Sydney Grammar School

2015 Annual Examination

FORM V

MATHEMATICS EXTENSION 1

Monday 31st August 2015

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

- All questions may be attempted.

Section I-9 Marks

- Questions 1-9 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 91 Marks

- Questions 10-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Ten.
5A: DS
5B: RCF
5C: SO
5D: DNW
5E: DWH
5F: REJ
5G: SJE
5 H : KWM

Checklist

- SGS booklets - 7 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 124 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The trapezoidal rule is used to approximate a definite integral. If $n+1$ function values are used, then we are summing the areas of how many trapezia?
(A) $n-1$
(B) n
(C) $n+1$
(D) $n+2$

QUESTION TWO

What is the gradient of the curve $y=-e^{-x}$ at its y-intercept?
(A) e
(B) $-e$
(C) 1
(D) -1

QUESTION THREE

What is the equation of the horizontal asymptote of the curve $y=\frac{x-2}{x-3}$?
(A) $y=1$
(B) $y=\frac{2}{3}$
(C) $x=3$
(D) $x=2$

QUESTION FOUR

The definite integral $I=\int_{-2}^{2} \sqrt{4-x^{2}} d x$ can be evaluated without finding a primitive of $\sqrt{4-x^{2}}$. What is the exact value of I ?
(A) 4π
(B) 2π
(C) π
(D) $\frac{\pi}{2}$

QUESTION FIVE

The diagram above shows the region bounded by the parabola $y=x^{2}$, the line $y=1$ and the y-axis. What is the volume of the paraboloid formed by rotating this region about the y-axis?
(A) $\frac{\pi}{5}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$

QUESTION SIX

A curve has equation $y=f(x)$. If $f^{\prime}(2)<0$ and $f^{\prime \prime}(2)>0$, which diagram below shows the curve as it passes through the point where $x=2$?
(A)

(B)

(C)

(D)

QUESTION SEVEN

By the chain rule, the derivative of $\left(x^{2}+1\right)^{3}$ is $6 x\left(x^{2}+1\right)^{2}$. Which function is a primitive of $12 x\left(x^{2}+1\right)^{2}$?
(A) $2 x\left(x^{2}+1\right)^{3}$
(B) $2\left(x^{2}+1\right)^{3}$
(C) $\frac{1}{2} x\left(x^{2}+1\right)^{3}$
(D) $\frac{1}{2}\left(x^{2}+1\right)^{3}$

QUESTION EIGHT

Which expression is equivalent to $\frac{\sin \theta}{1+\cos \theta}$?
(A) $\operatorname{cosec} \theta+\cot \theta$
(B) $\frac{1-\sin \theta}{\cos \theta}$
(C) $\sin \theta+\tan \theta$
(D) $\frac{1-\cos \theta}{\sin \theta}$

QUESTION NINE

For $x>0$, which expression is NOT equivalent to $e^{\ln x}$?
(A) $\ln \left(e^{x}\right)$
(B) $x^{\ln e}$
(C) $(\ln e)^{x}$
(D) $\frac{1}{e^{\ln \frac{1}{x}}}$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION TEN (13 marks) Use a separate writing booklet. Marks
(a) Differentiate:
(i) $(5-2 x)^{4}$
(ii) $x e^{2 x}$
(iii) $\log _{e} \sqrt{x}$
(b) Find:
(i) $\int \frac{1}{\sqrt{x}} d x$
(ii) $\int \frac{2}{3 x+4} d x$
(iii) $\int \frac{2}{(3 x+4)^{2}} d x$
(c) Evaluate $\int_{e}^{e^{3}} \frac{1}{x} d x$.
(d) The function $f(x)$ is defined by:

$$
f(x)= \begin{cases}k x & \text { for } x<2 \\ x^{2}+6 & \text { for } x \geq 2\end{cases}
$$

For what value of k is $f(x)$ continuous at $x=2$?

QUESTION ELEVEN (13 marks) Use a separate writing booklet.
(a) Find, in terms of k, the coordinates of the point that divides the interval joining $A(-2,-1)$ to $B(3,6)$ in the ratio $k: 1-k$.
(b) Solve for x :

$$
\frac{5}{x-1} \geq 1
$$

(c) If p is a positive integer, find an expression for the number of terms in the sequence

$$
p, p+2, p+4, \ldots, 3 p
$$

(d) (i) Expand $\left(e^{2 x}+2\right)^{2}$.
(ii) Hence evaluate $\int_{0}^{1}\left(e^{2 x}+2\right)^{2} d x$.
(e) (i) Show that $\frac{1}{x+2}-\frac{1}{x+3}=\frac{1}{(x+2)(x+3)}$.
(ii) Hence find the exact value of $\int_{-1}^{1} \frac{1}{(x+2)(x+3)} d x$.

