Sydney Grammar School

2016 Annual Examination

FORM V

MATHEMATICS EXTENSION 1

Monday 5th September 2016

General Instructions

- Writing time -2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11 - 16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.
5A: DNW
5B: PKH
5E: WJM
5F: GMC

5C: LRP
5G: NL
5D: FMW
5H: SO

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Reference sheet

Examiner

- Candidature - 141 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the value of $20 e^{-2}$, correct to 3 significant figures?
(A) $2 \cdot 71$
(B) $2 \cdot 70$
(C) 2.707
(D) $2 \cdot 706$

QUESTION TWO

Which graph below best represents $y=(x+3)^{2}$?
A

B

C

D

Examination continues next page ...

QUESTION THREE

What are the solutions of $3 x^{2}-6 x+2=0$?
(A) $x=\frac{3 \pm \sqrt{15}}{3}$
(B) $x=\frac{-3 \pm \sqrt{3}}{3}$
(C) $x=1 \pm 2 \sqrt{3}$
(D) $x=\frac{3 \pm \sqrt{3}}{3}$

QUESTION FOUR

Given $y=\frac{x^{2}}{x-1}$, then $\frac{d y}{d x}$ is equal to:
(A) $2 x$
(B) $\frac{x-2}{x}$
(C) $\frac{x(2-x)}{(x-1)^{2}}$
(D) $\frac{x(x-2)}{(x-1)^{2}}$

QUESTION FIVE

In relation to the function $y=|2 x-3|$, which of the following statements is NOT true?
(A) The domain of the function is all real x.
(B) The range of the function is $y \geq 0$.
(C) The function is continuous for all values of x.
(D) The function is differentiable for all values of x.

QUESTION SIX

What is the solution of $7^{x}=2$?
(A) $x=\log _{2} 7$
(B) $x=\log _{10} \frac{2}{7}$
(C) $x=\frac{\log _{10} 2}{\log _{10} 7}$
(D) $x=\frac{\log _{e} 7}{\log _{e} 2}$

QUESTION SEVEN

Which of the following is a primitive of $\frac{1}{x \sqrt{x}}$?
(A) $\log _{e} x \sqrt{x}$
(B) $-\frac{2}{\sqrt{x}}$
(C) $-\frac{3}{2} x^{-\frac{5}{2}}$
(D) $-\frac{2}{5} x^{-\frac{5}{2}}$

QUESTION EIGHT

How many solutions does the equation $\cos 2 \theta=1$ have in the domain $0^{\circ} \leq \theta \leq 360^{\circ}$?
(A) 1
(B) 2
(C) 3
(D) 4

QUESTION NINE

The GRADIENT FUNCTION $y=f^{\prime}(x)$ of a curve is sketched above. Which of the following statements is true at the point P ?
(A) $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$
(B) $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$
(C) $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$
(D) $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$

QUESTION TEN

The function $y=f(x)$ is sketched above. Which of the following integrals yields the greatest value?
(A) $\int_{0}^{2} f(x) d x$
(B) $\int_{0}^{4} f(x) d x$
(C) $\int_{0}^{6} f(x) d x$
(D) $\int_{0}^{8} f(x) d x$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.
(a) Expand and simplify $(2 \sqrt{3}-5)(2 \sqrt{3}+5)$.
(b) Write down the equation of the line which is parallel to $3 x-y+7=0$ and has a y-intercept of -5 .
(c) Write down a quadratic equation with roots 5 and -2 .
(d) Simplify:
(i) $\log _{e} e^{3}$
(ii) $e^{\log _{e} 5}$
(e) Write down the equations of the vertical asymptotes of the graph of the function $f(x)=\frac{1}{x^{2}-16}$.
(f) Solve $\cos \theta=\frac{1}{\sqrt{2}}$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(g) Find the gradient of the interval joining the points $(1,2)$ and $(-2,-4)$.
(h) Find the sum of the first 100 terms of the arithmetic sequence $12,6,0, \ldots$.
(i)

Write down the gradient of the line sketched above.
(j) Find the gradient of the tangent to the curve $y=e^{2 x+1}$ at the point on the curve where $x=-1$.
(k) (i) Sketch $y=e^{x}$.
(ii) Evaluate $\int_{0}^{1} e^{x} d x$.

QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks
(a) Differentiate:
(i) $y=\frac{3}{x}$
(ii) $y=\ln (5 x-1)$
(iii) $y=x e^{x}$
(b) Find:
(i) $\int(2 x-5)^{4} d x$
(ii) $\int \frac{2}{x-1} d x$
(iii) $\int \frac{x-1}{x^{2}} d x$
(c) Find the equation of the curve passing through the point $(-1,4)$ with gradient function $\frac{d y}{d x}=3 x^{2}+4 x-5$.
(d)

Find the area bounded by the curve $y=4-x^{2}$ and the x-axis, as shaded above.
(e) Find the values of k for which the quadratic equation $x^{2}+k x+36=0$ has two distinct, real roots.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

The area of the triangle above is 12 square units. Find the value of m.
(b) (i) Copy and complete the following table of values for $y=\log _{e} x$, giving your answers correct to 2 decimal places where necessary.

x	1	2	3
y			

(ii) Use the trapezoidal rule with all the values from your table to find an approximation for $\int_{1}^{3} \log _{e} x d x$.
(iii) Explain, with the use of a diagram, whether the approximation in (ii) is less than or greater than the exact value.
(c)

The diagram above shows the curve $y=f(x)$. Sketch a possible graph of $y=f^{\prime}(x)$.

SGS Annual 2016
(d) (i) Given the function $g(x)=2 x^{3}-3 x^{2}-12 x+4$, find $g^{\prime}(x)$ and $g^{\prime \prime}(x)$.
(ii) For what values of x is $y=g(x)$ decreasing?
(iii) For what values of x is $y=g(x)$ concave up?
(e)

The graph of $y=f(x)$ is sketched above with points P and Q as marked.
(i) Write down the coordinates of point P under the transformation $y=-2 f(x)$.
(ii) Write down the coordinates of point Q under the transformation $y=f(-x)$.
\qquad
(a)

The diagram above shows the curve $y=(x-1)^{3}$. Find the shaded area.
(b) Let α and β be the roots of the quadratic equation $2 x^{2}-4 x+7=0$. Find:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
(c) Show algebraically that the curve $y=(2-x)^{3}$ has a point of inflexion at $(2,0)$.
(d) Find the coordinates of any stationary points on the curve $y=x^{2}+\frac{16}{x}$ and determine their nature.
(e) Use a suitable substitution to solve the equation $x^{\frac{2}{3}}+x^{\frac{1}{3}}-6=0$.
(a) Factorise completely $3 b^{3}-24$.
(b)

The graphs of $y=x, y=\frac{2}{x}$ and $x=2$ are sketched above.
(i) Show that A has coordinates $(\sqrt{2}, \sqrt{2})$.
(ii) Show that the area of the region bounded by the hyperbola and the two lines, shaded above, is $1-\ln 2$.
(iii) Find the volume of the solid formed when the region is rotated around the x-axis.
(c) Solve $\sin x \tan x-4 \sin x-\tan x+4=0$, for $0^{\circ} \leq x \leq 360^{\circ}$. Give your answer correct to the nearest degree, where necessary.
(d) A geometric series has first term 35 and common ratio 2^{b}.
(i) For what values of b does the series have a limiting sum?
(ii) Find the value of b for which the limiting sum is equal to 40 .
(e) Determine the range of the function $y=\ln \left(x^{2}+e\right)$.
\qquad
(a) The tangent at P on the hyperbola $x y=4$ cuts the x and y axes at the points A and B respectively. Find all points P such that $O A: O B=2: 1$.
(b) Consider the quadratic $y=m x^{2}+n x+m n^{2}$, where m and n are non-zero real numbers. For what values of m and n is the quadratic positive definite?
(c)

The diagram above shows part of the curve $y=\frac{1}{x+1}$ together with three rectangles of unit width.
(i) Explain how the diagram shows that $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}<\int_{0}^{3} \frac{1}{x+1} d x$.
(ii) The curve $y=\frac{1}{x+2}$ passes through the top left-hand corner of each of the three rectangles shown. By considering the rectangles drawn above in relation to this curve, write down a second inequality involving $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ and a different definite integral.
(iii) By similar arguments show that $3 \cdot 92<\sum_{r=2}^{100} \frac{1}{r}<4 \cdot 61$.
\qquad
(d)

A cone of height h and radius r is circumscribed about a sphere with centre O and fixed radius R. The diagram above shows a cross-section of the situation through an axis of the cone $A B$.
(i) Show that $r^{2}=\frac{R^{2} h}{h-2 R}$.
(ii) Show that the volume of the cone is given by $V=\frac{\pi R^{2} h^{2}}{3(h-2 R)}$.
(iii) Find the dimensions of the cone with the least volume. You need not test that a minimum value occurs.
(iv) Given the cone has minimum volume, find the ratio of the volume of the cone to the volume of the sphere.

