SYDNEY TECHNICAL HIGH SCHOOL

Year 11

PRELIMINARY HIGHER SCHOOL CERTIFICATE

ASSESSMENT TASK 3

SEPTEMBER 2016

Mathematics Extension 1

General Instructions

- Working time 90 minutes
- Write using black or blue pen
- Approved calculators may be used
- In questions 6 to 11, show relevant mathematical reasoning and/or calculations
- Start each question in section 2 on a new page
- Full marks may not be awarded for careless or badly arranged work

Ι	0	tal	mar	ks –	71	
---	---	-----	-----	------	----	--

Section 1 - 5 marks

Attempt Questions 1 – 5 Allow about 8 minutes for this section.

Section 2 - 66 marks

Attempt Questions 6 – 11 Allow about 82 minutes for this section.

Name:		
Teacher:		

Section 1 5 marks

Allow about 8 minutes for this section. Use the multiple choice answer sheet in your answer booklet for questions 1-5. Do not remove the multiple choice answer sheet from your answer booklet.

1. Which of the following is an expression for:

$$\frac{d}{dx}(x\sqrt{x^2+2})$$
?

A)
$$\frac{x}{\sqrt{x^2+2}}$$

$$B) \qquad 1 + \frac{x}{\sqrt{x^2 + 2}}$$

C)
$$\frac{2x^2+2}{\sqrt{x^2+2}}$$

D)
$$\frac{2x^2+x+4}{\sqrt{x^2+2}}$$

- 2. A (-7, 10) and B (1, -2) are two points. What is the value of k such that the point P(k, 1) divides the interval AB internally in the ration of 3:1?
- A) -5
- B) -3
- C) -1
- D) 5
- 3. A curve has parametric equations x = at and $y = \frac{1}{2}(a + at^2)$. What is the Cartesian equation of the curve?
- $A) x^2 = 4ay$
- B) $x^2 = 2a$
- $C) x^2 = a(2y a)$
- $D) x^2 = 2y a$

- 4. The graph of the even polynomial passes through the point (1, 2). What is the remainder when P(x) is divided by (x + 1)?
- A) -2
- B) -1
- C) 1
- D) 2
- 5. Which of the following is an expression for:

$$\frac{\sin 4x}{\sin x}$$

- A) $\frac{1}{2}\cos 2x \cos x$
- B) $\cos 2x \cos x$
- C) $2\cos 2x\cos x$
- D) $4\cos 2x\cos x$

Section 2 66 marks

Attempt questions 6 - 11.

Allow about 82 minutes for this section.

Answer each question in your answer booklet. Start each question on a new page.

Question 6 11 Marks

a) Make x the subject in the formula

$$y = \frac{x-3}{2-x}$$

- b) Consider the polynomial $P(x) = x^3 + ax + b$ where a and b are real numbers. (x-2) is a factor of P(x) and when P(x) is divided by (x+1) the remainder is 6.
 - (i) Show that 2a + b = -8 and b a = 7

2

(ii) Find the values of a and b.

1

c) A parabola has equation

$$y^2 - 2y - 8x + 17 = 0$$

(i) Find the coordinates of its vertex.

(ii) Sketch the parabola showing its x intercept

(iii) On your sketch, display the focus and directrix.

d) The equation $x^3+2x^2+3x+1=0$ has roots α,β and γ . Find the value of $\alpha^2+\beta^2+\gamma^2$

Question 7 (Start a new page)

11 Marks

2

a) Find the values of a and b if:

 $x^{2} + 10x - 3 = ax(x+1) + b(x-1)^{2}$

b) Given the polynomial $P(x) = -x^3 - ax$ is odd and has (x + 2) as a factor:

