NAME

MASTER

SYDNEY GRAMMAR SCHOOL

2015 Annual Examination

FORM V

MATHEMATICS EXTENSION 1

Monday 31st August 2015

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

• All questions may be attempted.

Section I – 9 Marks

- Questions 1–9 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 91 Marks

- Questions 10–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

5A: DS	5B: RCF	5C:	SO
5E: DWH	5F: REJ	5G:	SJ

Checklist

- SGS booklets 7 per boy
- Multiple choice answer sheet
- Candidature 124 boys

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Ten.

5B: RCF	5C: SO	5D: DNW
5F: REJ	5G: SJE	5H: KWM

Examiner DS

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The trapezoidal rule is used to approximate a definite integral. If n + 1 function values are used, then we are summing the areas of how many trapezia?

(A) n - 1(B) n(C) n + 1(D) n + 2

QUESTION TWO

What is the gradient of the curve $y = -e^{-x}$ at its y-intercept?

(A) e
(B) -e
(C) 1
(D) -1

QUESTION THREE

What is the equation of the horizontal asymptote of the curve $y = \frac{x-2}{x-3}$?

(A) y = 1(B) $y = \frac{2}{3}$ (C) x = 3(D) x = 2

QUESTION FOUR

The definite integral $I = \int_{-2}^{2} \sqrt{4 - x^2} \, dx$ can be evaluated without finding a primitive of $\sqrt{4 - x^2}$. What is the exact value of I?

- (A) 4π
- (B) 2π
- (C) π
- (D) $\frac{\pi}{2}$

Exam continues next page ...

QUESTION FIVE

The diagram above shows the region bounded by the parabola $y = x^2$, the line y = 1 and the y-axis. What is the volume of the paraboloid formed by rotating this region about the y-axis?

- (A) $\frac{\pi}{5}$
- (B) $\frac{\pi}{3}$
- (C) $\frac{\pi}{2}$
- (D) $\frac{2\pi}{3}$

QUESTION SIX

A curve has equation y = f(x). If f'(2) < 0 and f''(2) > 0, which diagram below shows the curve as it passes through the point where x = 2?

QUESTION SEVEN

By the chain rule, the derivative of $(x^2 + 1)^3$ is $6x(x^2 + 1)^2$. Which function is a primitive of $12x(x^2+1)^2$?

(A) $2x(x^2+1)^3$ (B) $2(x^2+1)^3$ (C) $\frac{1}{2}x(x^2+1)^3$ (D) $\frac{1}{2}(x^2+1)^3$

QUESTION EIGHT

Which expression is equivalent to $\frac{\sin\theta}{1+\cos\theta}$?

(A)
$$\operatorname{cosec} \theta + \cot \theta$$

(B) $\frac{1 - \sin \theta}{\cos \theta}$
(C) $\sin \theta + \tan \theta$
(D) $\frac{1 - \cos \theta}{\sin \theta}$

 $\sin \theta$

QUESTION NINE

For x > 0, which expression is NOT equivalent to $e^{\ln x}$?

(A)
$$\ln (e^{x})$$

(B) $x^{\ln e}$
(C) $(\ln e)^{x}$
(D) $\frac{1}{e^{\ln \frac{1}{x}}}$

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION TEN (13 marks) Use a separate writing booklet.

- (a) Differentiate:
 - (i) $(5-2x)^4$ 1
 - (ii) xe^{2x}

(iii)
$$\log_e \sqrt{x}$$

(b) Find:

(i) $\int \frac{1}{\sqrt{x}} dx$	1
(ii) $\int \frac{2}{3x+4} dx$	1

(iii)
$$\int \frac{2}{(3x+4)^2} dx$$
 2

(c) Evaluate
$$\int_{e}^{e^3} \frac{1}{x} dx$$
. 2

(d) The function f(x) is defined by:

$$f(x) = \begin{cases} kx & \text{for } x < 2\\ x^2 + 6 & \text{for } x \ge 2 \end{cases}$$

For what value of k is f(x) continuous at x = 2?

Exam continues next page ...

