^2 + 1$, (C) $y = (x-2)^2 - 1$, (D) $y = (x-2)^2 + 1$ **Q 2** (A) **Q 3** (C) (A) primitive, (B) failure to multiply by index, (D) only first term (A) primitive, (B) f' missing from $f'e^f$, (C) confused with $\frac{d}{dx}(x^3)$ **Q** 4 (D) **Q 5** (B) (A) $3\log p \neq \log(3p)$, (C) $3\log p \neq \log(3p)$ and $\log(2q) \neq \log(q^2)$, (D) $\log(2q) \neq \log(q^2)$ (A) $y = \log_2(x+1)$, (B) $y = \log_2(x-1)$, (D) $y = -\log_2(x-1)$ **Q** 6 (C) (A) $\frac{1}{6}h(f_0 + 4f_1 + f_2)$, (C) $\frac{1}{2}h(f_0 + 2f_1 + f_2)$ (Trapezoidal rule) **Q 7** (B) (D) $\frac{2}{3}h(f_0 + 4f_1 + f_2)$ (A) $\int 8(2x+1)^3 dx$ (B) $\int 4(2x+1)^3 dx$ (C) $\int 2(2x+1)^3 dx$ **Q**8 (D) **Q 9** (B) (A) positive definite (C) indefinite (D) indefinite (A) $\frac{d}{dx} \left(\frac{1}{3} \sqrt{3x^2 - 1} \right)$ (B) $\frac{d}{dx} \left(\frac{2}{3} \sqrt{3x^2 - 1} \right)$ (D) $\frac{d}{dx} \left(2\sqrt{3x^2 - 1} \right)$ **Q 10** (C) (A) f'' changes sign at x = -1 (C) f'' does not change sign at x = 1**Q 11** (B) (D) f'' only has two zeros **Q 12** (B) (A) $\int e^{x-1} dx \neq \frac{e^x}{x}$ (C) $e^0 \neq 0$ (D) $\int e^{x-1} dx \neq (x-1)e^{x-2}$ (A) f'' > 0 (B) f'' > 0, f' < 0 (C) f' < 0**Q 13** (D)

QUESTION FOURTEEN (13 marks)

(a)
$$|-3|-|7| = -4$$

(b) $\cos 150^\circ = -\frac{\sqrt{3}}{2}$
(c) $\log_2 8 = 3$
(d) $3 - 2x \ge 7$
 $-2x \ge 4$
 $x \le -2$
(e) $(5 - \sqrt{2})^2 = 25 - 10\sqrt{2} + 2$
 $= 27 - 10\sqrt{2}$
so $a = 27$ and $b = -10$.
(f) $\int x^2 + 3 \, dx = \frac{1}{3}x^3 + 3x + C$
[2nd mark for constant.]
(g) $\frac{1}{3 - \sqrt{2}} - \frac{1}{3 + \sqrt{2}} = \frac{3 + \sqrt{2} - (3 - \sqrt{2})}{3^2 - 2}$
 $= \frac{2\sqrt{2}}{7}$
(h) mid-point $= \left(\frac{3 + 7}{2}, -\frac{4 + 2}{2}\right)$
 $= (5, -1)$

Total for Question 14: $\overline{13 \text{ Marks}}$

QUESTION FIFTEEN (13 marks)

(a) (i)
$$\frac{d}{dx}(3x^2+4)^5 = 5 \times (3x^2+4)^4 \times 3x \times 2$$
 (chain rule)
= $30x(3x^2+4)^4$

(ii)
$$\frac{d}{dx}(x\log x) = 1 \times \log x + x \times \frac{1}{x}$$
 (product rule)
= $\log x + 1$

(iii)
$$\frac{d}{dx}\left(\frac{x}{3x+1}\right) = \frac{(3x+1)\times 1 - x\times 3}{3x+1)^2} \quad \text{(quotient rule)}$$
$$= \frac{1}{(3x+1)^2}$$