QUESTION TWELVE (13 marks) Use a separate writing booklet. Marks
(a) A function has second derivative $y^{\prime \prime}=3 x^{3}(x+3)^{2}(x-2)$. Determine the x-coordinates of any points of inflexion on its graph.
(b) (i) Sketch the curve $y=8 x-4 x^{3}$, clearly indicating the x-intercepts.
(There is no need to find the stationary or inflexion points.)
(ii) Find the total area enclosed by the curve and the x-axis.
(c) A function $f(x)$ is defined by the equation $f(x)=x+\frac{4}{x}$.
(i) Show that the function is odd.
(ii) Find $f^{\prime}(x)$.
(iii) Show that the function has stationary points at $x=2$ and $x=-2$.
(iv) Classify the two stationary points.
(v) Notice that $f(-2)=-4$ and $f(2)=4$. So $f(-2)<f(2)$. Explain why this fact does not contradict the results in part (iii).

QUESTION THIRTEEN (13 marks) Use a separate writing booklet. Marks
(a) Use Simpson's rule with five function values, as well as appropriate log laws, to show that $\int_{1}^{5} \ln x d x \doteqdot \ln 57$.
(b) A curve has gradient function $f^{\prime}(x)=6 x^{2}+p x+q$. The curve has a stationary point at $(2,-4)$ and its y-intercept is 14 . Find the values of p and q.
(c) Suppose that the limiting sum of the series $v+v^{2}+v^{3}+\cdots$ is w.
(i) Write down a formula for w in terms of v.
(ii) Hence find v in terms of w.
(iii) Explain why the limiting sum of the series $w-w^{2}+w^{3}-\cdots$ is v.
(You may assume that $|v|$ and $|w|$ are both less than one.)

QUESTION FOURTEEN (13 marks) Use a separate writing booklet.
(a) Solve for x :

$$
\log _{3} x+2=\log _{3}(x+2)
$$

(b)

A closed rectangular box has dimensions $x \mathrm{~cm}, y \mathrm{~cm}$ and $h \mathrm{~cm}$, as shown in the diagram above. It is to be made from $300 \mathrm{~cm}^{2}$ of thin sheet metal, and the perimeter of its base is to be 40 cm .
(i) Show that the volume V of the box is given by

$$
V=150 h-20 h^{2}
$$

(ii) Hence find the dimensions of the box that meets all the requirements and has the maximum possible volume.
(c) One root of the quadratic equation $a x^{2}+2 b x+c=0$ is the reciprocal of the square of the other root.

Prove that $a^{3}+c^{3}+2 a b c=0$.

QUESTION FIFTEEN (13 marks) Use a separate writing booklet.
(a)

The shaded region \mathcal{R} is bounded by the curves $y=x^{2}+4$ and $y=x^{3}$, and the y-axis, as shown in the diagram above.
(i) Calculate the area of \mathcal{R}.
(ii) Determine the volume of the solid of revolution formed when \mathcal{R} is rotated about the x-axis.
(b) The function $y=P(x)$ is defined by $P(x)=(x-p)(x-q)(x-r)$, where p, q and r are distinct real numbers.
(i) Sketch a possible graph of $y=P(x)$.
(Do NOT attempt to find the stationary or inflexion points.)
(ii) Expand $P(x)$ and write it in the form $a x^{3}+b x^{2}+c x+d$.
(iii) By considering the equation $P^{\prime}(x)=0$, or otherwise, prove that

$$
(p+q+r)^{2}>3(p q+q r+r p)
$$

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.
(a) For any real number x, let $[x]$ denote the largest integer less than or equal to x.

For example $[2 \cdot 9]=2$ and $[3]=3$.
(i) Sketch the graph of $y=[x]$ for $0 \leq x \leq 5$.
(ii) Find the value of $\int_{0}^{5}[x] d x$.
(b) Consider the function $y=\frac{\ln x}{x^{n}}$, where $n>1$.
(i) State the domain of the function.
(ii) Show that there is a stationary point at $x=e^{\frac{1}{n}}$.
(iii) Determine the nature of the stationary point.
(iv) Sketch the graph of the function.
(There is no need to find the coordinates of the point of inflexion.)
(v) Explain why $\frac{\ln x}{x^{n}}<\frac{1}{n e}$ for $x>e^{\frac{1}{n}}$.
(vi) Deduce that $e^{\frac{1}{n-1}}>\frac{n}{n-1}$.

