SYDNEY TECHNICAL HIGH SCHOOL

YEAR 11 YEARLY EXAMINATION MATHEMATICS EXTENSION 1

2004

Time allowed: 90 minutes

Directions to Candidates

- Attempt all questions
- Start each question on a new page
- All necessary working should be shown
- Unless otherwise specified, answers must be given in their simplest form
- Approved calculators may be used in all sections.
- Use a ruler when drawing straight lines
- Marks may be deducted for careless or poorly arranged work.
- Marks shown are approximate and may be varied.

Name:	Class:

1	2	3	4	5	6	TOTAL
12	10	12	10	- 9	10	63

QUESTION 1

- a) If $\sin \alpha = \frac{2}{3}$ and α is acute find the exact value of $\sin 2\alpha$
- b) If $x^2 y^2 = 36$ and x + y = 8 find the value of x y
- c) Solve $2^{2x} 6(2^x) + 8 = 0$
- d) Solve $\frac{x-2}{x} \ge 1$
- e) Find the exact value of $\tan \alpha$ if α is the acute angle between the lines
 - $y = \frac{1}{2}x$ and $y = \frac{-1}{\sqrt{3}}x + 1$ (do not rationalize the denominator)

QUESTION 2

- a) Find the coordinates of the points on the curve $y = x^3 + 3x^2$ where the tangent is parallel to the line 9x y 5 = 0
- b) A parabola has equation $y^2 6y 3 = 12x$
 - i) Write the equation of the parabola in the form $(y-k)^2 = 4a(x-h)$ 2 Find the:
 - ii) Coordinates of the vertex 1
 - iii) Coordinates of the focus
 - iv) Equation of the directrix 1
- c) Copy and complete the following to define a parabola as a locus

 "A parabola is the locus of all points that....."

QUESTION 3

- Show the equation of the chord PQ joining the points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ on the parabola $x^2 = 4ay$ is $y = \frac{1}{2}(p+q)x apq$
- b) Consider the function $f(x) = 6x^3 19x^2 + 11x + 6$
 - i) Use the factor theorem to show that x-2 1 is a factor of f(x)
 - ii) Completely factorise f(x) 3
- c) Solve $\sin \theta \cos 2\theta = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$
- d) The graphs of y = |x+1| and y = |1-x| are shown

Hence sketch the graph of y = |x + 1| - |1 - x|

QUESTION 4

- a) Differentiate $y = x\sqrt{x+1}$. Give your answer as a single fraction 3
- b) Given $\cos 2A = 2 \cos^2 A 1$ evaluate p,q and rif $\cos 4x = p \cos^4 x + q \cos^2 x + r$

- c) Consider the polynomial $P(x) = (2 x)(x + 1)^2$
 - i) Sketch y = P(x) indicating where it crosses the axes
 - ii) Hence solve P(x) > 0 2

QUESTION 5

- a) When the polynomial P(x) is divided by (x+1)(x-2), the result can be written as P(x) = (x+1)(x-2)Q(x) + R(x), where R(x) = ax+b
 - i) Given that P(-1) = 3, find the value of R(-1)
 - ii) Given also that the remainder is -2 when P(x) is divided by x-2, find the values of a and b
- b) i) Find the value of k if the equation $x^3 + kx^2 4x 8 = 0$ has two roots equal in size but opposite in sign.
 - ii) Hence solve the equation 2

QUESTION 6

 $P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$

- (a) Show that the equation of the normal to the parabola at the point *P* is $x + py = 2ap + ap^3$
- (b) If the normal at P cuts the y-axis at Q show that the coordinates of Q are $(0,2a+ap^2)$.
- (c) Show that the coordinates of R which divided the interval PQ externally in the ratio 2:1 are $(-2ap, 4a + ap^2)$.
- (d) Find the Cartesian equation of the locus of *R*.
- (e) Show that if the normal at P passes through a given point (h,k) then p must be a root of the equation $ap^3 + (2a k)p h = 0$
- (f) Hence state the maximum number of normals to the parabola $x^2 = 4ay$ which can pass through any given point.

