Name:						
	AB	ABg	CC	PG	AM	SML

Miss A. Brownlee (AB)
Ms A Burgess (ABg)
Mrs C. Chambers (CC)
Ms P Gallardo (PG)
Ms A Macdonald (AM)
Dr S Malaney (SML)

Circle your teacher's name on each page

Pymble Ladies' College Year 11 Biology Semester 2, 2005 Time allowed 2 1/4 hours

Directions to Candidates:

All questions are compulsory.

This paper is in two parts, with a total of 80 marks.

Section A 16 one-mark multiple choice questions. Select only one suggested answer. Indicate all

answers on the Answer Sheet provided, using a pencil.

Tear Answer Sheet off the back of the paper.

Section B Questions 17-29, representing written response questions worth a total of 60 marks.

Answer all questions in the spaces provided.

Note: Section A constitutes 1/5 of the marks on this examination. Allocate your time accordingly.

Please write your name on this page, on the answer sheet and on **EACH** page of Section B as well as circling your teacher's name

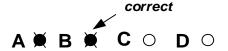
YEAR 11 BIOLOGY 1 Semester 2, 2005

Name: _____AB ABg CC PG AM SML

Section A Total marks 16 Attempt Questions 1 - 16

Use the multiple-choice answer sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response circle completely.


Sample 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9

 $A \circ B \bullet C \circ D \circ$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

AOB CO DO

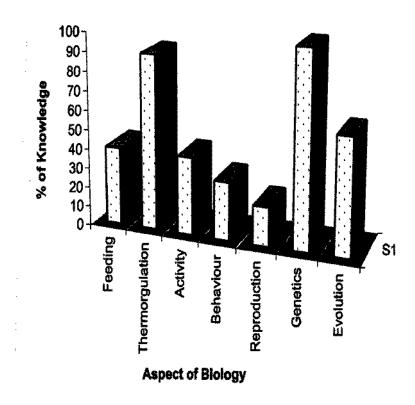
If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

- 1. The reason that evidence about the origin of life is difficult to obtain?
 - (A) No fossils formed before the formation of cells occurred.
 - (B) Fossils only form in marine sediments.
 - (C) The primitive earth environment is totally unknown
 - (D) The oldest rocks all contain fossils
- 2. Some of the oldest known fossils are found in Western Australia and are dated at 3.5 billion years.

What are these fossils called?

- (A) Methanogens
- (B) Archaea
- (C) Eucaryotes
- (D) Stromatolites

Name:

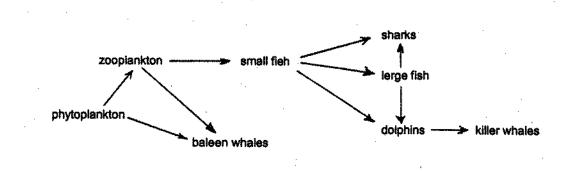

AB ABg CC PG AM SML

- 3. The change from an anoxic to an oxic atmosphere was significant in the evolution of living things as it allowed:
 - (A) animals to move onto land as the Earth cooled
 - (B) the development of organisms
 - (C) the number of anaerobic organisms to increase
 - (D) the formation of a protective layer of ozone around the Earth.
- 4. The Murchison meteorite hit the Earth in 1969 in Victoria. It contained many amino acids. This find supports the theory that:
 - (A) simple terrestrial life has been found in hostile environments
 - (B) violent conditions of early Earth could produce amino acids
 - (C) the chemicals for life on Earth may have come from outer space
 - (D) organic molecules can develop over time.
- 5. Darwin proposed his Theory of Natural Selection to account for the evolution of species on Earth. Which of the following statements DOES NOT represent a key point in this theory?
 - (A) There is variation within a species.
 - (B) Organisms in a population that have favourable characteristics have a greater chance of survival and reproduction compared to those individuals without those characteristics.
 - (C) Individuals that develop favourable variations during their lifetime are more likely to survive and reproduce.
 - (D) Favourable characteristics gradually become more common in a population.
- 6. When studying rock formations it is found that the folded mountain ranges at the Cape of Good Hope, South Africa match rocks of the same age and type of mountain forming at Buenos Aires, Argentina. What does this show?
 - (A) Africa and South America were joined when these rocks formed
 - (B) Rock formation processes are uniform worldwide
 - (C) Plate convergence
 - (D) Mid-ocean ridge splits continents

YEAR 11 BIOLOGY 3 Semester 2, 2005

AB ABg CC PG AM SML

7. The graph below shows an estimate of the percentage of current knowledge of various aspects of the biology of the platypus **that resulted** from the use of technology.