SGS Annual 2016 Form V Mathematics Extension 1 Page 14

BLANK PAGE
\qquad

Question One

2016
Annual Examination
FORM V
MATHEMATICS EXTENSION 1
Monday 5th September 2016

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

A

B

CD
A
B \qquad
C
D

Question Three

A
BD \bigcirc

Question Four

AB \bigcircD \bigcirc

Question Five

A \bigcirc
$\mathrm{B} \bigcirc$
C

D \bigcirc

Question Six

AB
C

D \bigcirc

Question Seven

A \bigcirc
BD \bigcirc

Question Eight

A

BD

Question Nine

A \bigcirc
B \bigcirc
CD

Question Ten
A
B
\bigcirc
C

D \bigcirc

Ext 1 Solutions
$m c$
(1)

$$
\begin{aligned}
20 e^{-2} & =2.706 \ldots \\
& =2.71 \quad(2 \text { d.p. }) .
\end{aligned}
$$

A
(2) C
(3)

$$
\begin{aligned}
3 x^{2}-6 x+2 & =0 \\
x & =\frac{6 \pm \sqrt{6^{2}-4(3)(2)}}{2 \times 3} \\
& =\frac{6 \pm \sqrt{12}}{6} \\
& =\frac{6 \pm 2 \sqrt{3}}{6} \\
& =\frac{3 \pm \sqrt{3}}{3}
\end{aligned}
$$

(4)

$$
\begin{aligned}
y & =\frac{x^{2}}{x-1} \\
\frac{d y}{d x} & =\frac{(x-1) \times 2 x-x^{2} \times 1}{(x-1)^{2}} \\
& =\frac{2 x^{2}-2 x-x^{2}}{(x-1)^{2}} \\
& =\frac{x^{2}-2 x}{(x-1)^{2}} \\
& =\frac{x(x-2)}{(x-1)^{2}}
\end{aligned}
$$

D
(5) D
(6)

$$
\begin{aligned}
7^{x} & =2 \\
x & =\log _{7} 2 \\
& =\frac{\log _{10} 2}{\log _{2} 7}
\end{aligned}
$$

(7)

$$
\begin{align*}
\int \frac{1}{x \sqrt{x}} d x & =\int \frac{1}{x+x^{\frac{1}{2}}} d x \\
& =\int x^{-\frac{3}{2}} d x \\
& =\frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} \\
& =-\frac{2}{\sqrt{x}}+c
\end{align*}
$$

(8)

3 solutions
C
(9) B

10

$$
\begin{aligned}
\int_{0}^{2} f(x) d x & =-\frac{1}{2} \times 2 \times\left(5+2 \frac{1}{2}\right) \\
& =-7 \frac{1}{2} \\
\int_{0}^{4} f(x) d x & =-\frac{1}{2} \times 5 \times 4 \\
& =-10 \\
\int_{0}^{6} f(x) d x & =-10+\frac{1}{2} \times 2 \times 1 \\
& =-9 \\
\int_{0}^{8} f(x) d x & =-10+\frac{1}{2} \times 4 \times 1 \\
& =-8
\end{aligned}
$$

A
(II)

$$
\text { (a) } \begin{aligned}
(2 \sqrt{3}-5)(2 \sqrt{3}+5) & =4 \times 3-5 \times 5 \\
& =-13
\end{aligned}
$$

(b)

$$
\begin{aligned}
3 x-y+7 & =0 \\
y & =3 x+7
\end{aligned}
$$

equation: $y=3 x-5$
(c) $(x-5)(x+2)=0$
or $\quad x^{2}-(5-2) x+(5 x-2)=0$

$$
x^{2}-3 x-10=0
$$

(d) (') $\log _{e} e^{3}=3$

$$
\text { (ii) } e^{\log _{e} 5}=5
$$

(e) $x=4$ and $x=-4$
(f) $\quad \cos \theta=\frac{1}{\sqrt{2}}$

$$
\theta=45^{\circ} \text { or } 315^{\circ}
$$

(9)

$$
\begin{aligned}
m & =\frac{2-(-4)}{1-(-2)} \\
& =\frac{6}{3} \\
& =2
\end{aligned}
$$