Find a

- (i) Sketch the graph of y = P(x) showing the intercepts on the x axis.
- (ii) Solve the inequality $P(x) \le 0$
- c) (i) Use the substitution $t = \tan \frac{x}{2}$ to show that the equation $3 \sin x \cos x = 1$ is equivalent to the equation $t = \frac{1}{3}$
 - (ii) Solve the equation 3sinx cosx = 1 over the domain $0^{\circ} \le \theta \le 360^{\circ}$ 2 giving the answers correct to the nearest minute.
- d) Solve the inequality $\frac{1}{x} \frac{1}{x-2} > 0$

Question 8 (Start a new page)

11 Marks

3

1

- a) Solve the equation $\sqrt{2}\cos(x+60^\circ)-1=0$ for $0^\circ \le x \le 360^\circ$
- b) P(2ap, ap²) and Q(2aq, aq²) are two points on the parabola $x^2 = 4ay$ with 2 parameter values p = 2 and q = -1. Find the angle made correct to the nearest degree between the tangents at these points.
- c) If secx tanx = k for some real number k, show that $secx + tanx = \frac{1}{k}$ 2
- d) Show that 3x 4y + 10 = 0 is a tangent to the circle $x^2 + y^2 = 4$
- e) (i) Show that sin(A + B) + sin(A B) = 2sinAcosB.
 - (ii) Hence or otherwise evaluate 2*sin*45*cos*15 and leave your answer in exact form.

a) (i) Sketch y = |x-2|

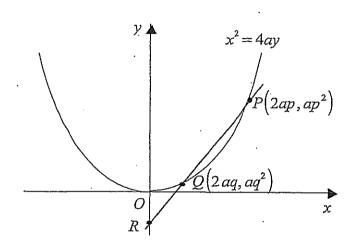
1

(ii) Hence or otherwise solve |x-2| = 2-x

1

1

b)



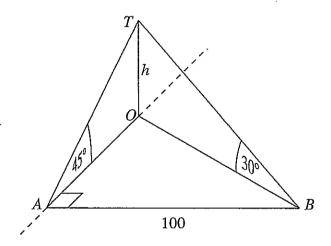
P(2ap, ap²) and Q(2aq, aq²) are two points on the parabola $x^2 = 4ay$.

- (i) Show that the chord PQ has equation (p+q)x 2y = 2apq.
- (ii) If P and Q move on the parabola such that pq = 1, where $p \neq 0$ and $q \neq 0$, show that the chord PQ (produced) always passes through a fixed pt. R on the y axis.
- c) Find all values of k which will make the expression: $(k+1)x^2 2(k-1)x + (k-5) \text{ a perfect square}$
- d) The polynomial equation $x^3 + bx^2 + cx + d = 0$ has roots α , α^2 and α^3 for some real number $\alpha \neq 0$.
 - (i) Find in terms of c and d the value of $\frac{1}{\alpha} + \frac{1}{\alpha^2} + \frac{1}{\alpha^3}$.
 - (ii) Show that $b^3d c^3 = 0$

2

- For what value(s) of x is the function $y = \frac{x+1}{x-1}$ not differentiable and give a) 1 a brief reason why not.
- For $f(x) = \frac{x^2}{x^2-4}$ b)
 - Find $\lim_{x \to \infty} \frac{x^2}{x^2 4}$ (i) 1
 - (ii) Show that it is an even function 1
 - (iii) State the domain 1
 - (iv) Without using calculus, sketch the curve showing all important 2 features.

c)



A surveyor stands at a point A, which is due south of a tower OT of height h m. The angle of elevation of the top of the tower from A is 45°. The surveyor then walks 100 m due east to a point B, from where she measures the angle of elevation of the top of the tower to be 30°.

(i) Express the length of *OB* in terms of *h*.

Show that $h=50\sqrt{2}$

(ii)

- 1
- (iii) Calculate the bearing of *B* from the base of the tower, correct to 2 the nearest degree.

