SYDNEY TECHNICAL HIGH SCHOOL

YEAR 11 YEARLY EXAMINATION

PRELIMINARY HSC ASSESSMENT TASK 3 2012

Mathematics Extension 1

General Instructions

- Working time 90 minutes
- Write using black or blue pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Diagrams are not drawn to scale

Total marks

- Attempt Questions 1- 6
- All questions are of equal value
- Start each question on a new page

Name:	-
Feacher:	

Question 1	Question 2	Question ·3	Question 4	Question 5	Question 6	TOTAL
					-	

- a) A (-7,5) and B (3,1) are two points. Find the co-ordinates of the point P which divides the interval AB externally in the ratio 3:1
- 2

b) Solve
$$\frac{x}{x^2-4} \ge 0$$

2

- c) If $x^2 7x + 3 = 0$ has two real roots \propto and β , find the value of
 - i) $\propto + \beta$

1

ii) ˙ ∝ β

1

iii) $\propto^3 + \beta^3$

- 3
- d) If α, β and δ are the roots of $x^3 + 2x^2 + 4x 5 = 0$ find the value of $(\alpha 1)$ $(\beta 1)$ $(\delta 1)$
- 2

QUESTION 2

MARKS

- a) For the function $f(x) = \frac{2x-1}{1-x^2}$
 - i) state the behaviour of the curve as x approaches ∞ and $-\infty$
- 2
- ii) write down the equations of any horizontal or vertical asymptotes
- 2

iii) sketch the curve showing all important features

- 2
- b) i) Express $\cos \theta + \sqrt{3} \sin \theta$ in the form $A \cos(\theta \alpha)$ where A > 0 and $0 \le \alpha \le \frac{\pi}{2}$
- 2

ii) Solve $\cos \theta + \sqrt{3} \cdot \sin \theta = 1$ for $0 \le \theta \le 2\pi$

3

- a) Find the acute angle to the nearest degree between the vertical line 3 x=2 and 3x-2y+1=0
- b) Derive the equation of the normal at the point (2ap, ap²) on the parabola $x^2 = 4ay$

3

c) Factorise fully the polynomial $P(x) = x^3 - x^2 - 10x - 8$

3

d) Solve |2x-1| = 4x + 3

2

	QUES	TION 4		MARKS
	a)	i)	Show that $sin(A + B) + sin(A - B) = 2 sin A cos B$	1
		ii)	Hence or otherwise find the exact value of 2 sin 285 cos 45	2
The state of the s	b)	Find v	alues of k such that $x^2 + (k+1)x + 4$ is positive definite	. 3
	c)		ne area of a regular pentagon of side length 6m inswer to the nearest whole number)	3
	d)	Find th	where vertex and focus of the parabola $y^2 = -3x + 6$	2

a) One of the roots of $x^2 - (k+1)x + 2k + 2 = 0$ is twice the other root. Find the value of k

3

b) i) A monic polynomial is odd, has a single root at x = -1 and a double root at x = 3. Find its equation, if it is of degree 7 (leave in factorised form)

2

ii) Sketch this polynomial

1

c)

PL is a vertical pole, h metres high, standing on horizontal ground. PA is a shadow of the pole when the direction of the sun is due north and when the angle of elevation of the sun is 45°. PB is the shadow cast by the pole when the bearing of the sun is 345°T and its angle of elevation is 31°. The distance AB is 15 metres.

i) Draw a top view sketch and label the information given.

1

ii) Find the height h of the pole to the nearest metre

1.

QUESTION 6

MARKS

4

- a) Find the remainder when the polynomial $P(x) = x^3 3x + 1$ 2 is divided by $x^2 4$
- b) i) What is the equation of the chord of contact to the parabola $x^2 = 8y$, 1 from the external point $T(x_0, y_0)$
 - ii) If the chord of contact meets the parabola at P and Q, show that the midpoint of PQ is

$$M(x_0, \frac{x_0^2}{4} - y_0)$$

iii) If the point T lies on the line x + 2y + 5 = 0, find the locus of M.

	The same of
	•
	. and
)

Student Name:

Teacher N	lame:
-----------	-------

Student Name:	Teacher i	Name:
4		Solutions.
[a] B.(3	1) P(x,7)	$\frac{b)}{2c^2-4} > 0$
A. K: (-7,5)	=-3:1	Critical pts
$x = \frac{-3\times3 + 1\times-7}{-3+1} y =$	$\frac{-3x + x 5}{-3+ }$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
= 8 =		-2 <x≤0, x="">2</x≤0,>
(8,-1)		
c) ci) 7	d) $x^3 + 2$	$x^2 + 4x - 5 = 0$
$\frac{\text{cli)} 3}{\text{clii)} 2^3 + \beta^3}$		$\delta = -2$, $\Delta \beta \delta = 5$, $\Delta \beta + \Delta \delta + \beta \delta$ $= 4$
$(d+\beta)(d^2-2\beta+\beta^2)$	(2-1)(B-1)(8-1)
$(\lambda + \beta)(\lambda + \beta)^2 - 2\lambda\beta - \lambda\beta$	(2B-	$(\alpha+\beta)+()(\gamma-1)$
$\frac{(a+\beta)(a+\beta)^{2}-3a\beta}{7[7^{2}-3x3]}$	•	- dβ-8(d+β)+ d+β+8-1 -(dβ+8d+8β)+(d+β+8)-1
= 280	•	$-\frac{(\alpha p + 0 \alpha + 0 p) + (\alpha + p + 0) - 1}{4 + -2 - 1 = -2}$
a) ci) $f(x) = \frac{2x-1}{1-x^2}$		7 1
a) ci) $f(x) = \frac{2x-1}{1-x^2}$ As $2x \Rightarrow x$, $f(x) \Rightarrow 0$?		
As $x \to -\infty$, $f(x) \to 0 \downarrow$		
		-1'-1'-1'-1'-1'-1'-1'-1'-1'-1'-1'-1'-1'-
(i) $x = \pm 1$ vertical		
y = 0 horizontal		
		V I W

Student Name:

رن) (ط	$A = \sqrt{(2 + (\sqrt{3})^2)} =$	2
" /	- + 1 \ \ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,

$$\lambda = +an^{-1}\sqrt{3} : \lambda =$$

$$\frac{1}{\text{cii}} \frac{2 \cos \left(0 - \frac{\pi}{3}\right)}{2} = 1$$

$$\cos\left(\theta - \frac{\pi}{3}\right) = \frac{1}{2}$$

$$0 = 0, \frac{2\pi}{3}, 2\pi$$

$$3 \times -2 \times +1 = 0$$

$$\frac{1}{\sqrt{1-\frac{3}{2}}} \times \frac{1}{\sqrt{1-\frac{3}{2}}}$$

$$M = \frac{3}{2}$$

$$=\frac{3}{2} - 0$$

Teacher Name: _

c)
$$P(x) = x^3 - x^2 - 10$$

 $P(1) = 0$, $P(-1) = 0$

$$\frac{f(y) \neq 0}{f(-2)} = 0$$

$$P(x) = (x+1)(x^2-3x-4)$$

$$\frac{f \sqrt{-ap^2} - 2c + 2ap}{x + 0 \sqrt{3}} = 2ap + ap^3$$

$$x + py = 2ap + ap^3$$

$$P(sc) = (3r+2)(3r+1)(3r-4)$$

$$P(sc) = (sc + 2)(sc + 1)(sc - 4)$$

$$(x-4)$$

$$+2an$$
 $+4p^3$

Student Name:

Teacher Name: _____

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$2x-1=4x+3$$
 $2x-1=-(4x+3)$

$$-4 = 2x$$
 $2x-1 = -4x-3$

$$x = -2 \qquad 6x = -2$$

= -sin30 - sin60
$$(k+1)^2 - 4x(x+4)$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{-1-\sqrt{3}}{2} \qquad (k-3)(k+5) < 0$$

$$tan 36 = h$$
 $h = \frac{3}{4n36}$
 $y^2 = -3x + 6$
 $y^2 = -3(x-2)$
 $= 4.129$
Vertex (2,0)

Area =
$$5x \pm x + 6x + 129$$
 $a = \frac{3}{4}$

$$=62 m^2$$

$$\frac{1}{\tan 36 = h}$$
 d) $y^2 = -3x + 6$

$$y^2 = -3(3c-2)$$

$$a = \frac{3}{4}$$

$$=62 \,\mathrm{m}^2 \qquad \qquad \text{Focus} \quad (14,0)$$

Student Name: Teacher Name: b) (i) 2c.2c. = 4(y + yo $69 P(x) = x^3 - 3x + 1$ Let remainder be ax+b = | : a = | remainder is oct Eij Solve x2 = 8 y and ococo = 4(y+y0) simultareousl $\frac{-2x_0x + 8y_0 = 0}{\text{et} \quad \text{costs}}$ d and B $\lambda + \beta = 2x_0$ is a value of midpoint Now sub. x=x into chord of contact اخ Cili)

Student Name:	Teacher Name:
Now for locus of	M :
$x = x_0 \qquad y = \frac{x_0}{4}$	——————————————————————————————————————
Yo = -2C0-5 2	
$\frac{1}{1+\frac{2c}{4}} = \frac{2c}{4} = \frac{-2c}{4}$	2
$\frac{1}{1-y} = \frac{x^2}{4+\frac{x+5}{2}}$	
$4y = x^{2} + 2(x+5)$ $4y = x^{2} + 2x + 10$	is locus of M
/	