(h)

$$
\begin{aligned}
& a=12, d=-6, n=100 \\
& S_{100}=\frac{100}{2}(2(12)+99 x-6) \\
& =
\end{aligned}
$$

(i)

$$
\begin{aligned}
m & =-\tan 30^{\circ} \\
& =-\frac{1}{\sqrt{3}}
\end{aligned}
$$

(j) $\quad y^{\prime}=e^{2 x+1}$
at $x=-1, \quad y^{\prime}=2 e^{2(-1)+1}$

$$
\begin{aligned}
& =2 e^{-1} \\
& =\frac{2}{e}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{1} e^{x} d x & =\left[e^{x}\right]_{0}^{1} \\
& =e^{1}-e^{0} \\
& =e-1
\end{aligned}
$$

(12)
(a) (1)

$$
\begin{aligned}
y & =3 x^{-1} \\
y^{\prime} & =-3 x^{-2} \\
& =-\frac{3}{x^{2}} \\
y & =x e^{x} \\
& =x \times e^{x}+1 \times e^{x} \\
& =x e^{x}+e^{x} \\
& =e^{x}(x+1)
\end{aligned}
$$

(ii) $y=\ln (5 x-1)$

$$
y^{\prime}=\frac{5}{5 x-1}
$$

(iii)
(b)
(i)

$$
\begin{aligned}
\int(2 x-5)^{4} d x & =\frac{(2 x-5)^{5}}{5 \times 2} \\
& =\frac{1}{10}(2 x-5)^{5}+c
\end{aligned}
$$

(ii) $\int \frac{2}{x-1} d x=2 \log _{e}(x-1)+c$
(iii)

$$
\begin{aligned}
\int \frac{x-1}{x^{2}} d x & =\int \frac{1}{x}-\frac{1}{x^{2}} d x \\
& =\int \frac{1}{x}-x^{-2} d x \\
& =\ln x+x^{-1} \\
& =\ln x+\frac{1}{x}+c
\end{aligned}
$$

(C) $\frac{d y}{d x}=3 x^{2}+4 x-5$

Substituting $y_{(-1,4)}=x^{3}+2 x^{2}-5 x+c$

$$
\begin{aligned}
& (-1,4) \\
& 4=(-1)^{3}+2(-1)^{2}-5(-1)+C \\
& C=-2
\end{aligned}
$$

so $\quad y=x^{3}+2 x^{2}-5 x-2$
(d)

$$
\begin{aligned}
A & =2 \int_{0}^{2}\left(4-x^{2}\right) d x \\
& =2\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =2\left(4(2)-\frac{2^{3}}{3}-0\right) \\
& =\frac{32}{3}\left(10 \frac{2}{3}\right) u^{2}
\end{aligned}
$$

(e)

$$
\begin{gathered}
x^{2}+k x+36=0 \\
\begin{aligned}
\Delta & =k^{2}-4(1)(36) \\
& =k^{2}-144
\end{aligned}
\end{gathered}
$$

If $\Delta>0, k^{2}-144>0$

$$
\begin{aligned}
& k^{2}>144 \\
& k<-12 \text { or } k>12
\end{aligned}
$$

Q13
(a)

$$
\frac{1}{2} \times m \times(m+2) \times \sin 30^{\circ}=12
$$

$$
\frac{1}{2} m(m+2) \times \frac{1}{2}=12
$$

$$
m^{2}+2 m=48
$$

$$
m^{2}+2 m-48=0
$$

$$
(m+8)(m-6)=0
$$

$$
m=-8 \text { or } m=6
$$

$$
\text { as } M>0 \text { choose } M=6
$$

(b).
(1)

x	1	2	3
y	0	0.69	1.10

(ii) $\begin{aligned} \int_{1}^{3} \log _{e} x d x & =\frac{1}{2} \times 1(0+0.69)+\frac{1}{2} \times 1(0.69+1.10) \\ & =1.24\end{aligned}$

The triangle trapeziom underestimate the area as the curve is concave down. So the approximation will be less than the exact value.