Que	stion 1	1 (Start a new page)	11 Marks
a)		$(x-3)$ is a factor of the polynomial $f(x) = 2x^3 - 7x^2 - 7x + 30$, find ations for $f(x) = 0$.	2
b)		the coordinates of the point on the curve $y = x^2 + 3x - 1$ where angent is parallel to the line $y = 5x + 6$.	. 2
c)	A(2 <i>ap,</i>	ap^2) and B(2 aq , aq^2) lie on the parabola $x^2 = 4ay$.	
	(i)	Find the coordinates of the midpoint M of the chord joining A(2 ap , ap^2)	1
		and B(2aq, aq²) in simplified and factorised form.	
	(ii)	Given the equation of the chord is $y = \frac{1}{2}(p+q)x - apq$ and it passes	1
		through the focus of the parabola, show that pq = -1.	
	(iii)	Hence show by substitution that M lies on the parabola $x^2 = 2ay - 2a^2$	3

END OF TEST

2

Find the vertex and focus of the parabola given in part (iii).

(iv)

Student Name: _ 2016 Year 11

Ext. 1	Final	Prelim.	Solutions

Section 1

- C 2 C 3 C 4 D 5 D

Section 2

6.9)
$$y = \frac{x-3}{2-x}$$

$$b) a P(2) = 8 + 2a + b = 0$$

$$2y - 2cy = x - 3$$

$$P(-1) = -1 - a + b = 6$$

$$\frac{2y+3}{2} = x + xy$$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

$$2y + 3 = x(1+y)$$

$$\ddot{a}$$
 3 q = -15

$$a = -5 : b = 2$$

c) ci) $y^2 - 2y = 8x - 17$ (ii) $y^2 - 2y + 1 = 8x - 16$ $(y - 1)^2 = 8(x - 2)$

(4,1)

d) $x^3 + 2x^2 + 3x + 1 = 0$

$$= (-\frac{1}{7})^{2} - 2 \times \frac{3}{7}$$

$$= -2$$

Student Name:

Teacher Name:

7.
$$x^2 + 10x - 3 = ax(x+1) + b(x-1)^2$$

$$= ax^{2} + ax + bx^{2} - 2bx + b$$

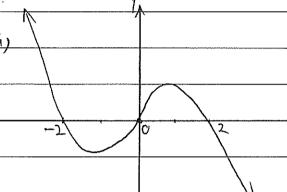
$$= (a+b)x^{2} + (a-2b)x + b$$

$$b = -3$$
, $a + b = 1$ $a - 2b = 10$

$$a-3=1$$
 $a-2x-3=10$

$$a = 4$$
 $a = 4$

b) (i)
$$P(x) = -x^3 - ax$$
 (ii)
 $P(-2) = -(-2)^3 - ax - 2 = 0$
 $= 8 + 2a = 0$



$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}$

$$\frac{6+}{+} = \frac{2}{+}$$

(ii)
$$\tan \frac{x}{2} = \frac{1}{3}$$
 (i) $\frac{1}{x} - \frac{1}{x-1} > 0$
 $\frac{x}{2} = 18^{\circ}26'$ $x \neq 0$ $x \neq 2$

$$x = 36^{\circ} 52'$$
 $\frac{1}{2} - \frac{1}{2-2} = 0$

 $\frac{1}{0} \frac{1}{2} \frac{1}{2} \frac{1}{2}$

Student Name:

Teacher Name:

8.0)
$$\sqrt{2} \cos(x+60) = 1$$
b) Gradients of

 $\cos(x+60) = \sqrt{2}$
 $\cot(x+60) = \sqrt{2}$

$$\frac{=5}{0} = 72^{\circ}$$

Secon - tanoc = K

$$sec^{2}x - tan^{2}x = K(secx + tanoc)$$

$$Nor since tan^{2}x + 1 = sec^{2}x$$

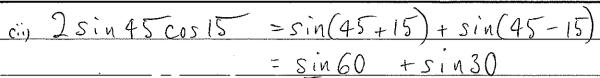
$$1 = k(secx + tanx)$$

d) If distance
$$(0,0)$$
 to $3x-4y+10=0$ equals 2, line must be a tangent.