Marks

 $\mathbf{2}$

2

 $\mathbf{2}$

QUESTION ELEVEN (13 marks) Use a separate writing booklet.

- (a) Find, in terms of k, the coordinates of the point that divides the interval joining A(-2,-1) to B(3,6) in the ratio k: 1-k.
- (b) Solve for x:

$$\frac{5}{x-1} \ge 1$$

(c) If p is a positive integer, find an expression for the number of terms in the sequence

$$p, p+2, p+4, \ldots, 3p.$$

(d) (i) Expand $(e^{2x} + 2)^2$.

(ii) Hence evaluate
$$\int_0^1 (e^{2x} + 2)^2 dx$$
.

(e) (i) Show that
$$\frac{1}{x+2} - \frac{1}{x+3} = \frac{1}{(x+2)(x+3)}$$
.

(ii) Hence find the exact value of
$$\int_{-1}^{1} \frac{1}{(x+2)(x+3)} dx$$
. 2

QUESTION TWELVE (13 marks) Use a separate writing booklet.

- (a) A function has second derivative $y'' = 3x^3(x+3)^2(x-2)$. Determine the x-coordinates **2** of any points of inflexion on its graph.
- (b) (i) Sketch the curve $y = 8x 4x^3$, clearly indicating the *x*-intercepts. (There is no need to find the stationary or inflexion points.)
 - (ii) Find the total area enclosed by the curve and the x-axis.
- (c) A function f(x) is defined by the equation $f(x) = x + \frac{4}{x}$.
 - (i) Show that the function is odd.
 - (ii) Find f'(x).
 - (iii) Show that the function has stationary points at x = 2 and x = -2.
 - (iv) Classify the two stationary points.
 - (v) Notice that f(-2) = -4 and f(2) = 4. So f(-2) < f(2). Explain why this fact does not contradict the results in part (iii).

Marks

3

 $\mathbf{2}$

1

1

Marks

 $\mathbf{2}$

3

QUESTION THIRTEEN (13 marks) Use a separate writing booklet.

- (a) Use Simpson's rule with five function values, as well as appropriate log laws, to show that $\int_{1}^{5} \ln x \, dx \doteq \ln 57$.
- (b) A curve has gradient function $f'(x) = 6x^2 + px + q$. The curve has a stationary point at (2, -4) and its *y*-intercept is 14. Find the values of *p* and *q*.
- (c) Suppose that the limiting sum of the series $v + v^2 + v^3 + \cdots$ is w.
 - (i) Write down a formula for w in terms of v.
 - (ii) Hence find v in terms of w.
 - (iii) Explain why the limiting sum of the series $w w^2 + w^3 \cdots$ is v. (You may assume that |v| and |w| are both less than one.)

QUESTION FOURTEEN (13 marks) Use a separate writing booklet.

(a) Solve for x:

$$\log_3 x + 2 = \log_3(x+2)$$

(b)

A <u>closed</u> rectangular box has dimensions x cm, y cm and h cm, as shown in the diagram above. It is to be made from 300 cm^2 of thin sheet metal, and the perimeter of its base is to be 40 cm.

(i) Show that the volume V of the box is given by

 $V = 150h - 20h^2.$

- (ii) Hence find the dimensions of the box that meets all the requirements and has the maximum possible volume.
- (c) One root of the quadratic equation $ax^2 + 2bx + c = 0$ is the reciprocal of the square of the other root.

Prove that $a^3 + c^3 + 2abc = 0$.

Exam continues next page ...

	1	
ſ	2	
Γ	1	

5

4

4

4

Marks

QUESTION FIFTEEN (13 marks) Use a separate writing booklet. (a)

The shaded region \mathcal{R} is bounded by the curves $y = x^2 + 4$ and $y = x^3$, and the y-axis, as shown in the diagram above.

