NAME

SYDNEY GRAMMAR SCHOOL

2016 Annual Examination

FORM V

MATHEMATICS EXTENSION 1

Monday 5th September 2016

General Instructions

- Writing time 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 100 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 90 Marks

- Questions 11–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

5A:	DNW	5B:	$\mathbf{P}\mathbf{K}\mathbf{H}$
5E:	WJM	5F:	GMC

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Reference sheet
- Candidature 141 boys

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

5C: LRP	5D: FMW
5G: NL	5H: SO

Examiner FMW

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the value of $20e^{-2}$, correct to 3 significant figures?

(A) 2.71
(B) 2.70
(C) 2.707
(D) 2.706

QUESTION TWO

Which graph below best represents $y = (x+3)^2$?

Examination continues next page ...

QUESTION THREE

What are the solutions of $3x^2 - 6x + 2 = 0$?

(A)
$$x = \frac{3 \pm \sqrt{15}}{3}$$

(B) $x = \frac{-3 \pm \sqrt{3}}{3}$
(C) $x = 1 \pm 2\sqrt{3}$
(D) $x = \frac{3 \pm \sqrt{3}}{3}$

QUESTION FOUR

Given
$$y = \frac{x^2}{x-1}$$
, then $\frac{dy}{dx}$ is equal to:
(A) $2x$
(B) $\frac{x-2}{x}$
(C) $\frac{x(2-x)}{(x-1)^2}$
(D) $\frac{x(x-2)}{(x-1)^2}$

QUESTION FIVE

In relation to the function y = |2x - 3|, which of the following statements is NOT true?

- (A) The domain of the function is all real x.
- (B) The range of the function is $y \ge 0$.
- (C) The function is continuous for all values of x.
- (D) The function is differentiable for all values of x.

Examination continues overleaf ...

QUESTION SIX

What is the solution of $7^x = 2$?

(A)
$$x = \log_2 7$$

(B) $x = \log_{10} \frac{2}{7}$
(C) $x = \frac{\log_{10} 2}{\log_{10} 7}$
(D) $x = \frac{\log_e 7}{\log_e 2}$

QUESTION SEVEN

Which of the following is a primitive of $\frac{1}{x\sqrt{x}}$?

(A)
$$\log_e x \sqrt{x}$$

(B) $-\frac{2}{\sqrt{x}}$
(C) $-\frac{3}{2}x^{-\frac{5}{2}}$
(D) $-\frac{2}{5}x^{-\frac{5}{2}}$

QUESTION EIGHT

How many solutions does the equation $\cos 2\theta = 1$ have in the domain $0^{\circ} \le \theta \le 360^{\circ}$?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

Examination continues next page ...

QUESTION NINE

The GRADIENT FUNCTION y = f'(x) of a curve is sketched above. Which of the following statements is true at the point P?

- (A) f'(x) < 0 and f''(x) > 0
- (B) f'(x) > 0 and f''(x) < 0
- (C) f'(x) > 0 and f''(x) > 0
- (D) f'(x) < 0 and f''(x) < 0

QUESTION TEN

The function y = f(x) is sketched above. Which of the following integrals yields the greatest value?

(A)
$$\int_{0}^{2} f(x) dx$$

(B)
$$\int_{0}^{4} f(x) dx$$

(C)
$$\int_{0}^{6} f(x) dx$$

(D)
$$\int_{0}^{8} f(x) dx$$

End of Section I

Examination continues overleaf ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

- (a) Expand and simplify $(2\sqrt{3}-5)(2\sqrt{3}+5)$.
- (b) Write down the equation of the line which is parallel to 3x y + 7 = 0 and has a *y*-intercept of -5.
- (c) Write down a quadratic equation with roots 5 and -2.
- (d) Simplify:

(i)
$$\log_e e^3$$

(ii)
$$e^{\log_e 5}$$

- (e) Write down the equations of the vertical asymptotes of the graph of the function $f(x) = \frac{1}{x^2 16}.$
- (f) Solve $\cos \theta = \frac{1}{\sqrt{2}}$, for $0^{\circ} \le \theta \le 360^{\circ}$.
- (g) Find the gradient of the interval joining the points (1, 2) and (-2, -4).
- (h) Find the sum of the first 100 terms of the arithmetic sequence $12, 6, 0, \ldots$
- (i)

Write down the gradient of the line sketched above.

- (j) Find the gradient of the tangent to the curve $y = e^{2x+1}$ at the point on the curve where x = -1.
- (k) (i) Sketch $y = e^x$. (ii) Evaluate $\int_0^1 e^x dx$.