$$
\begin{aligned}
\text { (l) (i) } f(x) & =2 x^{3}-3 x^{2}-12 x+4 \quad \text { (haver } \\
f^{\prime}(x) & =6 x^{2}-6 x-12 \\
f^{\prime \prime}(x) & =12 x-6
\end{aligned}
$$

(ii) decreasing when $f^{\prime}(x)<0$ that is,

$$
\begin{gathered}
6 x^{2}-6 x-12<0 \\
x^{2}-x-2<0 \\
(x-2)(x+1)<0 \\
-1<x<2
\end{gathered}
$$

(ii) concave up when $f^{\prime \prime}(x)>0$ that is $12 x-6>0$

$$
\begin{array}{r}
12 x>6 \\
x>\frac{1}{2}
\end{array}
$$

(e) (i) $(-a,-4 a)$
(ii) $(-a, 0)$
(a)

$$
\begin{aligned}
y & =(x-1)^{3} \\
\sqrt[3]{y} & =x-1 \\
x & =\sqrt[3]{y}+1
\end{aligned}
$$

$$
A=\int_{1}^{8}(\sqrt[3]{y}+1) d y
$$

$$
=\int_{1}^{1}\left(y^{\frac{1}{3}}+1\right) d y
$$

$$
=\left[\frac{3}{4} y^{\frac{4}{3}}+y\right]_{1}^{8}
$$

$$
=\left(\frac{3}{4} \times 8^{\frac{4}{3}}+8\right)-\left(\frac{3}{4} \times 1+1\right)
$$

$$
=\frac{73}{4}
$$

$$
=18 \frac{1}{4}
$$

(b) $2 x^{2}-4 x+7=0$

$$
\text { (i) } \begin{aligned}
\alpha+\beta & =\frac{4}{2} \\
& =2 \mathrm{~J}
\end{aligned}
$$

(ii) $\alpha \beta=\frac{7}{2}$
(iii)

$$
\begin{aligned}
\frac{\alpha}{\beta}+\frac{\beta}{\alpha} & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{2^{2}-2 \times \frac{7}{2}}{\frac{7}{2}} \\
& =-\frac{6}{7}
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =(2-x)^{3} \\
y^{\prime} & =3(2-x)^{2} \times-1 \\
& =-3(2-x)^{2} \\
y^{\prime \prime} & =-6(2-x)^{\prime} \times-1 \\
& =6(2-x) \\
y^{\prime \prime} & =0 \text { at } x=2, y=0
\end{aligned}
$$

possible point of inflexion at $(2,0)$
test:

x	1	2	3
$y^{\prime \prime}$	6	0	-6
	6		n

there is a concavity change so there in a point of inflexion at $(2,0)$
(d)

$$
\begin{aligned}
& y=x^{2}+\frac{16}{x} \\
&=x^{2}+16 x^{-1} \\
& y^{\prime}=2 x-16 x^{-2} \\
&=2 x-\frac{16}{x^{2}} \\
&=\frac{2 x^{3}-16}{x^{2}} \\
&=\frac{2\left(x^{3}-8\right)}{x^{2}} \\
& x^{3}=8 \\
& x=2 \\
& y=12 \\
& y^{\prime \prime}=6 \\
& y^{\prime}=0 \quad \text { at }
\end{aligned}
$$

there is a minimum turning point at $(2,12)$
(e) $x^{\frac{2}{3}}+x^{\frac{1}{3}}-6=0$

$$
\text { let } m=x^{\frac{1}{3}}
$$

the equation becomes

$$
\begin{gathered}
m^{2}+m-6=0 \quad \\
(m+3)(m-2)=0 \\
m=-3
\end{gathered} \quad \text { or } \quad m=2
$$

(15)
(a)

$$
\begin{aligned}
3 b^{3}-24 & =3\left(b^{3}-8\right) \\
& =3(b-2)\left(b^{2}+2 b+4\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\dot{(i)} \text { if } \frac{2}{x} & =x \\
x^{2} & =2 \\
x & =\sqrt{2} \quad(x>0) \\
y & =\sqrt{2} \quad
\end{aligned}
$$