2

2004 YEAR II YEARLY EXTENSION I

Question 1

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$= 2 \times \frac{2}{3} \times \frac{\sqrt{5}}{3}$$

$$= \frac{4\sqrt{5}}{9}$$

b)
$$(x+y)(x-y) = x^2 - y^2$$

8 $(x-y) = 36$
 $x-y = 4.5$

c)
$$2^{2x} - 6(2^{x}) + 8 = 0$$

let $a = 2^{x}$
 $a^{2} - 6a + 8 = 0$
 $(a - 4)(a - 2) = 0$
 $a = 4$ or $a = 2$
 $2^{x} = 4$ $2^{x} = 2$
 $\therefore x = 2, 1$

d)
$$x^{2} \times \frac{x-2}{x} \geqslant 1 \times x^{2}$$

$$x(x-2) \geqslant x^{2}$$

$$x^{2}-2x \geqslant x^{2}$$

$$-2x \geqslant 0$$

$$x \leq 0$$

$$x \leq 0$$

$$x \leq 0$$

e)
$$m_1 = \frac{1}{2}$$
 and $m_2 = -\frac{1}{\sqrt{3}}$
 $tan \alpha = \begin{vmatrix} \frac{1}{2} - (-\frac{1}{\sqrt{3}}) \\ \frac{1}{1 + \frac{1}{2} \times -\frac{1}{\sqrt{3}}} \end{vmatrix}$
 $= \begin{vmatrix} \frac{1}{2} + \frac{1}{\sqrt{3}} \\ \frac{1}{1 - \frac{1}{2\sqrt{3}}} \end{vmatrix}$
 $= \frac{\sqrt{3} + 2}{2\sqrt{3} - 1}$
 $= \frac{\sqrt{3} + 2}{2\sqrt{3} - 1}$

Question 2

a)
$$y = x^3 + 3x^2$$
 $m_{line} = 9$

$$\frac{dy}{dx} = 3x^2 + 6x$$

$$3x^{2} + 6x = 9$$

 $3x^{2} + 6x - 9 = 0$
 $x^{2} + 2x - 3 = 0$
 $(x + 3)(x - 1) = 0$
 $x = -3, 1$

b)
$$y^2 - 6y - 3 = 12x$$

i. $y^2 - 6y + 9 = 12x + 3 + 9$
 $(y-3)^2 = 12(x+1)$

ii.
$$\frac{(-1, 3)}{(2, 3)}$$
 iv. $x = -4$

c) A parabola is the locus of all points that are equidistant from a fixed point (focus) and a fixed line (directrix).

Question 3

a)
$$m_{PQ} = \frac{ap^2 - aq^2}{2ap - 2aq}$$

= $\frac{a(p+q)(p-q)}{2a(p-q)}$
= $\frac{1}{2}(p+q)$

$$y - y_1 = m(x - x_1)$$

 $y - ap^2 = \frac{1}{2}(p+q)(x - 2ap)$
 $y - ap^2 = \frac{1}{2}(p+q)x - ap^2 - apq$
 $y = \frac{1}{2}(p+q)x - apq$

b)
$$f(x) = 6x^3 - 19x^2 + 11x + 6$$

i. $x-2$ is a factor if
 $f(2) = 0$

$$f(2) = 6(2^3) - 19(2^2) + 11.2 + 6$$

= 0

 \therefore x-2 is a factor

$$6x^{2} - 7x - 3$$
1i. $x - 2)6x^{3} - 19x^{2} + 11x + 6$

$$6x^{3} - 12x^{2}$$

$$- 7x^{2} + 11x$$

$$- 7x^{2} + 14x$$

$$f(x) = (x-2)(6x^2 - 7x - 3)$$

: $f(x) = (x-2)(3x+1)(2x-3)$

c) $\sin \theta - \cos 2\theta = 0$ $\sin \theta - (1 - 2\sin^2 \theta) = 0$ $2\sin^2 \theta + \sin \theta - 1 = 0$ $(\sin \theta + 1)(2\sin \theta - 1) = 0$ $\sin \theta = -1$ or $\sin \theta = \frac{1}{2}$