Examination continues next page ...

L		
	1	

Marks

1

1

	1	
	1	
ſ	1	

	1	
	1	
	2	
ļ	1	

2	

1

1

QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks

(a) Differentiate:

(i)
$$y = \frac{3}{x}$$
 [1]
(ii) $y = \ln(5x - 1)$ [1]

1

 $\mathbf{2}$

3

 $\mathbf{2}$

(iii)
$$y = xe^x$$

(b) Find:

(i)
$$\int (2x-5)^4 dx$$
(ii)
$$\int \frac{2}{x-1} dx$$
1

(iii)
$$\int \frac{x-1}{x^2} \, dx$$

- (c) Find the equation of the curve passing through the point (-1, 4) with gradient function $\frac{dy}{dx} = 3x^2 + 4x 5$.
- (d)

Find the area bounded by the curve $y = 4 - x^2$ and the x-axis, as shaded above.

(e) Find the values of k for which the quadratic equation $x^2 + kx + 36 = 0$ has two distinct, **3** real roots.

Marks

3

1

 $\mathbf{2}$

|1|

 $\mathbf{2}$

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

(a)

The area of the triangle above is 12 square units. Find the value of m.

(b) (i) Copy and complete the following table of values for $y = \log_e x$, giving your answers correct to 2 decimal places where necessary.

x	1	2	3
y			

- (ii) Use the trapezoidal rule with all the values from your table to find an approximation for $\int_{1}^{3} \log_{e} x \, dx$.
- (iii) Explain, with the use of a diagram, whether the approximation in (ii) is less than or greater than the exact value.

The diagram above shows the curve y = f(x). Sketch a possible graph of y = f'(x).

- (d) (i) Given the function $g(x) = 2x^3 3x^2 12x + 4$, find g'(x) and g''(x).
 - (ii) For what values of x is y = g(x) decreasing?
 - (iii) For what values of x is y = g(x) concave up?

(e)

The graph of y = f(x) is sketched above with points P and Q as marked.

- (i) Write down the coordinates of point P under the transformation y = -2f(x).
- (ii) Write down the coordinates of point Q under the transformation y = f(-x).

	1	
[2	
Γ	1	1

1	
1	

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

(a)

The diagram above shows the curve $y = (x - 1)^3$. Find the shaded area.

- (b) Let α and β be the roots of the quadratic equation $2x^2 4x + 7 = 0$. Find:
 - (i) $\alpha + \beta$
 - (ii) $\alpha\beta$

(iii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

- (c) Show algebraically that the curve $y = (2 x)^3$ has a point of inflexion at (2, 0).
- (d) Find the coordinates of any stationary points on the curve $y = x^2 + \frac{16}{x}$ and determine **3** their nature.
- (e) Use a suitable substitution to solve the equation $x^{\frac{2}{3}} + x^{\frac{1}{3}} 6 = 0$.

Marks

3

1

1

 $\mathbf{2}$

 $\mathbf{2}$

3

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.

- (a) Factorise completely $3b^3 24$.
- (b)

The graphs of y = x, $y = \frac{2}{x}$ and x = 2 are sketched above.

- (i) Show that A has coordinates $(\sqrt{2}, \sqrt{2})$.
- (ii) Show that the area of the region bounded by the hyperbola and the two lines, shaded above, is $1 \ln 2$.
- (iii) Find the volume of the solid formed when the region is rotated around the x-axis.
- (c) Solve $\sin x \tan x 4 \sin x \tan x + 4 = 0$, for $0^{\circ} \le x \le 360^{\circ}$. Give your answer correct to the nearest degree, where necessary.
- (d) A geometric series has first term 35 and common ratio 2^b .
 - (i) For what values of b does the series have a limiting sum?
 - (ii) Find the value of b for which the limiting sum is equal to 40.
- (e) Determine the range of the function $y = \ln(x^2 + e)$.

Marks

 $\mathbf{2}$

1 2

3

3

1

 $\mathbf{2}$

1

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.

(a) The tangent at P on the hyperbola xy = 4 cuts the x and y axes at the points A and B respectively. Find all points P such that OA : OB = 2 : 1.

Marks

1

1

 $\mathbf{2}$

(b) Consider the quadratic $y = mx^2 + nx + mn^2$, where m and n are non-zero real numbers. **3** For what values of m and n is the quadratic positive definite?

The diagram above shows part of the curve $y = \frac{1}{x+1}$ together with three rectangles of unit width.