SGS Annual 2012 Solutions Form V Mathematics Extension 1 Page 3

(b) (i)
$$\int_{1}^{2} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{2}$$
$$= -\frac{1}{2} + 1$$
$$= \frac{1}{2}$$

(ii)
$$\int_{0}^{1} e^{2x+1} dx = \left[\frac{1}{2}e^{2x+1}\right]_{0}^{e}$$
$$= \frac{1}{2}e^{3} - \frac{1}{2}e$$
$$= \frac{1}{2}e(e^{2} - 1).$$

(c) Area =
$$\int_0^4 4x - x^2 dx$$

= $\left[2x^2 - \frac{1}{3}x^3\right]_0^4$
= $\frac{32}{3}$.

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION SIXTEEN (13 marks)

 $y = 2x^2 - x^3$

so
$$\frac{dy}{dx} = 4x - 3x^{2}$$

at $x = 2$:
$$\frac{dy}{dx} = 4 \times 2 - 3 \times 2^{2}$$
$$= -4.$$

(b)
$$x$$
-intercepts = -1, 4
so vertex is at $x = \frac{-1+4}{2} = \frac{3}{2}$
where $y = -6\frac{1}{4}$
[or any other valid method.]

(c)
$$\log_a 45 = \log_a 3^2 + \log_a 5$$
$$= 2 \log_a 3 + \log_a 5$$
$$= 2y + x$$

so
$$I \doteq \frac{\left(\frac{1}{2}\right)}{2} \left(0 + 2 \times \ln \frac{3}{2} + \ln 2\right)$$

 $\doteq 0.38$ (to two decimal places)

SGS Annual 2012 Solutions Form V Mathematics Extension 1 Page 4

(ii)
$$y' = \frac{1}{x}$$
 so $y'' = -\frac{1}{x^2}$. Thus $y'' < 0$ for all x in the domain and

the curve is concave down.

(e)
$$\int_0^4 \frac{x}{x^2 + 9} \, dx = \frac{1}{2} \left[\log(x^2 + 9) \right]_0^4$$
$$= \frac{1}{2} (\log 25 - \log 9)$$
$$= \log 5 - \log 3$$
$$= \log \frac{5}{3}.$$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION SEVENTEEN (13 marks)

(a)
$$3\tan^2\theta - 5\sec\theta + 1 = 0$$

so $3(\sec^2\theta - 1) - 5\sec\theta + 1 = 0$
 $3\sec^2\theta - 5\sec\theta - 2 = 0$
 $(3\sec\theta + 1)(\sec\theta - 2) = 0$
thus $\sec\theta = -\frac{1}{3}$ or 2
 $\sec\theta = -\frac{1}{3}$ has no real solutions.
 $\sec\theta = 2$ has solutions $\theta = 60^\circ$ or 300° .

(b) Volume =
$$\pi \int_{1}^{e^2} y^2 dx$$

= $\pi \int_{1}^{e^2} \frac{1}{x} dx$
= $\pi \left[\log x \right]_{1}^{e^2}$
= $\pi (\log e^2 - \log 1)$
= 2π .

(c) (i)
$$y = xe^x$$

 $\frac{dy}{dx} = 1 \times e^x + x \times e^x$ (product rule)
 $= e^x + xe^x$

(ii) Rearrange part (i) to get

SGS Annual 2012 Solutions Form V Mathematics Extension 1 Page 5

$$xe^{x} = \frac{dy}{dx} - e^{x}$$

so
$$\int_{-1}^{1} xe^{x} dx = \int_{-1}^{1} \frac{dy}{dx} - e^{x} dx$$
$$= \left[y - e^{x}\right]_{-1}^{1}$$
$$\boxed{\checkmark}$$

$$= (e - e) - (-e^{-1} - e^{-1})$$

= $2e^{-1}$

(d)
$$\int (3x+1)e^{3x^2+2x+1} dx = \frac{1}{2} \int (6x+2)e^{3x^2+2x+1} dx$$
$$= \frac{1}{2}e^{3x^2+2x+1} + C$$

[Do not penalise lack of a constant.]

