SYDNEY TECHNICAL HIGH SCHOOL

(Celebrating 100 Years of Public Education)

YEAR 11 YEARLY EXAMINATION

PRELIMINARY HSC ASSESSMENT TASK 3

2011

Mathematics Extension 1

General Instuctions

- Working time 90 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Diagrams are not drawn to scale

Total marks - 66

- Attempt Questions 1 6
- · All questions are of equal value
- · Start each question on a new page

Name :		
_		
Teacher:		

Question	Question	Question	Question	Question	Question	TOTAL
1	2	3	4	5	6	

Question 1 (11 marks)

- (a) Express the following parametric equations in Cartesian form. 1 x = t + 1 , y = t(t + 4)
- (b) Solve $\frac{x}{x+2} < 0$
- (c) Find, correct to the nearest degree, the acute angle between the lines 2x y + 1 = 0 and 3x 2y + 4 = 0
- (d) Write down the equation of a monic polynomial of degree 3 that is 2 an odd function and has a root at x = 2.
- (e) If α , β and γ are the roots of the equation $2x^3 4x^2 + 6x + 8 = 0$ find the value of
 - (i) $\alpha + \beta + \gamma$
 - (ii) $\alpha\beta + \alpha\gamma + \beta\gamma$ 1
 - (iii) $\alpha\beta\gamma$
 - (iv) $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$

Question 2 (11 marks) - Start a new page

(a) Evaluate
$$\lim_{x \to \infty} \frac{x^2 - x - 2}{3x^2 - 3x + 1}$$

(b) Solve the equation
$$2x = \sqrt{7x + 11}$$

(c) If
$$\theta$$
 is acute and $\cos 2\theta = \frac{3}{4}$, find the exact value of $\cos \theta$.

(d) Factorise fully the polynomial
$$2x^3 + 11x^2 + 17x + 6$$

(e) Find the values of
$$a$$
 and b if the solution of the inequality
$$|x-a| \le b \text{ is given by } 2 \le x \le 5.$$

Question 3 (11 marks) - Start a new page

- (a) Find the values of A, B and C if $2x^2 + 3x 4 \equiv A(x-1)^2 + Bx(x-2) + C(x-1)$
- (b) Find the value of k if the line 2x y + 2 + k(x + 3y 1) = 0is parallel to the line x + 2y + 4 = 0.
- (c) Use the substitution $t = tan \frac{x}{2}$ to solve the equation 4 2sinx - 5cosx = 2 for $0^{\circ} \le x \le 360^{\circ}$ correct to the nearest degree.
- (d) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$.
 - (i) Show that the gradient of the chord PQ is given by $\frac{p+q}{2}$.
 - (ii) Find the equation of the chord PQ.

Question 4 (11 marks) - Start a new page

- (a) Find the vertex and focus of the parabola $y = \frac{1}{8}x^2 + x$ 2
- (b) Find the remainder when $x^3 + 4x 4$ is divided by $x^2 1$
- (c) Find the value, or values of k if the line y = kx 16 is a tangent to the parabola $y = x^2 2x$.
- (d) Solve the equation $2\sin 2\theta = 3\tan \theta$ for $0 \le \theta \le 2\pi$. 4

 (Give your answers in radians)

Question 5 (11 marks) - Start a new page

(a) 3

In triangle ABC, angle ABC = 90°, AD = BC = 1 unit and BD = n units. If angle $ACD = \theta$ find an expression for $\tan \theta$ in terms of n.

- (b) Consider the variable point $P(4p, 2p^2)$ on the parabola $x^2 = 8y$.
 - (i) Prove that the equation of the tangent at P is $y = px 2p^2$.
 - (ii) If the tangent at P meets the y axis at the point T,find the coordinates of T.
 - (iii) If S is the focus of the parabola $x^2 = 8y$, show that TS = PS.
 - (iv) If the point M divides the interval PT internally in the ratio 1:3,find the locus of M as the point P varies.

Question 6 (11 marks) - Start a new page

- (a) Let A and B be the fixed points (5,6) and (-1,0) respectively and P be the variable point (x,y).
 - (i) Show that the locus of all points P, such that the distance from P to A 2 is twice the distance from P to B, is a circle.
 - (ii) Find the centre and radius of this circle.
- (b) The equation $x^3 + 6x^2 x + m = 0$ has one root equal to the sum of the other two roots.
 - (i) Find the value of m.
 - (ii) Solve the equation. 2
- (c) Simplify $\frac{\tan 2\theta \tan \theta}{\cot \theta + \tan 2\theta}$ 3

y = (x - 1)(x + 3) $x = (x - 1)(x + 3)$
y = (x - 1)(x + 3) $x = 2$ $x = 2$ $x = 3$
> C+2
1=2 n===================================
$an \Theta = \frac{2 - \frac{3}{2}}{(+2 \times \frac{3}{2})}$
1
2 <u>t</u>
- -
•
:. Θ = 7°
y = 2c (2c+2) (2c+2)
1) X+B+8= 2=
i) dB++8+ p8= 3
111) dp = -4
w) ~ + B + Y 2
$\frac{10)}{4ps} = \frac{2}{-4}$
<u> </u>

Teacher's Name: Student's Name/No: $2x^{2} + 3x - 4 = A(x-1)^{2} + Bx(x-2) + c(x-1)$ I = -B=> B=-1 => A=3 look of 2 : 2 = A + B c=7 equal gradients 3/1-1= 4+2K K=5 (3+47)(+-1)=0m = a(p-9)(p+9)

= P+9

cher's Name:	Student's Name/N°:
(٢	Solve similtaneously (1 solution)
	$x^2 - 2\pi = k\pi - 16$
	ne - 2n - lene + 16 = 0
	22 - (2+k)2416 =0
,	1 solution => 0 00
	(2+ k)2 - 4x16 =0
	k + 4k - 60 =0
	(K+10) (K-6) 20
***************************************	k = -10, 6
d)	25120 = 3 ton 0
	45,0600 = 35mg
	(sr Θ
	4 Sing Cos 6 - 351-0 2
	SI-0 (4 (6) + 6-3) 20
	Sineso (0) 6 = 5 \(\frac{1}{2} \)
	$\Theta = 0, \pi, \pi, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$
	, <u>, , , , , , , , , , , , , , , , , , </u>
,,	
	· · · · · · · · · · · · · · · · · · ·