- (i) Calculate the area of \mathcal{R} .
- (ii) Determine the volume of the solid of revolution formed when \mathcal{R} is rotated about the *x*-axis.
- (b) The function y = P(x) is defined by P(x) = (x p)(x q)(x r), where p, q and r are distinct real numbers.
 - (i) Sketch a possible graph of y = P(x). (Do NOT attempt to find the stationary or inflexion points.)
 - (ii) Expand P(x) and write it in the form $ax^3 + bx^2 + cx + d$.
 - (iii) By considering the equation P'(x) = 0, or otherwise, prove that

$$(p+q+r)^2 > 3(pq+qr+rp).$$

3	
4	

г

2	

	2	
Γ	2	1

Exam continues overleaf ...

Marks

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.

- (a) For any real number x, let [x] denote the largest integer less than or equal to x. For example $[2 \cdot 9] = 2$ and [3] = 3.
 - (i) Sketch the graph of y = [x] for $0 \le x \le 5$.

(ii) Find the value of
$$\int_0^5 [x] dx$$
. 1

- (b) Consider the function $y = \frac{\ln x}{x^n}$, where n > 1.
 - (i) State the domain of the function.
 - (ii) Show that there is a stationary point at $x = e^{\frac{1}{n}}$.
 - (iii) Determine the nature of the stationary point.
 - (iv) Sketch the graph of the function.(There is no need to find the coordinates of the point of inflexion.)
 - (v) Explain why $\frac{\ln x}{x^n} < \frac{1}{ne}$ for $x > e^{\frac{1}{n}}$.

(vi) Deduce that
$$e^{\frac{1}{n-1}} > \frac{n}{n-1}$$
.

End of Section II

END OF EXAMINATION

Marks

 $\mathbf{2}$

1	
2	
2	
2	

1

 $\mathbf{2}$

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

$$\text{NOTE : } \ln x = \log_e x, \quad x > 0$$

NAME:

SYDNEY GRAMMAR SCHOOL

2015 Annual Examination FORM V MATHEMATICS EXTENSION 1 Monday 31st August 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One			
A 🔿	В ()	С ()	D ()
Question 7	Гwo		
A 🔿	В ()	С ()	D ()
Question 7	Гhree		
A 🔿	В ()	С ()	D ()
Question I	Four		
A 🔿	В ()	С ()	D ()
Question I	Five		
A 🔾	В ()	С ()	D ()
Question Six			
A 🔾	В ()	С ()	D ()
Question Seven			
A 🔿	В ()	С ()	D ()
Question Eight			
A 🔿	В ()	С ()	D ()
Question Nine			
A 🔿	В ()	С ()	D ()

SOLUTIONS TO FORM 5 Ext | ANNUAL 2015 (Total: 100) (iii) $2 \int (3x+4)^{-2} dx$ B (1) n trapezia (2) $y' = e^{-x}$ $= \frac{2(3x+4)^{-1}}{-1(3)} + c$ C Á (3) y = 1 $(4) \frac{1}{2} \pi (2)^2 = 2\pi$ $= \frac{-2}{3(3x+4)} + c$ (5) $\pi \left(\begin{array}{c} y \ dy \end{array} \right) = \frac{\pi}{2}$ (6) Decreasing and concave up. (A (d) For continuity at x = 2 $(7) 2(x^{2}+1)^{3}$ B $k(z) = z^2 + 6$ $(8) \frac{\sin \theta}{1 + \cos \theta} \cdot \frac{1 - \cos \theta}{1 - \cos \theta}$ 2K= 10 $= \frac{\sin\theta(1-\cos\theta)}{\sin^2\theta}$ D k=5(c) [mx]e $(9)(lne)^{x} = 1^{x}$ (C = lne³ - lne ONE EACH = 3 me - me $(10)(a)(i) - 8(5-2x)^3 \checkmark$ (ii) vu' + uv'= $e^{2x} \cdot 1 + x \cdot 2e^{2x}$ 2 $= e^{2x}(1+2x)$ $(iii)\frac{d}{dx}\left(\frac{1}{2}\ln x\right)^{2}=\frac{1}{2\pi}$ $(b)(i) \int x^{-\frac{1}{2}} dx$ $-2x^{\frac{1}{2}}+c$ $= 2\sqrt{x} + c$ (ii) $\frac{2}{3} \left(\frac{3}{3x+4} dx \right)$ $=\frac{2}{3}\ln(3x+4)+c$