- (i) Explain how the diagram shows that $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} < \int_0^3 \frac{1}{x+1} dx$.
- (ii) The curve $y = \frac{1}{x+2}$ passes through the top left-hand corner of each of the three rectangles shown. By considering the rectangles drawn above in relation to this curve, write down a second inequality involving $\frac{1}{2} + \frac{1}{3} + \frac{1}{4}$ and a different definite integral.
- (iii) By similar arguments show that $3.92 < \sum_{r=2}^{100} \frac{1}{r} < 4.61$.

A cone of height h and radius r is circumscribed about a sphere with centre O and fixed radius R. The diagram above shows a cross-section of the situation through an axis of the cone AB.

(i) Show that
$$r^2 = \frac{R^2 h}{h - 2R}$$
.

(d)

- (ii) Show that the volume of the cone is given by $V = \frac{\pi R^2 h^2}{3(h-2R)}$.
- (iii) Find the dimensions of the cone with the least volume. You need not test that a minimum value occurs.
- (iv) Given the cone has minimum volume, find the ratio of the volume of the cone to the volume of the sphere.

End of Section II

END OF EXAMINATION

1

1

 $\mathbf{2}$

BLANK PAGE

NAME:

 $CLASS: \dots \dots MASTER: \dots \dots$

SYDNEY GRAMMAR SCHOOL

2016 Annual Examination FORM V MATHEMATICS EXTENSION 1 Monday 5th September 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One				
A 🔾	В ()	С ()	D ()	
Question 7	Гwo			
A 🔿	В ()	С ()	D ()	
Question 7	Three			
A 🔿	В ()	С ()	D ()	
Question H	Four			
A 🔿	В ()	С ()	D ()	
Question I	Five			
A 🔾	В ()	С ()	D ()	
Question S	Six			
A 🔾	В ()	С ()	D ()	
Question S	Seven			
A 🔾	В ()	С ()	D ()	
Question Eight				
A 🔾	В ()	С ()	D ()	
Question Nine				
A 🔾	В ()	С ()	D ()	
Question Ten				
A 🔾	В ()	$C \bigcirc$	D ()	

Ext 1 Solutions
MC
1)
$$20e^{-2} = 2406...$$

 $= 2.711 (2d.p.)$.
3) $3x^2 - 6x + 2 = 0$
 $x = \frac{6 \pm \sqrt{6^2 - 4(3)(2)}}{2x^3}$
 $= \frac{6 \pm \sqrt{12}}{6}$
 $= \frac{6 \pm \sqrt{3}}{6}$
 $= \frac{3 \pm \sqrt{3}}{3}$
(4) $y = \frac{x^2}{x-1}$
 $\frac{dy}{dx} = \frac{(x-1) + 2x - x^2 \times 1}{(x-1)^2}$
 $= \frac{2x^2 - 2x - x^2}{(x-1)^2}$
 $= \frac{x^2 - 2x}{(x-1)^2}$
 $= \frac{x(x-2)}{(x-1)^2}$

C

9 B

A

(1)
(a)
$$(2J3-5)(2J3+5) = 4\times3-5\times5$$

 $= -13$
(b) $3x-y+7=0$
 $y=3x+7$
equation: $y=3x-5$
(c) $(x-5)(x+2)=0$
or $x^2-(5-2)x+(5x-2)=0$
 $x^2-3x-10=0$
(d) (i) $\log_e e^3 = 3$
(ii) $e^{10ye5} = 5$
(e) $x=4$ and $x=-4$
(f) $\cos 0 = \frac{1}{\sqrt{2}}$
 45°
(g) $M = \frac{2-(-4)}{1-(-2)}$
 $= \frac{6}{3}$
 $= 2$

(a) (i)
$$y = 3x^{-1}$$
 (ii) $y = \ln(5x-1)$
 $y' = -3x^{-2}$ $y' = \frac{5}{5x-1}$
(iii) $y = xe^{x}$
(iii) $y = xe^{x}$
 $= xxe^{x} + 1xe^{2x}$
 $= xe^{x} + e^{x}$
 $= e^{x}(5c+1)$

(b) (i)
$$\int (2x-5)^4 dx = \frac{(2x-5)^5}{5 \times 2}$$

= $\frac{1}{10} (2x-5)^5 + c$
(ii) $\int \frac{2}{x-1} dx = 2\log(x-1) + c$

(iii)
$$\int \frac{x-1}{x^2} dx = \int \frac{1}{x} - \frac{1}{x^2} dx$$
$$= \int \frac{1}{x} - x^{-2} dx$$
$$= \ln x + x^{-1}$$
$$= \ln x + \frac{1}{x} + c$$