$$d = \frac{3 \times 0 + -4 \times 0 + 10}{\sqrt{3^2 + (-4)^2}}$$

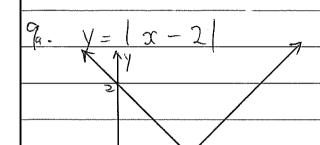
$$= \frac{10}{5}$$

$$d = 2$$



$$= \frac{13}{2} + \frac{1}{2}$$

$$= \frac{1+13}{2} + \frac{1}{2}$$

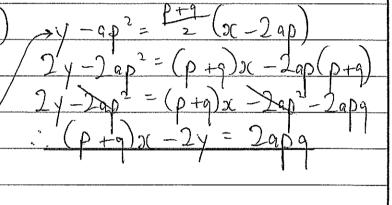


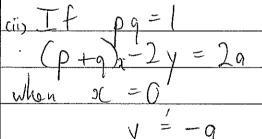
$$\frac{d}{dt} |x-2| = 2-x$$

b)a,
$$P(2ap qp^2)$$
 $Q(2aq qp^2)$

$$Mp0 = \frac{(aq^2-ap^2)}{2aq-2ap}$$

$$= \frac{(a-p)(q+p)}{2aq}$$





$$(k+1)x^{2}-2(k-1)x+(k-5)$$
is a perfect square if
$$\Delta = 0$$

y = -q -(0, -a) = fixed

$$4k^{2}-8k+4-4(k^{2}-5k+k-5)=0$$

 $4k^{2}-8k+4-4(k^{2}+20k-4k+20=0)$

Student Name:

Teacher Name:

Student Name:	reacner Name:
Dist + 12 + 13	$cii) x^3 + x^4 + x^5 = C$
$\frac{d^2}{d^3} + \frac{d}{d^3} + \frac{1}{d^3}$	$d^{2}(d+d^{2}+d^{3})=C$
$=\frac{1+d+d^2}{d^3}$	$d^2 \times -b = C$
$= \frac{\alpha_2 + \alpha_4 + \alpha_3}{\alpha_4 + \alpha_3}$	Cube both sides
$=\frac{C_1}{-d}$	$26 \times -63 = c^3$
	$-d_{x}-b^{3}=C^{3}$
	$b^3 d - c^3 = 0$

10.9) Not differentiable at b) (i) $x \to \infty$ $x^2 - 4 = 1$ x = 1 because curve $doesn't exist at that (ii) <math>f(-x) = f(x) e^{-x}$

doesn't exist at that (ii) t(-x) = t(x) even point. $\frac{(-x)^2-4}{x^2-4} = \frac{x^2}{x^2-4}$

except $x = \pm 2$ of $x = \pm 2$

(iv)

A T 100 OA = h as AAisosceles A = h A

 $h = 50\sqrt{2}$ $Q = 55^{\circ}$

Student	Nama:
Student	ivallie.

Teacher Name:

11a) $f(x) = 2x^3 - 7x^2 - 7x + 30$	$=(x-3)(2x^2-x-10)$
	=(x-3)(2x-5)(x+2)
. Solutions	are 3, -2 2½

b) Let
$$\frac{dx}{dx} = 5$$

$$\frac{dx}{dx} = 2x + 3 = 5$$

$$2x = 2$$

$$\frac{dx}{dx} = 2x + 3 = 5$$

$$\frac{dx}{dx$$

(ii)
$$y = \frac{1}{2}(p+q)x - qpq$$
 (iii) $x^2 = 2qy - 2q^2$
Sub. in (0 a) Sub. in M
 $q = 0 - qpq$ $q^2(p+q)^2 = 2qx \frac{q(p^2+q)}{2} - 2q^2$
 $q^2(p+q)^2 = q^2(p^2+q^2) - 2q^2$

civ)
$$x^2 = 2ay - 2a^2$$

 $x^2 = 2a(y-a)$
Vertex is $(0,a)$
Focus is $(0,\frac{3a}{2})$