So A is the pt $(\sqrt{2}, \sqrt{2})$
(ii)

$$
\begin{aligned}
A & =\int_{\sqrt{2}}^{2}\left(x-\frac{2}{x}\right) d x \\
& \left.=\left[\frac{x^{2}}{2}-2 \ln x\right]_{\sqrt{2}}^{2}\right\} \text { either } \\
& =\frac{2^{2}}{2}-2 \ln 2-\left(\frac{(\sqrt{2})^{2}}{2}-2 \ln (\sqrt{2})\right) \\
& =2-2 \ln 2-1+2 \ln 2^{\frac{1}{2}} \\
& =1-2 \ln 2+\ln 2 \\
& =1-\ln 2
\end{aligned}
$$

(iii)

$$
\begin{aligned}
V & =\pi \int_{\sqrt{2}}^{2} x^{2}-\left(\frac{2}{x}\right)^{2} d x \\
& =\pi \int_{\sqrt{2}}^{2} x^{2}-\frac{4}{x^{2}} d x \\
& =\pi\left[\frac{x^{3}}{3}+\frac{4}{x}\right]_{\sqrt{2}}^{2} \\
& =\pi\left(\frac{2^{3}}{3}+\frac{4}{2}-\left(\frac{\sqrt{2}^{3}}{3}+\frac{4}{\sqrt{2}}\right)\right) \\
& =\pi\left(\frac{14}{3}-\frac{2 \sqrt{2}}{3}-2 \sqrt{2}\right) \\
& =\frac{\pi}{3}(14-8 \sqrt{2}) u^{3}
\end{aligned}
$$

(C)

$$
\sqrt{ }\}
$$

$$
\begin{gathered}
\sin x \tan x-4 \sin x-\tan x+4=0 \\
\sin x(\tan x-4)-1(\tan x-4)=0 \\
(\sin x-1)(\tan x-4)=0 \\
\sin x=1 \quad \tan x=4 \\
x=90^{\circ} \quad x=76^{\circ} \text { or } 256^{\circ}
\end{gathered}
$$

but $\tan 90^{\circ}$ is not defined so

$$
x=76^{\circ} \text { or } 256^{\circ} \text { are the only solutions }
$$

(d) $a=35, r=2^{x}$
(i) $-1<2^{b}<1$

(ii)

$$
\begin{aligned}
\frac{35}{1-2^{b}} & =40 \\
1-2^{b} & =\frac{35}{40} \\
2^{b} & =\frac{1}{8} \\
b & =-3
\end{aligned}
$$

(e) $y=\ln \left(x^{2}+e\right)$

If $x=0, y=\ln e$

$$
=1
$$

for any other value of $x, x^{2}>0$ and $\therefore \ln \left(x^{2}+e\right)>1$
so range is $y \geqslant 1$
(16) (a)

gradient of tangent

$$
\begin{aligned}
& \text { is }-\frac{1}{2} \\
& x y=4 \\
& y=4 x^{-1} \\
& y^{\prime}=-4 x^{-2}
\end{aligned}
$$

$$
\text { so }-\frac{4}{x^{2}}=-\frac{1}{2}
$$

the points are $(2 \sqrt{2}, \sqrt{2})$ and $(-2 \sqrt{2},-\sqrt{2})$

$$
\begin{aligned}
x^{2} & =8 \\
x & = \pm 2 \sqrt{2} \\
y & =\frac{ \pm 4}{2 \sqrt{2}} \\
& = \pm \sqrt{2}
\end{aligned}
$$

(b) $y=m x^{2}+n x+m n^{2}$
for the quadratic to be positive definite we need $m>0$ and $n^{2}-4(m)\left(m n^{2}\right)<0$

$$
\begin{array}{cc}
n^{2}-4 m^{2} n^{2} & <0 \\
n^{2}\left(1-4 m^{2}\right) & <0
\end{array}
$$

now $n^{2}>0$ for all $n \neq 0$

$$
\begin{aligned}
1-4 m^{2} & <0 \\
4 m^{2} & >1 \\
m^{2} & >\frac{1}{4} \\
m<-\frac{1}{2} & \text { or } m>\frac{1}{2}
\end{aligned}
$$

bot $m>0$ so choose $m>\frac{1}{2}$
So the quadratic is pesetive definite for all $n \neq 0, m>\frac{1}{2}$
(c) (i) the area of the fist rectangle is $\frac{1}{2} \times 1=\frac{1}{2}$

$$
\begin{array}{ll}
\text { " } & \text { second } \\
\text { Hind } & \frac{1}{3} \times 1=\frac{1}{3} \\
\frac{1}{4} \times 1 & =\frac{1}{4}
\end{array}
$$

the rectangles underestimate the area under the curve which is given by

$$
\int_{0}^{3} \frac{1}{x+1} d x
$$

So $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}<\int_{0} \frac{1}{x+1} d x$
(ii) This time the rectangles will over-estmate the area

$$
\text { so } \frac{1}{2}+\frac{1}{3}+\frac{1}{4}>\int_{0}^{3} \frac{1}{x+2} d x
$$