(c)
$$dy = 3x^{2} + 4x - 5$$

Substituting $Y = x^{3} + 2x^{2} - 5x + c$
 $4 = (-1)^{3} + 2(-1)^{2} - 5(-1) + c$
 $c = -2$
So $y = x^{3} + 2x^{2} - 5x - 2$

$$(d) A = 2 \int (4 - x^{2}) dx$$

$$= 2 \left[4x - \frac{x^{3}}{3} \right]_{0}^{2}$$

$$= 2 \left(4(2) - \frac{x^{3}}{3} - 0 \right)$$

$$= \frac{32}{3} \left(10^{\frac{2}{3}} \right) u^{2}$$

(e)
$$x^{2} + kx + 36 = 0$$

 $\Delta = k^{2} - 4(i)(36)$
 $= k^{2} - 144$
If $\Delta > 0$, $k^{2} - 144 > 0$
 $k^{2} > 144$
 $k < -12$ or $k > 12$

The triangle & trapezion underestimate due area as the curve is ancane down. So the approximation will be less than due exact value.

(c)
$$y''_{x}$$

(d) (i) $f(x) = 2x^{3} - 3x^{2} - 12x + 4$
 $f'(x) = 6x^{2} - 6x - 12$
 $f''(x) = 12x - 6$
(ii) decreasing when $f'(x) < 0$
 $x^{2} - x - 2 < 0$
 $(x - 2)(x + 1) < 0$
 $x^{2} - x - 2 < 0$
 $(x - 2)(x + 1) < 0$
 $(x - 2)(x + 1$

$$\begin{array}{r} (A) \quad y = (x - 1)^{3} \\ {}^{3}Jy = x - 1 \\ x = {}^{3}Jy + 1 \\ A = \int ({}^{3}Jy + 1) \, dy \\ {}^{1}Jy = \int (y^{3} + 1) \, dy \\ {}^{2}Jy = \int (y^{3} + 1) \, dy \\ {}^{3}Jy = \int (y^{3} + 1) \, dy$$

(b)
$$2x^2 - 4x + 7 = 0$$

(i) $\alpha + \beta = \frac{4}{2}$ (ii) $\alpha \beta = \frac{7}{2}$
(iii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{x^2 + \beta^2}{\alpha \beta}$
 $= (\alpha + \beta)^2 - 2\alpha\beta$
 $= \frac{2^2 - 2x \frac{7}{2}}{\frac{7}{2}}$
 $= -\frac{6}{7}$

(c)
$$y = (2-x)^{3}$$

 $y' = 3(2-x)^{2} \times -1$
 $= -3(2-x)^{2}$
 $y'' = -6(2-x) \times -1$
 $= 6(2-x)$
 $y'' = 0$ at $x = 2$, $y = 0$
possible pant of inflexion at $(2,0)$
test: $\frac{x}{1} + \frac{1}{2} + \frac{3}{4}$
there is a concavity change so there in
a point of inflexion at $(2,0)$
(d) $y = x^{2} + \frac{16}{x}$
 $= x^{2} + 16x^{-1}$
 $y' = 2x - 16x^{-2}$
 $= 2x^{3} - 16$
 x^{2}
 $= \frac{2x^{3} - 16}{x^{2}}$
 $y' = 0$ at $x^{3} = 8$
 $x = 2$
 $y'' = 6$
 $y''' = 6$

(e)
$$x^{\frac{3}{3}} + x^{\frac{1}{3}} - 6 = 0$$

let $M = x^{\frac{3}{3}}$
the equation becomes
 $M^{2} + M - 6 = 0$
 $(M + 3)(M - 2) = 0$
 $M = -3$ or $M = 2$
 $x^{\frac{1}{3}} = -3$ $x^{\frac{1}{3}} = 2$
 $x = -27$ $x = 8$