$$\therefore \theta = 30, 150, 270$$

Question 4

a)
$$y = x \sqrt{x+1}$$

 $u = x$ $V = (x+1)^{-\frac{1}{2}}$
 $u' = 1$ $V' = \frac{1}{2}(x+1) \cdot 1$
 $= \frac{1}{2\sqrt{x+1}}$

$$\frac{dy}{dx} = \sqrt{x+1} + \frac{x}{2\sqrt{x+1}}$$

$$= \frac{2(x+1) + x}{2\sqrt{x+1}}$$

$$= \frac{3x+2}{2\sqrt{x+1}}$$

$$\cos 4x = 2 \cos^{2} 2x - 1$$

$$= 2 (\cos 2x)^{2} - 1$$

$$= 2 (2\cos^{2} x - 1)^{2} - 1$$

$$= 2 (4\cos^{4} x - 4\cos^{2} x + 1) - 1$$

$$= 8 \cos^{4} x - 8 \cos^{2} x + 1$$

$$\therefore p = 8 \quad q = -8 \quad r = 1$$

c)
$$P(x) = (2-x)(x+1)^2$$

i.

ii.
$$(2-x)(x+1)^2 > 0$$

 $x < 2, x \neq -1$

or
$$\alpha < -1$$
, $-1 < \alpha < 2$

auestion 5

a)
$$P(x) = (x+1)(x-2)Q(x) + R(x)$$

i.
$$P(-1) = 0 + R(-1)$$

$$\therefore R(-1) = 3$$

ii.
$$P(2) = 0 + R(2)$$

 $R(2) = -2$

Using
$$R(x) = ax + b$$

 $3 = -a + b$
 $-2 = 2a + b$

Solve simultaneously -5 = 3a $a = -\frac{5}{3}$ $\frac{5}{3} + b = 3$ $b = \frac{4}{3}$

$$\therefore a = -\frac{5}{3} \quad b = \frac{4}{3}$$

b)
$$x^3 + kx^2 - 4x - 8 = 0$$

i. let the roots be $\alpha, -\alpha, \beta$ sum of roots : $\alpha + -\alpha + \beta = -k$ $\beta = -k$

sum of roots:
$$-\alpha^2 + \alpha\beta - \alpha\beta = -4$$

2 at a time $\alpha^2 = 4$
 $\alpha = \pm 2$

product of roots: $-\alpha^2\beta = 8$ $-4\beta = 8$ 8 = -2

$$\therefore k=2$$

ii.
$$x = 2, -2$$

Question 6

i.
$$y = \frac{x^2}{4a}$$

$$\frac{dy}{dx} = \frac{x}{2a}$$

$$m_{tangent at P} = \frac{2ap}{2a}$$

$$= P$$

$$m_{normal at P} = -\frac{1}{P}$$

Equation of normal:

$$y - ap^2 = -\frac{1}{p}(x - 2ap)$$

 $py - ap^3 = -x + 2ap$
 $x + py = 2ap + ap^3$

ii. At Q, x = 0

$$0 + py = 2ap + ap^{3}$$

 $y = 2a + ap^{2}$
 $\therefore Q(0, 2a + ap^{2})$

$$R\left(\frac{1 \times 2ap + -2 \times 0}{-2 + 1}, \frac{1 \times ap^{2} + -2(2a + ap^{2})}{-2 + 1}\right)$$

$$= R\left(\frac{2ap}{-1}, \frac{ap^{2} - 4a - 2ap^{2}}{-1}\right)$$

$$= R\left(-2ap, 4a + ap^{2}\right)$$

iv.
$$x = -2ap \Rightarrow p = -\frac{x}{2a}$$

$$y = 4a + ap^{2}$$

$$y = 4a + a\left(\frac{-x}{2a}\right)^{2}$$

$$y = 4a + \frac{x^{2}}{4a}$$

$$4ay = 16a^{2} + x^{2}$$

v. (h, k) satisfies equation of normal $h + pk = 2ap + ap^3$ $ap^3 + 2ap - pk - h = 0$ $ap^3 + (2a - k)p - h = 0$

vi. 3 (a cubic can have at most three distinct solutions).