This graph suggests that:

- (A) before technological advances nothing was known about the biology of the platypus.
- (B) the behaviour of the platypus was completely understood before the use of technology
- (C) the genetics of the species was practically unknown until the technologies needed to study it were developed
- (D) technological advances have shown that the genetics and thermoregulation of the platypus are much more important than other aspects of its biology.
- 8. The work of palaeobiologists (scientists which study fossils) in building a picture of the long-term changes that have occurred in Australian ecosystems is important because it:
 - (A) Contributes to our understanding of the evolution of endemic (native) species of plants and animals.
 - (B) Enables us to predict the impact of human activity in our present-day environment.
 - (C) Helps us to plan appropriate management strategies to protect endangered species.
 - (D) All of the above

YEAR 11 BIOLOGY 4 Semester 2, 2005

Name:							
	٨R	ARα	CC	DC.	ΛМ	CMI	

- 9. Which of the following only include abiotic factors?
 - (A) light, population, temperature, rainfall
 - (B) Light, salinity, pH, oxygen availability
 - (C) Substrate, water movement, predation, pH
 - (D) Predation, pathogens, grazing pressure
- 10. The diagram below shows a marine food web

Which of the following correctly identifies a first and second order consumer?

	First order consumer	Second order consumer
A	Phytoplankton	Zooplankton
В	Baleen whales	Small fish
C	Small fish	Large fish
D	Baleen whales	Killer whales

YEAR 11 BIOLOGY 5 Semester 2, 2005

Name:

AB ABg CC PG AM SML

- 11. Some people think of bacteria as "an unnecessary evil". However, in the functioning and maintenance of any ecosystem their ability to decompose organic material is very important because they-
 - (A) Kill all the weak organisms thus helping to maintain healthy populations.
 - (B) Provide energy so that it may be recycled through the food web.
 - (C) Carry out the recycling of matter through the food web.
 - (D) Control the input and output of matter and energy in the ecosystem.
- 12. Which of the following statements best defines an ecosystem?
 - (A) An area where there is a complex association of organisms and their environment.
 - (B) The interrelationships between plants and animals in an area.
 - (C) The environmental factors which affect the area.
 - (D) The biomass of all the organisms in a community.
- 13. The movement of water entering and leaving a plant follows the sequence of:
 - (A) stomates, phloem, roots
 - (B) root hairs, xylem, stomates
 - (C) root hairs, xylem, chloroplasts
 - (D) root hairs, phloem, stomates
- 14. Which of the following is true about an open circulatory system compared to a closed circulatory system?
 - (A) Only closed circulatory systems have a pumping heart.
 - (B) The fluid in a closed circulatory system is pumped at a higher pressure than an open circulatory system.
 - (C) In a closed circulatory system the intracellular fluid and the circulating fluid are identical
 - (D) An open circulatory system is more efficient than a closed circulatory system.

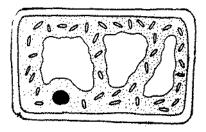
YEAR 11 BIOLOGY 6 Semester 2, 2005

Name:
${\rm AB\ ABg\ CC\ PG\ AM\ SML}$ 15. A biologist was studying a slide of unlabelled plant tissue. The tissue consisted of long tubes which
had sieve plates on the side walls. Which tissue was the student most likely studying?
(A) xylem vessel cells
(B) guard cells
(C) phloem sieve tubes
(D) lenticels
16. Which method would be the most suitable to trace the movement of sugars in phloem?
(A) radioactive tracers
(B) eosin dye
(C) observation under a light microscope

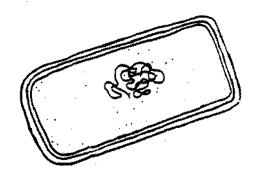
(D) DNA sequencing

YEAR 11 BIOLOGY 7 Semester 2, 2005

Name:						
	AR	ARσ	CC	PG	AM	SMI


Section B Total marks 60 Attempt Questions 17 - 29

Answer all Questions in the spaces provided


Question 17 (6 marks)

Below are two diagrams showing a bacterial cell and a plant cell.

,	١.
L	1
_	٦.

