SYDNEY GRAMMAR SCHOOL

2013 Annual Examination

FORM V MATHEMATICS EXTENSION 1

Wednesday 28th August 2013

General Instructions

- Writing time 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 117 Marks

• All questions may be attempted.

Section I – 13 Marks

- Questions 1–13 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 104 Marks

5 5

- Questions 14-21 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Fourteen.
- Write your name and master on this question paper and submit it with your answers.

A: DNW	5B: PKH	5C: RCF	5D: BDD
E: KWM	5F: FMW	5G: LRP	5H: TCW

Checklist

- SGS booklets 8 per boy
- Multiple choice answer sheet
- Candidature 150 boys

Examiner RCF

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The correct factorisation of $10y^2 - 19y + 6$ is:

- (A) (5y-2)(2y-3) (B) (5y-3)(2y-2)
- (C) (5y-2)(3-2y) (D) (3-5y)(2-2y)

QUESTION TWO

x	0	5	10
f(x)	1	5	9

The table of values above gives three data points from an experiment modelling an unknown function f(x).

Using Simpson's rule, with three function values, to approximate $\int_0^{10} f(x) dx$, gives the answer:

(A) 25 (B) 50 (C) 75 (D) 100

QUESTION THREE

Given that a quadratic function with integer coefficients has a positive non-square discriminant, which of the following statements about its zeroes is true?

- (A) Equal zeroes (B) Distinct irrational zeroes
- (C) Distinct rational zeroes (D) No real zeroes

QUESTION FOUR

For which point on the graph above is f(x) > 0, f'(x) > 0 and f''(x) < 0? (A) A (B) B (C) C (D) D

Exam continues next page ...

QUESTION FIVE

A correct primitive of $2\sqrt{x}$ is:

(A)
$$\frac{x\sqrt{x}}{3}$$
 (B) $3x\sqrt{x}$ (C) $x\sqrt{x}$ (D) $\frac{4x\sqrt{x}}{3}$

QUESTION SIX

Which of the following is not equivalent to $\log_e e^2 + \log_e \left(\frac{1}{e}\right)$?

(A) $2\log_e e - 1$ (B) $-\log_e \left(\frac{1}{e}\right)$ (C) $\log_e \left(\frac{e^3 + 1}{e}\right)$ (D) 1

QUESTION SEVEN

The derivative of
$$\frac{1}{(3-5x)^3}$$
 is:
(A) $\frac{-15}{(3-5x)^4}$ (B) $\frac{-3}{(3-5x)^2}$ (C) $\frac{15}{(3-5x)^4}$ (D) $\frac{3}{5(3-5x)^2}$

QUESTION EIGHT

Which of the following definite integrals would correctly evaluate the area shaded above, given that f(x) is an odd function?

(A)
$$\int_{-3}^{3} f(x) dx$$
 (B) $2 \int_{0}^{3} f(x) dx$
(C) $\left| \int_{-3}^{3} f(x) dx \right|$ (D) $2 \int_{-3}^{0} f(x) dx$

QUESTION NINE

The line perpendicular to y = 5 - 2x and passing through the point (1, -3) has equation:

(A) x - 2y - 7 = 0(B) 2x + y + 1 = 0(C) x - 2y + 5 = 0(D) 2y + x + 5 = 0

Exam continues overleaf ...

QUESTION TEN

Which of the following sets of statements is true for the quadratic $y = ax^2 + bx + c$ graphed above?

(A) $a > 0, c = 0, \Delta > 0$	(B) $a \neq 0, c > 0, \Delta < 0$
(C) $a < 0, c > 0, \Delta = 0$	(D) $a > 0, c > 0, \Delta > 0$

QUESTION ELEVEN

Given a > 0, which of the following functions is continuous but not differentiable at x = a?

(A) $y = \log(x+a)$	$(B) \ y = x - a $
(C) $y = ax^3$	(D) $y = \sqrt{x} + a$

QUESTION TWELVE

The quadratic equation $2x^2 - 18x + c = 0$ has one root twice the other. What is the value of c?