Total for Question 17: 13 Marks

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION EIGHTEEN (13 marks)

(a) (i)
$$y = x - \log(x+1)$$

so
$$y' = 1 - \frac{1}{x+1}$$
$$= \frac{x}{x+1}$$

thus there is a stationary point at (0,0).

$$y'' = \frac{1}{(x+1)^2}$$

so at x = 0, y'' = 1 and it is a minimum stationary point.

(ii) y" > 0 for all x in the domain, thus y" never changes sign, hence the concavity never changes.

(iv) If
$$\log(x+1) \ge x$$

then $0 \ge x - \log(x+1)$

which, from the graph, is only true when x = 0.

(b) In this case, areas below the x-axis are negative,

area quadrant =
$$\frac{\pi}{4}$$

area triangle = $\frac{1}{2}$,
 $\int_{2}^{2} h(x) dx = -\left(\left(1 - \frac{\pi}{4}\right) + \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{\pi}{4}\right)$
 $= \frac{\pi}{2} - 1$

hen

$$dx = -\left(\left(1 - \frac{\pi}{4}\right) + \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{\pi}{4}\right) = \frac{\pi}{2} - 1$$

(c) (i) Since
$$x^2 + 1 \equiv a(x-1)^2 + b(x-1) + c$$

at $x = 1$: $2 = c$
at $x = 2$: $5 = a + b + c$
at $x = 0$: $1 = a - b + c$
solving simultaneously,
 $a = 1$
and $b = 2$

(ii) From part (i):

$$\int \frac{x^2 + 1}{(x-1)^2} dx = \int \frac{(x-1)^2 + 2(x-1) + 2}{(x-1)^2} dx$$

$$= \int 1 + \frac{2}{x-1} + \frac{2}{(x-1)^2} dx$$

$$= x + 2\log(x-1) - \frac{2}{x-1} + C$$

[Do not penalise lack of a constant.]

Total for Question 18: 13 Marks

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION NINETEEN (13 marks)

- y = mx 4(m+1)(a) (i) [or equivalent.]
 - (ii) Substitute $y = \frac{2}{x}$ into part (i) to get:

$$\frac{2}{x}mx - 4(m+1)$$

 $mx^2 - 4(m+1)x - 2 = 0$ or $\Delta = 0$ since the two are tangent, so: $16(m+1)^2 + 8m = 0$ $2m^2 + 5m + 2 = 0$ or

so
$$(2m+1)(m+2) = 0$$

thus $m = -\frac{1}{2}$ or -2 .

SGS Annual 2012 Solutions Form V Mathematics Extension 1 Page 7

(b)
$$3\left(x+\frac{1}{x}\right)^2 - 16\left(x+\frac{1}{x}\right) + 20 = 0.$$

Put $\lambda = (x+\frac{1}{x})$ to get:
 $3\lambda^2 - 16\lambda + 20 = 0$
or $(3\lambda - 10)(\lambda - 2) = 0$ (or equivalent.)
thus $\lambda = 2$ or $\frac{10}{3}$.
When $\lambda = 2$ $x + \frac{1}{x} = 2$
 $x^2 - 2x + 1 = 0$
so $x = 1.$
When $\lambda = \frac{10}{3}$ $x + \frac{1}{x} = \frac{10}{3}$
 $3x^2 - 10x + 3 = 0$
 $(3x - 1)(x - 3) = 0$
so $x = 3$ or $\frac{1}{3}$.
(c) $I = \int \frac{2x}{\sqrt{x^2 + 1}} dx$
 $= 2\sqrt{x^2 + 1} + C$
(d) $a(r^2 + r + 1) = 26$
 $a(r + 1) = 8$
Dividing the first by the second:
 $\frac{r^2 + r + 1}{r + 1} = \frac{13}{4}$
so $4r^2 - 9r - 9 = 0$
thus $(4r + 3)(r - 3) = 0$
hence $r = -\frac{3}{4}$ or 3

QUESTION TWENTY (13 marks)