В

a)	Which diagram shows the bacterial cell?	(1 mark)
b)	Outline ONE major difference between a procaryotic cell and a eucaryotic cell.	(2 marks)
•••		
••••		
 c)	Apart from the example given in the diagram, identify one other major group of o	organisms
•••	that has eucaryotic cells.	(1 mark)
 d)	Describe a technological advance which has increased our knowledge of procaryo	otic
u)	organisms.	(2 marks)
••••		
••••		

YEAR 11 BIOLOGY 8 Semester 2, 2005

Name:						
	AB	AΒσ	CC	PG	AM	SML

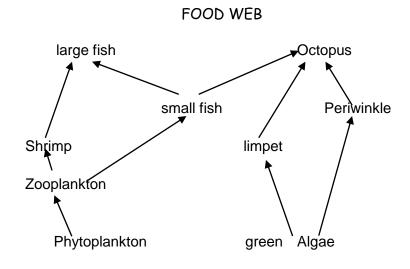
Question 18 (4 marks)

that primitive amphibe ears ago). However, the ssils from the Carboni of structures which al	vians inhabited the swamps of the first truly successful terrestiferous (306-286 million yea llowed internal fertilisation.	f Australia in the Deve	
that primitive amphibe ears ago). However, the ssils from the Carboni of structures which al	vians inhabited the swamps of the first truly successful terrestiferous (306-286 million yea llowed internal fertilisation.	f Australia in the Deve strial vertebrates were ars ago). This success	
ears ago). However, the ssils from the Carboni of structures which al	he first truly successful terrestiferous (306-286 million yeallowed internal fertilisation.	strial vertebrates were ars ago). This success	
The fossil record suggests that primitive amphibians inhabited the swamps of Australia in the Devor Period (408-360 million years ago). However, the first truly successful terrestrial vertebrates were treptiles, documented by fossils from the Carboniferous (306-286 million years ago). This success we partly due to the evolution of structures which allowed internal fertilisation.	strial vertebrates were ars ago). This success		
	Question 19 (5 marks) The fossil record suggests that primitive amphibians inhabited the swamps of Australia in the Period (408-360 million years ago). However, the first truly successful terrestrial vertebrates reptiles, documented by fossils from the Carboniferous (306-286 million years ago). This suc partly due to the evolution of structures which allowed internal fertilisation. a) Outline the difference between internal and external fertilisation. (2 marks) b) State why internal fertilisation is an advantage in a terrestrial environment. (1 mark)	he first truly successful terrestiferous (306-286 million yeallowed internal fertilisation.	strial vertebrates were ars ago). This success
		strial vertebrates were ars ago). This success	
ears ago). However, the ssils from the Carboni of structures which al	he first truly successful terrestiferous (306-286 million yeallowed internal fertilisation.	strial vertebrates were ars ago). This success	
ears ago). However, the ssils from the Carboni of structures which al	he first truly successful terrestiferous (306-286 million yeallowed internal fertilisation.	strial vertebrates were ars ago). This success	
ears ago). However, the ssils from the Carboni of structures which al	he first truly successful terrestiferous (306-286 million yeallowed internal fertilisation.	strial vertebrates were ars ago). This success	
ssils from the Carboni of structures which al	iferous (306-286 million yea llowed internal fertilisation.	ars ago). This success	
of structures which al	llowed internal fertilisation.		
		(2 marks)	
erence hetween intern	nal and external fertilisation.	(2 marks)	
nal fertilisation is an a	ıdvantage in a terrestrial envi		
ternal fertilisation req	quires the production of huge	_	
	external fertilisation req	external fertilisation requires the production of huge	

YEAR 11 BIOLOGY 9 Semester 2, 2005

Name:							
	AR	ARσ	CC	PG	AM	SMI	

Question 20 (2 marks)


	ge, at <u>h</u> t	ttp://www.ea.gov.au/biodiversity Accessed on 4/8/2003).	
Outline '	TWO re	easons why we need to maintain biodiversity.	(2 marks)
estion 21	l (5 mar	rks)	
During y	your stu	dy of Evolution of Australian Biota you carried out a first hand investigation	on native
species o	of flowe	ring plants to identify features that may be adaptations for wind and insect/b	oird/mamma
pollinati	on.		
For (ONE of	the Australian plants that you have studied -	
a)	Nam	e the plant species and identify its method of pollination.	(2 marks)
b)	Use ti)	the diagram of the flower below to answer the next TWO questions. On the diagram label ONE feature of this flower that aids in pollination.	(1 mark)
b)			(1 mark) (2 marks)
b)	i)	On the diagram label ONE feature of this flower that aids in pollination.	,
b)	i)	On the diagram label ONE feature of this flower that aids in pollination.	, , ,

Name:							
	ΔR	ΔΒσ	CC	PG	ΔM	SMI	

(3 marks)

Question 22 (7 marks)

A study of a large saltwater pond by an ecologist produced the following data about the feeding relationships and relative abundance of organisms within the ecosystem.