(A) 3 (B) 9 (C) 18 (D) 36

QUESTION THIRTEEN

The derivative of $\ln\left(\frac{1}{x}\right)$ is: (A) $-\frac{1}{x}$ (B) x (C) -e (D) $\frac{1}{x^2}$

End of Section I

Exam continues next page ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION FOURTEEN	(13 marks)	Use a separate writing booklet.	Marks
-------------------	-------------	---------------------------------	-------

(a) Simplify:

(b)

(i) $\log_e\left(\frac{1}{e^4}\right)$	1
(ii) $\sqrt{18} - \sqrt{8}$	1
Expand and simplify:	

(i) 4 - 2(x - 3)(ii) $(2\sqrt{3} + \sqrt{5})^2$ 1

(c) Find the derivative of:

(i) $x^2 + 2x + 4$

(ii)
$$\frac{1}{x}$$

(iii)
$$\log_e(2x+1)$$

- (d) Determine the exact value of $\tan 150^{\circ}$.
- (e) Find a primitive of:

(i)
$$x^2 + 2x + 4$$
 1
(ii) $\frac{4}{x}$ 1

(f)	Find the limiting sum of the geometric series $3 + \frac{3}{2} + \frac{3}{4} + \cdots$.	
-----	--	--

1

1

1

 $\mathbf{2}$

 $\mathbf{2}$

QUESTION FIFTEEN (13 marks) Use a separate writing booklet.

- (a) Solve:
 - (i) $(x-2)^2 3 = 0$
 - (ii) |x 2| = 4
 - (iii) (x-2)(x+4) > 0
- (b) Form the monic quadratic equation with roots 3 and -4.
- (c) Let $f(x) = x^3 8x$.
 - (i) Find f(1), f'(1) and f''(1).
 - (ii) Is f(x) increasing, decreasing or stationary at x = 1? Justify your answer.
 - (iii) Is f(x) concave up or down at x = 1? Justify your answer.
 - (iv) Find the equation of the tangent to y = f(x) at x = 1.
- (d) (i) Write down the discriminant of the quadratic expression $3x^2 mx + 3$.
 - (ii) For what values of m does the expression have no real zeroes?

Marks

3	
1	
1	
1	
1	
1 2	

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.

(a) Find the equation of the curve with derivative $\frac{dy}{dx} = 4x - 2$ that passes through the **2** point (2, 5).

(b) Evaluate
$$\int_{1}^{3} 2x^3 dx$$
 2

The graph above shows the parabola $y = 4x - x^2$. Calculate the area of the region enclosed between the curve and the x-axis.

- (d) Differentiate the following functions, giving your answers in a factorised form where possible:
 - (i) $(3x^2+2)^4$

(ii)
$$2x(x+7)^5$$

(iii)
$$\frac{\ln 3x}{x^2}$$

(e) Evaluate $\lim_{x \to 2} \left(\frac{x^2 - 4}{x - 2} \right)$. Show your working clearly.

[1	
	2	
[2	
ſ	2	

Marks

 $\mathbf{2}$

QUESTION SEVENTEEN (13 marks) Use a separate writing booklet.

- (a) Given the sequence $\sqrt{2}, \sqrt{18}, \sqrt{50}, \dots$
 - (i) Show that the sequence is arithmetic.
 - (ii) Find the value of the hundredth term.
 - (iii) Find the sum of the first hundred terms.
- (b) Suppose that $f(x) = 2x^2 x$.
 - (i) Show that $f(x+h) f(x) = 4xh + 2h^2 h$.
 - (ii) Use the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find f'(x) from first principles.

(c) Consider the curve with equation $y = 3x^4 + 8x^3 + 12$.

- (i) Find the coordinates of any stationary points and determine their nature.
- (ii) Find any points of inflexion, demonstrating a change in concavity at these points.
- (iii) Sketch the curve showing all the points found in parts (i) and (ii). You do NOT need to find the *x*-intercepts.

	1
[1
[1

Marks

1	

1

3	
3	
2	

QUESTION EIGHTEEN (13 marks) Use a separate writing booklet.

(a)

The diagram above shows the region enclosed by the curve $y = 3\sqrt{x}$, the x-axis and the line x = 4. What is the volume of the solid of revolution generated by rotating this region about the x-axis?