(a) (i)
$$y = \log x$$

so $y' = \frac{1}{x}$
and $y'(a) = \frac{1}{a}$ \checkmark
Thus the tangent has equation:
 $y = \frac{1}{a}x + \log a - 1$ (or equivalent) \checkmark
(ii) At the origin:
 $0 = \log a - 1$
so $\log a = 1$
or $a = e$. \checkmark
(b) There is a stationary point at $x = -1$ where $f'(x) = 0$.
Since the sign of f' changes from positive to negative,
it is a maximum stationary point (local maximum).
(c) $p^3 + q^3 = (p+q)(p^2 - pq + q^2)$ \checkmark
(d) (i) (α) $p + q = \frac{-b}{a}$
 $= \frac{3}{2}$ \checkmark
(β) $pq = \frac{c}{a}$
 $= -2$ \checkmark
(γ) $p^3 + q^3 = (p+q)((p+q)^2 - 3pq)$
 $= \frac{99}{8}$

(ii) $(pq)^3 = -8$, so an equation with those roots is $x^2 - \frac{99}{8}x - 8 = 0$ hence $8x^2 - 99x - 64 = 0$.

(e)
$$F(x) - F(-x) = \int_0^x f(t) dt - \int_0^{-x} f(t) dt$$
$$= \int_0^x f(t) dt + \int_{-x}^0 f(t) dt \quad \text{(reversing the direction)}$$
$$= \int_{-x}^x f(t) dt \quad \text{(combining regions)}$$
$$= 2 \int_0^x f(t) dt$$
$$= 2F(x).$$
Hence
$$-F(-x) = F(x),$$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

SGS Annual 2012 Solutions Form V Mathematics Extension 1 Page 9

that is, F(x) is odd.

Total for Question 20: 13 Marks

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

 \checkmark

QUESTION TWENTY ONE (13 marks)

(a) (i)
$$f'(x) = \begin{cases} 2e^{2x} & \text{for } x < 0\\ 2ax + b & \text{for } x > 0 \end{cases}$$

(ii)
$$f(x)$$
 is continuous so $f(0) = \lim_{x \to 0^{-}} f(x)$
i.e. $c = 1$
 $f(x)$ is differentiable so $\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{+}} f'(x)$
i.e. $2 = b$
 $f(1) = 0$ so
 $a + b + c = 0$

(iii)

a = -3

[Vertex coordinates may be omitted.]

(iv) The global maximum is at the vertex of the parabola, where $x = \frac{1}{3}$ thus $f_{\text{max}} = \frac{4}{3}$

0)

(b) (i)
$$a^x = e^{x \log a}$$

(ii)
$$y = a^{x}$$

 $= e^{x \log a}$
so $y' = e^{x \log a} \times \log a$
 $= a^{x} \log a$

(c) For
$$g(x) = a^x - x^a$$

(i) $g(0) = a^0 - 0^a$ $(a > = 1$

SGS Annual 2012 Solutions Form V Mathematics Extension 1 Page 10

(ii)
$$g'(x) = a^x \log a - ax^{a-1}$$
 (by part (i))
so $g'(a) = a^a \log a - aa^{a-1}$
 $= a^a (\log a - 1)$.
Now $a > e$
so $\log a > 1$
hence $g'(a) > 0$.

(iii) g(a) = 0 so x = a is an x-intercept g'(a) > 0 so there is at least one value x = c, c < a, for which g(c) < 0. But g(0) = 1 and g(x) is continuous. Thus g(x) changes sign between c and 0. Hence g(x) must have another x-intercept. [Or any other valid argument.]

(iv) It follows that
$$g'(b) < 0$$
.
now $g'(b) = a^b \log a - ab^{a-1}$
 $= a^b \log a - \frac{a}{b} \times b^a$
 $= a^b \log a - \frac{a}{b} \times a^b$ (since $g(b) = 0$)
 $= a^b \left(\log a - \frac{a}{b}\right)$
thus $\log a - \frac{a}{b} < 0$
hence $b < \frac{a}{\log a}$

Total for Question 21: 13 Marks

DNW

 $\sqrt{}$

 $\sqrt{}$