END OF EXAMINATION

SGS Annual 2015 Form V Mathematics Extension 1 Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$
\qquad

Sydney Grammar School

2015
Annual Examination
FORM V
MATHEMATICS EXTENSION 1
Monday 31st August 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

$\mathrm{A} \bigcirc$
B

$\mathrm{C} \bigcirc$
D ○

Question Two

AB

$\mathrm{C} \bigcirc$
D

Question Three

A \bigcirc
B \bigcirc
C
D

Question Four

AB \bigcirc
C

D \bigcirc

Question Five

A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

A
B

C

D

Question Seven

A
BC

D

Question Eight

A
BD \bigcirc

Question Nine

ABC
D \bigcirc

SOLUTIONS TO FORM 5 EXt I ANNUAL 2015 (Total:100)
(1) n trapezia
(2) $y^{\prime}=e^{-x}$
(3) $y=1$
(4) $\frac{1}{2} \pi(2)^{2}=2 \pi$
(5) $\pi \int_{0}^{1} y d y=\frac{\pi}{2}$
(6) Decreasing and concave up.
(7) $2\left(x^{2}+1\right)^{3}$
(8) $\frac{\sin \theta}{1+\cos \theta} \cdot \frac{1-\cos \theta}{1-\cos \theta}$

$$
=\frac{\sin \theta(1-\cos \theta)}{\sin ^{2} \theta}
$$

(9) $(\ln e)^{x}=1^{x}$

ONE EACH
$(10)(a)(i)-8(5-2 x)^{3}$
(ii) $v u^{\prime}+u v^{\prime}$

$$
\begin{aligned}
& =e^{2 x} \cdot 1+x \cdot 2 e^{2 x} \\
& =e^{2 x}(1+2 x)
\end{aligned}
$$

(iii) $\frac{d}{d x}\left(\frac{1}{2} \ln x\right)=\frac{1}{2 x}$
(b)

$$
\text { (i) } \begin{aligned}
& \int x^{-\frac{1}{2}} d x \\
= & 2 x^{\frac{1}{2}}+c \\
= & 2 \sqrt{x}+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{2}{3} \int \frac{3}{3 x+4} d x \\
= & \frac{2}{3} \ln (3 x+4)+c
\end{aligned}
$$

(C)
(iii) $2 \int(3 x+4)^{-2} d x$

$$
\begin{align*}
& =\frac{2(3 x+4)^{-1}}{-1(3)}+c \tag{C}\\
& =\frac{-2}{3(3 x+4)}+c
\end{align*}
$$

$\overrightarrow{(d)}$ For continuity at $x=2$

$$
\begin{align*}
& k(2)=2^{2}+6 \tag{B}\\
& 2 k=10 \\
& k=5 \tag{D}
\end{align*}
$$

(c) $[\ln x]_{e}^{e^{3}}$

$$
\begin{aligned}
& =\ln e^{3}-\ln e \\
& =3 \ln e-\ln e
\end{aligned}
$$

$$
=2
$$

(II)

$$
\text { (a) } \begin{aligned}
& \left(\frac{3 k-2(1-k)}{k+(1-k)}, \frac{6 k-(1-k)}{k+(1-k)}\right) \\
= & (5 k-2,7 k-1)
\end{aligned}
$$

(b) Multiply both sides by $(x-1)^{2}$.

$$
\begin{aligned}
& 5(x-1) \geqslant(x-1)^{2}, x \neq 1 \\
& (x-1)(x-1-5) \leqslant 0 \\
& (x-1)(x-6) \leqslant 0 \\
& 1<x \leqslant 6
\end{aligned}
$$

$(12)(a)$

x	-4	-3	-1	0	1	2	3
$y^{\prime \prime}$	+	0	+	0	-	0	+

The concavity changes at $x=0$ and $x=2$. (But NOT at $x=-3$.)
(b) (i)

$$
\begin{aligned}
y & =4 x\left(2-x^{2}\right) \\
& =4 x(\sqrt{2}+x)(\sqrt{2}-x)
\end{aligned}
$$

x-inter copts at $0, \pm \sqrt{2}$.
(c) Let $T_{n}=3 p$
then $a+(n-1) d=3 p$

$$
\begin{gathered}
p+2(n-1)=3 p \\
2(n-1)=2 p \\
n=p+1
\end{gathered}
$$

So there are $(p+1)$ terms.
(d)