(b) Find the following indefinite integrals:

(i)
$$\int (2x+3)^5 dx$$
(ii)
$$\int \frac{x+4}{\sqrt{x}} dx$$
(2)

(iii)
$$\int \frac{2x}{4+x^2} \, dx$$

- (c) (i) Write down the equation of the line with gradient m which passes through the point P(1, -18).
 - (ii) Form a quadratic equation and use the discriminant to find the values of m for which the line through P is a tangent to the parabola $y = 2x^2 + 4x 6$.
- (d) Find the value of k if $\int_1^k \frac{1}{x^2} dx = \frac{1}{4}$.

Marks

3

1

3

QUESTION NINETEEN (13 marks) Use a separate writing booklet.

(a)

The function y = f(x) is sketched above. The points P and R are turning points and the point Q is a point of inflexion. Sketch a possible graph of the gradient function, f'(x).

- (b) (i) Sketch the curve $y = \ln(x 1)$, clearly indicating any asymptotes and any intercepts with the axes.
 - (ii) Find the equation of the normal to $y = \ln(x-1)$ at x = 3.
- (c) The equation $x^2 4x + 6 = 0$ has roots m and n.
 - (i) Without solving the equation determine:
 - $(\alpha) m + n$
 - $(\beta) mn$

$$(\gamma) \ \frac{1}{m} + \frac{1}{n}$$

- (ii) Hence, or otherwise, find a quadratic equation with integer coefficients which has roots $\frac{1}{m}$ and $\frac{1}{n}$.
- (d) Find the area bounded by the curve $y = x^2 2$, the x-axis and the lines x = 1 and x = 2.

 $\mathbf{2}$

1

 $\mathbf{2}$

1

1

 $\mathbf{2}$

QUESTION TWENTY (13 marks) Use a separate writing booklet.

- (a) Use a suitable substitution to solve $4^x 5 \times 2^{x+1} + 16 = 0$.
- (b) <u>y</u>

The graph above shows the line y = 2x - 7 and the hyperbola $y = -\frac{3}{x}$, intersecting at $x = \frac{1}{2}$ and x = 3.

The area of the shaded region can be written in the form $\frac{a}{4} + b \ln 6$, where a and b are integers. Find the values of a and b.

- (c) Solve $4\cos(2\alpha 45^\circ) 2\sqrt{3} = 0$ for the domain $0^\circ \le \alpha \le 360^\circ$.
- (d) (i) Differentiate $2x^3 \ln x$.

(ii) Hence evaluate
$$\int_{1}^{2} x^{2} \ln x \, dx$$
. 3

Marks

3

3

3

1

QUESTION TWENTY ONE (13 marks) Use a separate writing booklet.

The diagram above shows the region bounded by the curve $4x + y^2 - 24 = 0$, the *x*-axis and the line x = 2. This region is rotated around the *y*-axis to create a solid of revolution. Calculate the volume of this solid.

In the diagram above, ABC is a right-angled isosceles triangle. The point D is chosen on BC so that $\angle ADB = 60^{\circ}$, and DE is drawn perpendicular to AC. Let BD = x.

(i) Show that

(a)

$$DE = \frac{(\sqrt{3} - 1)x}{\sqrt{2}}$$

(ii) Hence, find an exact value for $\cos 15^{\circ}$.

 $\mathbf{2}$

Marks

 $\mathbf{4}$

(c) (i) The function f(t) satisfies $0 \le f(t) \le k$ for $0 \le t \le 1$, where k is a constant. **1** Explain using a sketch why $0 \le \int_0^1 f(t) dt \le k$.

then

 $\mathbf{2}$

 $\mathbf{2}$

1

(ii) By letting
$$f(t) = \frac{1}{n-t} - \frac{1}{n}$$
, show that if $n > 1$
$$0 \le \ln\left(\frac{n}{n-1}\right) - \frac{1}{n} \le \frac{1}{n-1} - \frac{1}{n}.$$

(iii) Hence show that

$$0 \le \ln 2 - \sum_{n=N+1}^{2N} \frac{1}{n} \le \frac{1}{2N}.$$
(iv) Use the fact that $\sum_{n=6}^{10} \frac{1}{n} = \frac{1627}{2520}$ to show that $6\frac{115}{252} \le \ln 2^{10} \le 7\frac{115}{252}.$

