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Year 11

PRELIMINARY HIGHER SCHOOL CERTIFICATE

ASSESSMENT TASK 3

SEPTEMBER 2016

Mathematics Extension 1

General Instructions

° Working time - 90 minutes

e Write using black or blue pen

o Approved calculators may be used

° In questions 6 to 11, show relevant
mathematical reasoning and/or
calculations

° Start each question in section 2 on a
new page

° Full marks may not be awarded for

careless or badly arranged work

Total marks - 71
Section 1 - 5 marks

Attemnpt Questions 1 - 5
Allow about 8 minutes for this

section.
Section 2 - 66 marks

Attempt Questions 6 - 11
Allow about 82 minutes for this

section.
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Section 1 5 marks

Allow about 8 minutes for this section. Use the multiple choice answer sheet in your

answer booklet for questions 1 - 5. Do not remove the multiple choice answer sheet from
your answer booklet.

1.

O

D)

Which of the following is an expression for:

% (xvx? +2)°?

A (-7,10) and B (1, -2) are two points. What is the value of k such that the point P(k, 1)
divides the interval AB internally in the ration of 3:1?

-5

-3

-1

5

A curve has parametric equations x = at and y = -;— (a + at?). What is the Cartesian
equation of the curve?

x? = 4ay
x? =2a
x* = a2y — a)

x?=2y—a



o
r .

B)
C)

The graph of the even polynomial passes through the point (1, 2). What is the
remainder when P(x) is divided by (x + 1)?

-2

-1

1

2

Which of the following is an expression for:

sindx
sinx

1
5 cos 2x cosx

COS 2X COSX
2C082x Cosx

4cos2x cosx



Section 2 66 marks

Atternpt questions 6 - 11.
Allow about 82 minutes for this section.

Answer each question in your answer booklet. Start each question on a new page.

Question 6

a)

Make x the subject in the formula

x—3
2—x

y..."".:

Consider the polynomial P(x) = x* + ax + b where a and b are real numbers.
(x — 2) is a factor of P(x) and when P(x) is divided by (x + 1) the remainder is 6.

D Showthat2a+ b= —8andb—-a=7

(i) Find the values of a and b.

A parabola has equation

y2—2y—-8x+17 =0

(i) Find the coordinates of its vertex.
(ii} Sketch the parabola showing its x intercept

(ii)  On your sketch, display the focus and directrix.

The equation x® + 2x2 + 3x + 1 = 0 has roots ¢, f and y. Find the value of

a’+ B+ y?

11 Marks



Question 7 (Start a new page) 11 Marks
a) Find the values of a and b if: 2

2+ 10x—3=ax(x+1) + b(x—1)2

b)  Given the polynomial P(x) = —x® — ax is odd and has (x + 2) as a factor:
Find a 1
(i) Sketch the graph of y = P(x) showing the intercepts on the x axis. 1
(ii)  Solve the inequality P(x) < 0 1
cy (D) Use the substitution t = tang- to show that the equation 3 sinx —cosx = 1 2

is equivalent to the equation ¢t = %

(ii) Solve the equation 3sinx — cosx = 1 over the domain 0° < 4 < 360° 2
giving the answers correct to the nearest minute.

d) Solve the inequality xi — ;{—2 >0 2
Question 8 (Start a new page) 11 Marks
a)  Solve the equation V2 cos(x + 60°) —1 =0 for 0° < x < 360° 3
b)  P(2ap, ap?) and Q(2aq, ag?) are two points on the parabola x2 = 4ay with 2

parameter values p =2 and g = -1. Find the angle made correct to the nearest
degree between the tangents at these points.

¢) Ifsecx — tanx = k for some real number &, show that secx + tanx = i— 2
d)  Show that 3x — 4y + 10 = 0 is a tangent to the circle x% + y% = 4 2
e) (i) Show that sin{4 + B) + sin(4 — B) = 2sinAcosB. 1

(ii) Hence or otherwise evaluate 2sin45cos15 and leave your answer in

exact form. 1



Question 9 (Start a new page) 11 Marks

a)

(i) Sketch y = Ix -2 |

(ii) Hence or otherwise solve Ix -2 | =2—x 1
A
g X = day
P(Qap ; apz)
0(2q,a’)
b
0 / I
R A

P(2ap, ap?) and Q(2aq, ag?) are two points on the parabola x* = 4ay.
(i) Show that the chord PQ has equation (p + g)x — 2y = 2apq. 2
(i1) If P and Q move on the parabola such that pg = 1, wherep # 0 and - 1

q * 0, show that the chord PQ (produced} always passes through a

fixed pt. R on the y axis.

Find all values of k& which will make the expression: 2

(k + 1)x* — 2(k — 1)x + (k — 5) a perfect square

The polynomial equation x 4 bx? 4 cx + d = 0 has rootsz, &2 and «® for some real

numbera # 0 -

()  Find in terms of c and d the value of = + — + =, 2

(i)  Show that b?d —c® =0 | 2



Question 10 (Start a new page) 11 Marks

a)  For what value(s) of x is the function y = i—i—i not differentiable and give 1

a brief reason why not.

b) For f(x) - x2_4
(i) Find xh_x)nm s 1
(ii) Show that it is an even function 1
(iify  State the domain 1
(iv)  Without using calculus, sketch the curve showing all important 2
features.
c)
A,
al 100
A surveyor stands at a point 4, which is due south of a tower OT of height A m.
The angle of elevation of the top of the tower from A is 45°. The surveyor then
walks 100 m due east to a point B from where she measures the angle of elevation
of the top of the tower to be 30°.
() Express the length of OB in terms of A. 1
(i)  Show that A=50/2 2
(iii} - Calculate the bearing of Bfrom the base of the tower, correct to 2

the nearest degree.



Question 11 (Start a new page)

a)

Given (x — 3) is a factor of the polynomial f(x) = 2x% — 7x? — 7x + 30, find
all solutions for f(x) = 0.

Find the coordinates of the point on the curve y = x* + 3x — 1 where
the tangent is parallel to the line y = 5x + 6.

A(2ap, ap¥y and B(2aq ag?) lie dn the parabola x? = 4ay.

(1) Find the coordinates of the midpoint M of the chord joining A(2ap, ap?
and B(Z2ag, ag? in simplified and factorised form.

(ii} Given the equation of the chord is y= §@+q)X -apqg and it passes
through the focus of the parabola, show that pg =-1.

(iii)  Hence show by substitution that M lies on the parabola x?= 23y - 23*

(iv)  Find the vertex and focus of the parabola given in part (iii).

END OF TEST

11 Marks

s
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