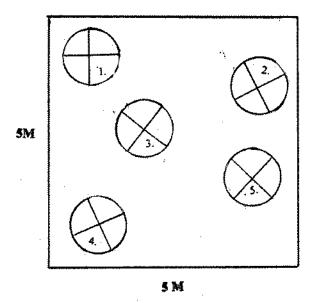
ABUNDANCE O	F ORGANISMS
	Abundance
Organism	(mass per m ² of
	water)
Phytoplankton	.70 kg
Green algae	.25 kg
Zooplankton	.15 kg
Limpet	.05 kg
Periwinkle	.10 kg
Shrimp	.12 kg
Small fish	.03 kg
Large fish	.01 kg
Octopus	.04 kg

a)	What is the biomass of an ecosystem?	(1 mark)
b)	A food chain can be represented as a biomass pyramid. Describe what is indicated	d by the
	pyramidal shape.	(2 marks)
••••		
•••••		

c) In the space below, draw a biomass pyramid for any one food chain (containing four different

d) Outline ONE consequence on the other members of the food web if the octopus population died out.

(1 mark)


YEAR 11 BIOLOGY 11 Semester 2, 2005

organisms) in the above food web, using the data supplied.

Name:							
	AR	ARσ	CC	PG	AM	SMI	

Question 23 (6marks)

Refer to the diagram to answer this question.

A plot of farming grassland (5m X 5m) was being examined by scientists for the distribution and abundance of cicadas, dung beetles, and birds. In the upper left of the plot is compost of gardening scraps and sheep manure and in the upper right corner is a large camphor laurel tree. The quadrats used were circular divided into quarters. The full circle (quadrat) covered $0.33m^2$.

The following table gives the results of their findings.

Quadrat	Cicadas	Dung Beetles	Birds
1	8	15	0
2	5	3	2
3	9	6	1
4	12	2	1
5	11	2	0

a)	Calculate the average number of cicadas per quadrat in this sample.	Show working. (2 marks)

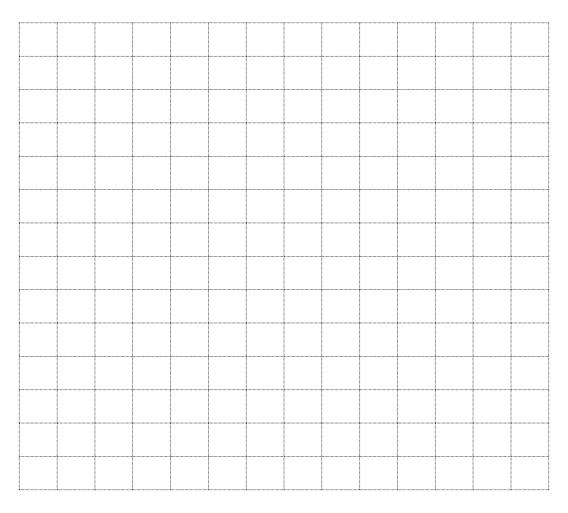
Question 23 continued on next page

	b)	Name:AB ABg C What is the estimated total population of cicadas in this plot of grassland? Show	C PG AM SML working.
			(2 marks)
	••••		
	c)	Why do the dung beetles have such a large population in the upper left corner?	(1 mark)
	•••		
	d)	Why do both insects have a low population in the upper right corner?	(1 mark)
Quest	tion	24 (3 marks)	
	a)	Define viscosity	(1 mark)
	b)	Explain why many aquatic animals have a more streamlined body shape than land a	nimals. (2 marks)
			(= ::::::)
	•••		
	•••		

Name:						
	AB	ABg	CC	PG	AM	SML

Question 25 (7 marks)

The rate of photosynthesis in a particular plant species was measured by the uptake of carbon dioxide at different temperatures. The following results were obtained.