End of Section II

END OF EXAMINATION

BLANK PAGE

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

(10) a>0, a>0 (Concavellp) (Two Drotunet 2013 FIFTH FORM EXTENSION ANNUAL Y-intercept positive Zeves $10y^{2}-19y+6=(5y-2)(2y-3)$ (A)(1)2 B $\int f(x) dx = \frac{1}{6} \times 10 (1 + 4 \times 5 + 9)$ B (IZ) Let roots be & and 28 $3x = -\frac{1}{2} = \frac{1}{2}$ $2x^2 = \frac{1}{2} = \frac{1}{2}$ The Distinct A>O and Inational A-non-Square 3 ·B· · 18= % i K=3 y co-ord positive, incre and concave down increasing (+) $\left(\mathbf{C} \right)$ C=36 <u>B</u> 5 f(x) = 2x & F(x) = 2x^{3/2} V=h $= \chi \times (-1)$ logee + loge (k) = 2 loge --loge(te) = - (-1) \bigcirc loge(2+1) = loge(2+1)-loge loge (e+1) -7 y= (3-5x) $\underbrace{\mathfrak{A}}_{=}^{\ast} \underbrace{-3(3-5x)}_{=}^{\ast} \underbrace{(-5)}_{=}^{\ast} \underbrace{(-5)}$ C) $() \int_{-3}^{3} f(x) dx = 0$ (fs)dx <0 |Sfoodx = O Conect Integral is 2 fix) dx [°faddx >0 (D)Y=-2x m=(-2) m= 1/2 9 Y-(-3) =

 $(5)a)(i)(x-2)^2-3=0$ $(14)a)(1) \log_{e}(14) = (-4) /$ b)(i) 4 - 2(x-3) = 4 - 2x+6(ii) |x-2| = 4x-2=4 or x-2=(-4) x-2=±13 =10-2x/ (i) NT8 - N8 = 3/2-2/2, ンビ= 2=13 x= 6 or (-2) / (ii) (213+5)(213+5) =12 (iii) (x-2) (x-4)>0 = 12+215+215+5 =17+4/13 <>>> +2x+4 d) tan 50°=-tan 30° dy= 2x+2 =(-13) x<(4) or x>2 V (ii) Y= ± b) $a(x-\alpha)(x-\beta) = 0$ $(-3)(x+4)=0 \ (extrem: must include)$ $or <math>x^2+x-12=0 \ (extrem: quals zero)$ (iii) $\gamma = \log_e(3x+1)$ f(1) = 1 - 8 = (-7) $\partial(i)f(x) = x^3 - 8x$ ay = 22+1 $f'(0) = 3x^2 - 8$ f'(1) = 3 - 8 = (-5) $e)(i) f(x) = x^{2} + 2x + 4$ f GP a=3 r= 1/2 $3^{2} a - 5_{00} = \frac{a}{1 - r} = \frac{3}{1 - k}$ $f(x) = \frac{x^3}{3} + 3x^2 + 4x + C$ f"(1)=6 f''(x) = 65C(ii) f(1) < 0 : Curve is decreasing at x = 1/ $(ii)f(x) = \underbrace{4}{5}$ (iii) f'(1)>0 : Curre is concard up at x=1 $=4x^{-1}$ $=(x)=4\ln |x|+c$ (iv) m = (-5) (1, -7): Tonget y+7=-5(x-1) V 5x+y+2=0 (or y=-5x-2) d)(i) $\Delta = b^a - 4ac$ $=(-m)^2-4\times3\times3$ $= m^2 - 36$. (ii) No real zeroes $\Delta < O$. (m-6)(m+6)<0 (-6) < m<6

(6) a) dy= 45c-2 b) ∫dx3dx Y= 2x2-2x+C $= \begin{bmatrix} 2x^4 \\ 4 \end{bmatrix}^3 /$ Griven (2,5) 5=2×2-2×2+C $= \frac{1}{2} \left(3^{+} - 1^{4} \right)$ 5= 8-4+C = 4Ò $y = 2x^2 - 2x +$ $dx_{i} = (3x^{2}+2)^{4}$ $4x-x^2dx = \left[2x^2-x_3^3\right]$ grain Rule dy-4(3x72)×6× (32-64)-0 $=24x(3x+2)^{3}$ = <u>a6</u> -<u>64</u> = <u>32</u> <u>n</u> (or 10³ <u>n</u>²) $(ii) \gamma = \lambda x (x_{4} - 7)^{5}$ Pioduct Rule dy=2(x+7)5+2x×5(x+7)/ ~= 2(x+7) x+7 +5x. =2(x+7)(6x+7) e) $\lim_{x \to 2} \left(\frac{x-t}{x-2} \right)$ (iii) y= <u>ln3x</u> = Lin ((x+2) x=>2 (Tre Quotiet Rule $\frac{dy}{dx} = \frac{x^2 x^3}{2x} - \frac{\ln 3x x^2 x}{2x} / \frac{1}{2x}$ $= \frac{x - 2x \ln 3x}{x^4}$ $\frac{1-2h3x}{x^3}$