(15)
(a)
$$3b^{3}-24 = 3(b^{3}-8)$$

 $z = 3(b-2)(b^{2}+2b+4)$
(b)(i) $4\frac{1}{2} = x$
 $x^{2} = 2$
 $x = 52(x > 0)$
 $y = 52$
 $50 + 15 + 100 + (52, 52)$
(ii) $A = \int_{12}^{2} (x - \frac{2}{32}) dx$
 $= \left[\frac{x^{2}}{2} - 2\ln x\right]_{5}^{2}$
 $z = \frac{x^{2}}{2} - 2\ln x = 1 + 2\ln 2^{\frac{1}{2}}$
 $z = 1 - 2\ln 2 + \ln 2$
 $z = 1 - \ln 2$
(iii) $V = \pi \int_{52}^{2} x^{2} - (\frac{2}{52})^{2} dx$
 $= \pi \int_{52}^{2} x^{2} - \frac{4}{52} dx$
 $z = \pi \left[\frac{x^{3}}{3} + \frac{4}{52}\right]_{5}^{2}$
 $z = \pi \left(\frac{14}{3} - \frac{252}{3} - 252\right)$
 $z = \frac{1}{2} (14 - 852) m^{3}$

(c)
$$\sin x \tan x - 4 \sin x - 4 \tan x + 4 = 0$$

 $\sin x (\tan x - 4) - 1 (\tan x - 4) = 0$
 $(\sin x - 1) (\tan x - 4) = 0$
 $x = 90^{\circ}$
 $x = 76^{\circ} \circ - 256^{\circ}$ are the only solutions
(d) $a = 35$, $r = 2^{\circ}$
(i) $-1 < 2^{\circ} < 1$
 $1-2^{\circ} = \frac{35}{40}$
(ii) $\frac{35}{1-2^{\circ}} = 40$
 $x = -3$
(e) $y = \ln (x^{2} + e)$
 $x = 0$, $y = 1$
 50 range is $y \ge 1$

(6) (a)

$$x = \frac{1}{2}$$

 $y = \frac{1}{2}$
 $(252, 52)$ and $y = \frac{1}{2}$
 $(-2.52, -52)$
 $z = \frac{1}{2}$
(b) $y = \frac{1}{2}$
 $y = \frac{1}{2}$
 $(-2.52, -52)$
 $z = \frac{1}{2}$
(b) $y = \frac{1}{2}$
 $y = \frac{1}{2}$
 $(-2.52, -52)$
 $z = \frac{1}{2}$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.52, -52)$
 $(-2.5$

(c) i) the area of the first reducingle is
$$\frac{1}{4} \times 1 = \frac{1}{4}$$

second is $\frac{1}{4} \times 1 = \frac{1}{4}$
the rectangles underestimate the area
under the curve which is given by
 $\int \frac{1}{2} \pm \frac{1}{4} + \frac{1}{4} < \int \frac{1}{2} \pm \frac{1}{4} + \frac{1}{2} = \frac{1}{4}$
(ii) This time the rectangles will over-ortinate
the area
 $\int \frac{1}{2} \pm \frac{1}{3} + \frac{1}{4} > \int \frac{1}{2} \pm \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{100}$
(iii) $\sum_{r=2}^{10} \pm r = \frac{1}{2} \pm \frac{1}{3} \pm \frac{1}{4} \pm \dots \pm \frac{1}{100}$
 $\int \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \pm \frac{1}{100}$
 $\int \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \pm \frac{1}{100}$
 $\int \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{100} + \frac{1}{100}$
 $\int \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{100} + \frac{1}{100}$
 $\int \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{100} + \frac{1}{100}$
 $\int \frac{1}{2} + \frac{1}{2}$

to 2 d.p.

(d)
A
(i) In Als AOP and ABC

$$\langle APO = \langle ABC (given) \rangle$$

 $\langle A is common$
 $\langle A is common$
 $\langle A hop ||| \Delta ACB (angle
 $\langle auxile
 $\langle auxile$$

$$(ii) V = \frac{\pi}{3}r^{2}h$$
$$= \frac{\pi}{3} \times \frac{R^{2}h}{n-2R} \times h$$
$$= \frac{\pi}{3}(h-2R)$$

(iii)
$$\frac{dV}{dh} = \frac{1}{3}\pi \left(\frac{(h-2R) \times 2R^{2}h - R^{2}h^{2}(1)}{(h-2R)^{2}} \right)$$
$$= \frac{1}{3}\pi \left(\frac{2R^{2}h^{2} - 4R^{3}h - R^{2}h^{2}}{(n-2R)^{2}} \right)$$
$$= \frac{1}{3}\pi \left(\frac{R^{2}h^{2} - 4R^{3}h}{(n-2R)^{2}} \right)$$
$$\frac{dV}{dh} = 0 \quad \text{at} \quad R^{2}h^{2} - 4R^{3}h = 0$$
$$h^{2} + 4R^{3}h = 0$$
$$h^{2}$$