TEMPERATURE (°C)	RELATIVE RATE OF CARBON DIOXIDE UPTAKE
15	15
20	20
25	25
30	30
35	35
40	35
45	25
50	10
55	0

a) 	Write the word equation for photosynthesis	(1mark)
 b)	Identify a factor that effects the rate of photosynthesis	(1 marks)
 c)	Explain how this factor effects the rate of photosynthesis	(2 marks

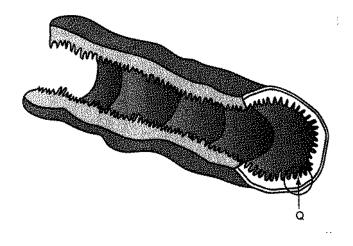
Question 25 continues on the next page

YEAR 11 BIOLOGY 14 Semester 2, 2005

Na	ame:
	AB ABg CC PG AM SML
d) Use the grid provided to draw a graph showing the relationship be	etween carbon dioxide
uptake and temperature.	(3 marks)

Question 26 (4marks)

Complete the following table by stating the different gas exchange surfaces in multicellular animals.

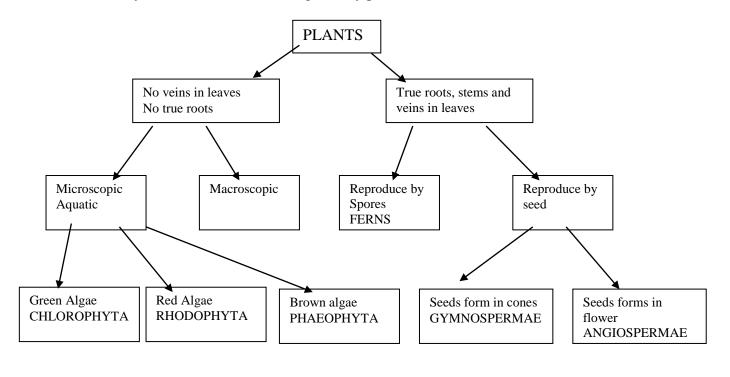

Name of organism	Gas exchange surfaces
Insect	
Fish	
Frog	
Mammal	

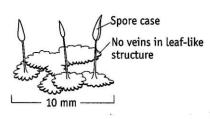
YEAR 11 BIOLOGY 15 Semester 2, 2005

Name:							
	۸D	۸Da	CC	\mathbf{DC}	A 1 /	CMI	

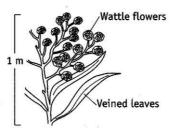
Question 27 (5 marks)

The diagram shows part of the small intestine.


a)	Name the small projection labelled 'Q'?	(1mark)
b)	State the function of structure 'Q'.	(1 mark)
c)	The diet of the animal determines several features of their digestive tracts. Outline	e the
	differences in length between the digestive tract of a carnivore, nectar feeder and	herbivore.
		(3 marks)
••••		
••••		


Name: AB ABg CC PG AM SML

Question 28 (6 marks)


Identify Plant X and Plant Y using the key provided

(2 marks)

PLANT X

PLANT Y

Plant X	
Plant Y	
a) For each plant, write a list of the characteristics you used for identification	(2 marks)

Question 28 continues on the next page

Name:						
	AB	ABg	CC	PG	AM	SML

b) The following table shows the classification of some Australian flowering plants.

	Red Mahogany	Cabbage Tree palm	White box
Flowering plants	Angiospermae	Angiospermae	Angiospermae
Class	Dicotyledon	Monocotyledon	Dicotyledon
Family	Myrtaceae	Palmae	Myrtaceae
Genus	Eucalyptus	Livistona	Eucalyptus
Species	Resinifera	australis	Albens

Of the plants listed in the table, which are most closely related? Explain your reasoning.

(2marks)

Question 29 (4 marks)

Using dates of known fossils, it is possible to construct a timeline to show how life on Earth has changed and the relative times at which this occurred. Use the following data to construct a **scaled** timeline for these events. (4 marks)

Time (thousands of years ago)	Event
250	Polar Bear (newest species of bear) evolves from an isolated
	high latitude population of Brown Bears.
130	Homo neanderthalensis (Neanderthal man) evolves from Homo
	heidelbergensis and lives in Europe and the Middle East.
15	The last Ice Age ends. Sea levels across the globe rise, flooding
	many coastal areas, and separating former mainland areas into
	islands.
100	The first anatomically modern humans (<i>Homo sapiens</i>) appear
	in Africa.

Question 29 continued on next page

YEAR 11 BIOLOGY 18 Semester 2, 2005

Name:						
	AB	AΒσ	CC	PG	AM	SML

Timeline

Present

(Use Centre line as a margin for your time line)

END OF PAPER