(i) (a)
$$\left(\frac{3k-2(1-k)}{k+(1-k)}, \frac{6k-(1-k)}{k+(1-k)}\right)$$

$$= \left(5k-2, 7k-1\right)$$
(b) Multiply both sides by $(x-1)^{k}$,
 $5(x-1) \gg (x-1)^{k}$, $x \neq 1$
 $(x-1)(x-1-5) \leq 0$
 $(x-1)(x-6) \leq 0$
 $1 \leq x \leq 6$
(c) Let $T_{n} = 3p$
 $1 \leq x \leq 6$
(c) Let $T_{n} = 3p$
 $2(n-1) = 2p$
 $n = p+1$
So thus are $(p+1)$ forms.
(d) (i) $(e^{2x}+2)^{k} = e^{4x} + 4e^{2x} + 4$
 $(ii) \int_{0}^{1} (e^{4x} + 4e^{2x} + 4) dx$
 $= \left[\frac{1}{4}e^{4x} + 2e^{2x} + 4x\right]_{0}^{1}$
 $= \frac{1}{4}e^{4x} + 2e^{2x} + 4x = \frac{1}{2}$
 $(ii) LHS = \frac{x+3}{4} - (\frac{1}{4}+2+0)$
 $= \frac{1}{4}(e^{4} + 8e^{2} + 7)$
(c) (i) LHS = $\frac{x+3}{(x+2)(x+3)}$
 $= \frac{2 (HS)}{(i) (x^{1}-2) - ln(x+3)} = \frac{1}{1}$
 $(ii) \int_{1}^{1} (\frac{(x+2)}{(x+2) - x+3} - 1) dx$
 $= \left[\frac{1}{4}n(\frac{x+2}{x+3})\right]_{-1}^{1}$
 $= \left[\frac{1}{4}n(\frac{x+2}{x$

(15)(a)(i)
Area =
$$\int_{0}^{2} (x^{2}+4-x^{3}) dx$$

= $\left[\frac{1}{3}x^{3}+4x-\frac{1}{4}x^{4}\right]_{0}^{2}$
= $\frac{8}{3}+8-4$
= $\frac{20}{5}u^{2}$
(ii)
Volume = $\Pi \int_{0}^{2} ((x^{2}+4)^{2}-(x^{3})^{2}) dx$
= $\Pi \int_{0}^{2} ((x^{2}+4)^{2}-(x^{3})^{2}) dx$
= $\Pi \int_{0}^{2} ((x^{2}+4)^{2}-(x^{3})^{2}) dx$
= $\Pi \int_{0}^{2} (x^{4}+8x^{2}+16-x^{6}) dx$
Now,
= $\Pi \int_{0}^{2} (x^{4}+8x^{2}+16-x^{6}) dx$
Now,
= $\Pi \int_{0}^{2} (x^{5}+\frac{8}{3}x^{3}+46x-\frac{1}{7}x^{7}) dx$
= $\Pi \int_{0}^{3} x^{5}+\frac{8}{3}x^{3}+46x-\frac{1}{7}x^{7}) dx$
= $\Pi (\frac{32}{5}+\frac{64}{5}+32-\frac{128}{7})$
= $\frac{4352\Pi}{105}u^{3}$
(i) $H(x) = 3x^{2}-2(p+q+r)x + (p+q+r)x + p)$
From (4), it follows that
(p+q+r)^{2} > pq+qr+r + 2(pq+qr+r)p).
(b) (i)
 $\sqrt{p} = \frac{4}{x} \int_{0}^{3} y = P(x)$
(ii) Expanding, we have
 $P(x) = x^{2} - (p+q+r)x^{2} + (pq+qr+r)x + pr)$
so $P^{1}(x) = 3x^{2} - 2(p+q+r)x + (pq+qr+r)$
The equation $P^{1}(x) \ge 0$ has two
distinct real roots (a and β in the diagram above),
so $A > 0$
(so $(p+q+r)^{2} > 3(pq+qr+r) > 0$
so $(p+q+r)^{2} > 3(pq+qr+r) > 0$

ł