$$
\text { (i) }\left(e^{2 x}+2\right)^{2}=e^{4 x}+4 e^{2 x}+4
$$

$$
\text { (ii) } \int_{0}^{1}\left(e^{4 x}+4 e^{2 x}+4\right) d x
$$

$$
=\left[\frac{1}{4} e^{4 x}+2 e^{2 x}+4 x\right]_{0}^{1}
$$

$$
=\frac{1}{4} e^{4}+2 e^{2}+4-\left(\frac{1}{4}+2+0\right)
$$

$$
=\frac{1}{4} e^{4}+2 e^{2}+\frac{7}{4}
$$

$$
=\frac{1}{4}\left(e^{4}+8 e^{2}+7\right)
$$

$$
\begin{aligned}
(e)(i) \text { LHS } & =\frac{x+3-(x+2)}{(x+2)(x+3)} \\
& =\frac{1}{(x+2)(x+3)} \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& \int_{-1}^{1}\left(\frac{1}{x+2}-\frac{1}{x+3}\right) d x \\
= & {[\ln (x+2)-\ln (x+3)]_{-1}^{1} } \\
= & {\left[\ln \left(\frac{x+2}{x+3}\right)\right]_{-1}^{1} } \\
= & \ln \frac{3}{4}-\ln \frac{1}{2} \\
= & \ln \frac{3}{2}
\end{aligned}
$$

$(13)(a)$

(a) | x | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y=\ln x$ | 0 | $\ln 2$ | $\ln 3$ | $\ln 4$ | $\ln 5$ |

$\left(y_{0}\right)\left(y_{1}\right)\left(y_{2}\right)\left(y_{3}\right)\left(y_{4}\right)$

$$
\begin{aligned}
\int_{1}^{5} \ln x d x & \doteqdot \frac{h}{3}\left(y_{0}+y_{4}+4\left(y_{1}+y_{3}\right)+2 y_{2}\right) \\
& =\frac{1}{3}(\ln 5+4(\ln 2+\ln 4)+2 \ln 3) \\
& =\frac{1}{3} \ln \left(5 \times 2^{4} \times 4^{4} \times 3^{2}\right) \\
& =\ln 184320^{\frac{1}{3}} \\
& =\ln 56.91 \ldots \\
& \doteqdot \ln 57
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { b) } f^{\prime}(2)=0 \text { so } 24+2 p+q=0 \\
& f(x)=2 x^{3}+\frac{1}{2} p x^{2}+q x+c \\
& f(0)=14 \text { so } c=14 \\
& f(2)=-4 \text { so } 16+2 p+2 q+14=-4
\end{aligned}
$$ so $17+p+q=0$ (2)

(1) -(2): $7+p=0$
so $p=-7$ and $q=-10$.
(c) we are given that $\frac{v}{1-v}=w$.
(ii) So $v=\omega-\omega v$

$$
\begin{aligned}
& v+w v=w \\
& v(1+w)=w \\
& v=\frac{w}{1+w}
\end{aligned}
$$

(iii)

$$
\left.\begin{array}{rl}
v & =\frac{w}{1-(-w)} \\
& =w-w^{2}+w^{3}-\ldots
\end{array}\right\}
$$

(assuming that both series converge)
$(14)(a)$

$$
\left.\begin{array}{l}
2=\log _{3}(x+2)-\log _{3} x \\
\frac{x+2}{x}=2 \\
\frac{x+2}{x}=9 \\
x+2=9 x \\
x=\frac{1}{4}
\end{array}\right\}
$$

$$
\log _{3} \frac{x+2}{x}=2
$$

Given $2 x+2 y=40$ so $x+y=20$ (1)
and given $2 x y+2 x h+2 y h=300$
so $x y+h(x+y)=150$ ((1) (i))
so $x y+20 h=150$
so $x y=150-20 h$. (2)

$$
\begin{aligned}
V & =x y h \\
& =(150-20 h) h \text { (using (2)) } \\
& =150 h-20 h^{2}
\end{aligned}
$$

(ii) $\frac{d v}{d h}=150-40 h$

Let $\frac{d V}{d h}=0$ for stationary points.
Then $h=\frac{15}{4}$.

$$
\frac{d^{2} V}{d h^{2}}=-40<0,
$$

so V is maximised when $h=\frac{15}{4}$. when $h=\frac{15}{4}$,
$x y=75$ and $x+y=20$.
By inspection, $x=15$ and $y=5$
(or vice versa),
so the box has base 15 cm by 5 cm and its height is 3.75 cm .
(c) Let the roots be α and $\frac{1}{\alpha^{2}}$.