Fa) 5, 18, 50 $b)(0)f(x) = 2x^{2}-x$ 12, 3.12, 5.12 $f'_{36+h} = 2(x_{2+h})^2 - (x_{2+h})$ $=2(x^{2}+2xh+h^{2})-x-h$ = $2x^{2}+4xh+2h^{2}-x-h$ (1) t3-t2= 5/2-3/2 =212 t_t,= 312-12 $f(x+h) - f(x) = 4xh + 2h^{2} - h$ = 212 $(ii) f(x) = \lim_{h \to 0} \left(\frac{4xh + 2h^2}{h} \right)$: AP a= Ja d= 2/2' h>01 (ii) $t_{10} = a + 99d$ = Lim (4x+2h-1) =12419812 = 199,52 Ax- $(11) S_{100} = \frac{100}{2} (12+199\sqrt{2})$ $S_n Z(at)$ = 10000/2 c) $q(x) = 3x^{4} + 8x^{3} + 12$ Passible pts of inflection x=0 or x=-43v g(0)=12 a(-4)-(i) $q'(x) = 12x^3 + 24x^2$ =12x2(x+2) Stat pto g'(x) = 0:: x = 0 or x = (-2)9(0)=12 9(-2)=3×16-64+12 Stat pts (0,12) and (-2,-4) (012) is stationary pour x -3 -2 -1 0 g(x)-108 0 12 0 36. x -2 -3 -1 \bigcirc ··· (-2,-4) Minimum turning point (0,12) Stationary pout of inflection hence (-3, 25) (ii) $q''(x) = 36x^2 + 48x$ point of inflection too = 12x(3x+4)

18 a) V = π $d \int \frac{1}{2c^2} dx =$ y" dx $= \pi \int_{0}^{t} qx dx$ $= \pi \left[\frac{qx^{2}}{2} \right]_{0}^{t}$ 721 n3 $\int (2x+3)^{5} dx = \frac{(2x+3)^{6} + C}{6 \times 2}$ = $\frac{1}{12} (2x+3)^{6} + C / 2$ b) (j) k=33 $(ii) \int \frac{x+4}{\sqrt{2}} dx = \int x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} dx \sqrt{3}$ $=\frac{2x^{3/2}}{3}+8x^{1/2}+C/$ $= \frac{2}{3}(\sqrt{x})^{3} + 8\sqrt{x} + C$ (iii) $\int \frac{dx}{4+x^{2}} dx = \ln(4+x^{2}) + C$ c)() y+18= m(x-1) Y= mx-m-18 (ii) Line meets parabola - solve simultaneously $2x^{2}+4x-6 = mx-m-18$ $2x^{2} - mx + 4x + 12 + m = 0$ $2x^{2} + (4 - m)x + (12 + m) = 0$ $\Delta = (4-m)^a - 4 \times 2 \times (12+m)$ $= 16 - 8m + m^{2} - 96 - 8m$ = mª-16m-80 Jangener > △=0. mª-16m-80=0 (m-20)(m+4)=0m=20 or (-4)