(iii) $\sum_{r=2}^{100} \frac{1}{r}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{100}$
from (i) + (ii)

$$
\begin{aligned}
\text { From (i) }+ \text { (ii) } & <\sum_{r=2}^{100} \frac{1}{r}<\int_{0}^{99} \frac{1}{x+1} d x \\
\int_{0}^{99} \frac{1}{x+2} d x & <\sum_{r=2}^{100} \frac{1}{r}<[\ln (x+1)]_{0}^{99} \\
{[\ln (x+2)]_{0}^{99} } & <\sum_{r=2}^{1000} \frac{1}{r}<\ln 100-\ln 1 \\
\ln 101-\ln 2 & <\sum_{r=2}^{100} \frac{1}{r}<\ln 100 \\
\ln \left(\frac{101}{2}\right) & <\sum_{r=2}^{100} \frac{1}{r}<4.61
\end{aligned}
$$

(d)

(i) in A'S AOP and $A B C$ $\angle A P O=\angle A B C$ (given) $\angle A$ is common

So $\frac{r}{R}=\frac{\sqrt{h^{2}+r^{2}}}{h-R}$

$$
\frac{r^{2}}{R^{2}}=\frac{h^{2}+r^{2}}{(h-R)^{2}}
$$

$$
r^{2}(h-R)^{2}=R^{2}\left(h^{2}+r^{2}\right)
$$

$$
\begin{aligned}
& r^{2}\left(h^{2}-2 h R+R^{2}\right)=R^{2} h^{2}+R^{2} r^{2} \\
& r^{2}\left(h^{2}-2 h R+R^{2}-R^{2}\right)=R^{2} h^{2}
\end{aligned}
$$

$$
r^{2}\left(h^{2}-2 h R+R^{2}-R^{2}\right)=R^{2} h^{2}
$$

$$
r^{2}=\frac{R^{2} h^{2}}{h^{2}-2 h R}
$$

$$
=\frac{R^{2} h}{h-2 R}
$$

(ii)

$$
\begin{aligned}
V & =\frac{\pi}{3} r^{2} h \\
& =\frac{\pi}{3} \times \frac{R^{2} h}{h-2 R} \times h \\
& =\frac{\pi R^{2} h^{2}}{3(h-2 R)}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d V}{d h} & =\frac{1}{3} \pi\left(\frac{(h-2 R) \times 2 R^{2} h-R^{2} h^{2}(1)}{(h-2 R)^{2}}\right) \\
& =\frac{1}{3} \pi\left(\frac{2 R^{2} h^{2}-4 R^{3} h-R^{2} h^{2}}{(h-2 R)^{2}}\right) \\
& =\frac{1}{3} \pi\left(\frac{R^{2} h^{2}-4 R^{3} h}{(h-2 R)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v}{d h}=0 \quad \text { at } \quad \begin{aligned}
R^{2} h^{2}-4 R^{3} h & =0 \\
h R^{2}(h-4 R) & =0 \\
h & =4 R \quad, \quad h \neq 0 \\
&
\end{aligned} \quad \begin{aligned}
\text { as } h>2 R
\end{aligned} ~
\end{aligned}
$$

of $h=4 R$,

$$
\begin{aligned}
r^{2} & =\frac{R^{2} \times 4 R}{4 R-2 R} \\
& =\frac{4 R^{3}}{2 R} \\
& =2 R^{2} \rightarrow r=\sqrt{2} R
\end{aligned}
$$

least volume with $h=4 R$ and $r=\sqrt{2} R$
(iv)

$$
\begin{aligned}
V_{C} & =\frac{1}{3} \pi r^{2} h \quad V_{S}=\frac{4}{3} \pi R^{3} \\
& =\frac{1}{3} \pi 2 R^{2} \times 4 R \\
& =\frac{8 \pi R^{3}}{3}
\end{aligned}
$$

rato is 2:1