Then $\alpha+\frac{1}{\alpha^{2}}=\frac{-2 b}{a}$
and $\alpha \cdot \frac{1}{\alpha^{2}}=\frac{c}{a}$
so $\alpha=\frac{a}{c}$ (2)
Substituting (2) into (1):

$$
\frac{a}{c}+\frac{c^{2}}{a^{2}}=-\frac{2 b}{a}
$$

Multiply both sides by $a^{2} c$:

$$
a^{3}+c^{3}=-2 b a c
$$

so $a^{3}+c^{3}+2 a b c=0$.
$(15)(a)(i)$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2}\left(x^{2}+4-x^{3}\right) d x \\
& =\left[\frac{1}{3} x^{3}+4 x-\frac{1}{4} x^{4}\right]_{0}^{2} \\
& =\frac{8}{3}+8-4 \\
& =\frac{20}{3} u^{2}
\end{aligned}
$$

(ii)
$(b)(i)$

(ii) Expanding, we have

$$
P(x)=x^{3}-(p+q+r) x^{2}+(p q+q r+r p) x-p q r
$$

so $p^{\prime}(x)=3 x^{2}-2(p+q+r) x+(p q+q r+r p)$
The equation $p^{\prime}(x)=0$ has two) distinct real roots (α and β in the diagram above),
so $\Delta>0$

$$
\left\{\begin{array}{l}
\text { so } 4(p+q+r)^{2}-12(p q+q r+r p)>0 \\
\text { so }(p+q+r)^{2}>3(p q+q r+r p)
\end{array}\right.
$$

(ii) (OTHERWISE)

$$
\begin{equation*}
(p-q)^{2}>0 \tag{1}
\end{equation*}
$$

so $p^{2}+q^{2}>2 p q$
similarly and $r^{2}+p^{2}>2 r p$
(1) + (2) +3 :

$$
\begin{equation*}
2 p^{2}+2 q^{2}+2 r^{2}>2 p q+2 q r+2 r p \tag{4}
\end{equation*}
$$

so $p^{2}+q^{2}+r^{2}>p q+q r+r p$
Now,

$$
\ell_{p+q+}
$$

$+q+r)^{2}=p^{2}+q^{2}+r^{2}+2(p q+q$
From (4), it follows that

$$
\begin{aligned}
& (p+q+r)^{2}>p q+q r+r p+2(p q+q r+r p) \\
& \text { so } \\
& (p+q+r)^{2}>3(p q+q r+r p)
\end{aligned}
$$

$(16)(a)(i)$

(ii)

$$
\begin{aligned}
\int_{0}^{5}[x] d x & =0+1+2+3+4 \\
& =10
\end{aligned}
$$

(b) (i) Domain is $x>0$
(ii)

$$
\begin{aligned}
y^{\prime} & =\frac{x^{n} \cdot \frac{1}{x}-n x^{n-1} \cdot \ln x}{\left(x^{n}\right)^{2}} \\
& =\frac{x^{n-1}(1-n \ln x)}{x^{2 n}}
\end{aligned}
$$

Let $y^{\prime}=0$ for stationary points. $x>0$, so the only solution occurs when $\ln x=\frac{1}{n}$
ie. when $x=e^{\frac{1}{n}^{n}}$.
(iii)

There is a maximum turning point at $x=e^{\frac{1}{n}}$.
(some working or explanation required)
(iv) x-intercept at $(1,0)$.
when $x=e^{\bar{n}}$,

$$
\begin{aligned}
y & =\frac{1}{n} \div\left(e^{\frac{1}{n}}\right)^{n} \\
& =\frac{1}{n e} .
\end{aligned}
$$

As $x \rightarrow \infty, y \rightarrow 0^{+}$.

$$
\text { As } x \rightarrow 0^{+}, y \rightarrow-\infty .
$$

(v) From the, graph, when $x>e^{\frac{1}{n}}, y<\frac{1}{n e}, \quad\left(\begin{array}{l}\text { since the } \\ \text { max } y_{1} \text {-value } \\ \text { is } \frac{1}{n e}\end{array}\right)$ so when $x>e^{\frac{1}{n}}, \frac{\ln x}{x^{n}}<\frac{1}{n e}$.
(vi) Let $x=e^{\frac{1}{n-1}}\left(>e^{\frac{1}{n}}\right)$, then $\frac{1}{n-1} \div e^{\frac{n}{n-1}}<\frac{1}{n e}$) so $\frac{n}{n-1}<e^{\frac{n}{n-1}-1}$ so $e^{\frac{1}{n-1}}>\frac{n}{n-1}$.