 $A = \begin{bmatrix} x^{2} \\ x^{2}$

 $(20)_{a})_{4}^{2}-5\times2^{2}+16=0$ b) Area betree aures $Let n=2^{x} (2^{x})^{2} + 10 \times 2^{x} + 16 = 0$ $Let n=2^{x} (2^{x})^{2} + 10 \times 2^{x} + 16 = 0$ (n-8)(n=2) = 0 $A = \int_{L}^{3} \left(-\frac{3}{5c}\right) - \left(23c - 7\right) dx$ 4=8 or 2 2x=80R2 $\int_{k}^{3} 7 - 2x - 3z \, dx$ DC=3 or $= \left[7x - x^2 - 3\ln x \right]_k^3$ c) 4co (2x-45°)-213=0 $C_{0}(2x-45) = \sqrt{3}$ =(21-9-3h3)-(z-4-3hk), = 12-3h3-12+3hk 0 < < < 360° = 35 ∓+3(hk-h3) $0^{\circ} \in 2^{\times} \leq 720^{\circ}$ -45° € (2x-45°) ≤ 675° =35+366 =35-3h6 ', a=35 b=(-3) √ 2x-45°= -30°, 30°, 330°, 390° 2x = 15°, 75°, 375°, 435° x = 75°, 375°, 1875°, 2175° v Integrat g both sides wit x d) y=2x3 log x $\left[2x^{3}\log x\right]^{a} = \int 2x^{a} dx + \int 6x^{2}\log x dx$ $dy = 6x^2 \log x + 2x \times (\frac{1}{x})$ $= dx^{2}(1+3\log x)$ $\therefore \int x^2 \log x \, dx = \frac{1}{6} \left[16 \log 2 - 2 \log 1 - \int 2 x \, dx \right]$ $\int_{\infty}^{\infty} (\partial x \log x) = \partial x c^2 + 6 x c^2 \log x /$ * [[[long 2 - [2x3]]2 \$ [16 log 2 - 16 + 23] \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

(2) $V = \int_{-\pi}^{+} \frac{1}{2} \frac$ (Tox'dy (Volof Cyhradina Hble) $x = 6 - \frac{1}{4}$ $x^2 = 36 - 3y^2 + \frac{1}{4}$ $V = \pi \int_{0}^{\pi} 36 - 3y^{2} + \frac{y^{4}}{16} dy - 16\pi$ $=\pi \left[36y - y^{3} + y^{5} \right]_{0}^{4} - 16\pi /$ $=\left(144-64+45)\pi-16\pi$ 6477 + 457 $= 320\pi + 64\pi$ = 384π μ^{3}

at x=2 y= 24-8=16 y=4 (y>0) (Voloj Tyhide $x = 6 - \frac{1}{4}$ $x^{2} = 36 - 3y^{2} + \frac{1}{4}$ $V = \pi \int_{0}^{1} 36 - 3y^{2} + \frac{y^{4}}{16} dy - 16\pi$ V convect Integrand = TT [36y-y3+y574-16TT / Conect Primitive = (144-64+45)T-16T = 6417+45 $= 320\pi + 6FT$ $= 384\pi = 10^{3} (= 76^{4} T) \sqrt{4}$

() Sf(t) at represents shaded Redangular area 1×k=k ... 0 6 (A) at ≤ k / Kinge (11) $f(t) = \frac{1}{n-t} - \frac{1}{n}$ if n > 1 f(t) has its maximum value in the interval $0 \le t \le 1$ since The $0 \leq \int_{n-t}^{t} -\frac{1}{n} dt \leq \frac{1}{n-1} - \frac{1}{n}$ from (i) $\sqrt{\frac{1}{n-1}}$ 0 < [-h(n+)-+] < ----- $0 \leq (-h(h-1)-h) - (-hn-0) \leq \frac{1}{h-1} - \frac{1}{h}$ $0 \leq \ln n - \ln (n-1) - \ln \leq \ln - \ln 1$ $0 \leq \ln (\frac{n}{n-1}) - \ln \leq \frac{1}{n-1} - \ln 1$ (ii) Sun result (ii) from n=N+1 to n=2N Telescoppy the series and applying by his. $0 \leq \ln \left(\frac{N^{H}}{N} \times \frac{N^{H}}{N^{H}} \times \dots \times \frac{2N^{-1}}{N^{-1}} \times \frac{2N}{2N^{-1}}\right) - \sum_{n=1}^{N} n \leq N - \frac{1}{2N}$ $0 \le \ln 2 - \sum_{n=1}^{2N} h \le \frac{1}{2N}$

(M) putting N=5 0 < h2 - 2 K < 6 0 ≤ h2 - 1627 ≤ 10 $\frac{1627}{3520} \le \ln 2 \le \frac{1627}{3520} + \frac{252}{2520}$ (x10) $\frac{1627}{352} \le 10h2 \le 1879}{252}$ 6 5 < h(2') < 7 15