BAULKHAM HILLS HIGH SCHOOL

YEARLY EXAMINATION

2009

YEAR 11 CHEMISTRY

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Data Sheet and Period Table is provided on the back of this paper.

Total Marks: 75

Part A – 15 marks 15 Multiple Choice questions worth 1 mark each

Part B - 60 marks

- All questions are compulsory
- Answer in the allocated spaces

PART A

Multiple Choice – 15 marks Select the most correct response, A, B, C or D and write your answer on the Multiple Choice Answer Sheet.

- 1. A mixture of hexane, pentane, octane and heptane is prepared and fractionally distilled. Four distillate samples are collected. Select the correct answer.
 - a) Hexane will be the first fraction to be collected
 - b) Four fractions containing samples of the four pure hydrocarbons will be obtained
 - c) The first samples collected will be richer in the most volatile component
 - d) The last sample collected will be pure octane
- 2. Identify the element which is found in solder, bronze alloys and steel cans.
 - a) aluminium
 - b) copper
 - c) tin
 - d) zinc
- 3. The figure below shows the energy profile diagram for four different chemical reactions (W,X,Y and Z).

Select the correct statement about these reactions.

- a) All four reactions are exothermic
- b) Reaction Z requires the greatest amount of heating to initiate the reaction
- c) The activation energies for the forward reactions decrease in the order X,Y,W,Z.
- d) Reactions X and Y are exothermic and W and Z are endothermic.

- 4. If two electrons are transferred from an atom of *X* to an atom of *Y* to form a compound, then
 - a) the formula of the compound will be X_2Y_2
 - b) the compound will be composed of X^{2+} and Y^{2-} ions
 - c) the solid compound will conduct electricity
 - d) the compound will be composed of Y^{2+} and X^{2-} ions
- 5. The diagram shows how copper was obtained in ancient Egyptian times. The contents of the smelting furnace were set on fire and the copper ran off as it was produced.

Which world equation describes a possible reaction in this ancient Egyptian furnace?

- a) copper + oxygen \rightarrow copper oxide
- b) copper sulphide + carbon \rightarrow carbon disulfide + copper sulphate
- c) copper + carbon + oxygen \rightarrow copper oxide + carbon dioxide
- d) copper sulfide + carbon + oxygen \rightarrow copper + sulfur dioxide + carbon dioxide
- 6. A 10mL volume of 0.15 mol L⁻¹ aluminium chloride solution is diluted to a final volume of 50mL. What is the chloride ion concentration in the diluted solution?
 - a) 9.0 x 10^{-2} mol L⁻¹
 - b) $4.5 \times 10^{-2} \mod L^{-1}$
 - c) $3.0 \times 10^{-2} \mod L^{-1}$
 - d) $1.5 \times 10^{-2} \mod L^{-1}$
- White precipitates are formed when sodium hydroxide is added to magnesium chloride solution and when sulfuric acid is added to barium nitrate solution.
 Predict the *result* of adding together equal volumes of 0.05 mol L⁻¹ barium hydroxide and magnesium sulfate solutions.
 - a) no reaction
 - b) a precipitate of barium sulfate only
 - c) a precipitate of magnesium hydroxide only
 - d) a mixed precipitate of barium sulfate and magnesium hydroxide

8. A beaker contains 50mL of sodium carbonate (Na₂CO₃) solution at a concentration of 1.0×10^{-2} mol L⁻¹.

What is the number of moles of sodium ions in the beaker?

- a) $5.0 \ge 10^{-4} \mod 10^{-4}$
- b) $1.0 \ge 10^{-3} \mod 10^{-3}$
- c) $2.0 \times 10^{-2} \text{ mol}$
- d) $5.0 \ge 10^{-1} \mod$
- 9. A solution is made by dissolving 0.5 mol of potassium iodide and 1.0 mol of calcium iodine in water to a volume of 500mL of solution.

What are the *ionic concentrations*, in mol L^{-1} in this solution?

	[K ⁺]	[Ca ²⁺]	[I [.]]
a)	0.5	1.0	1.5
b)	1.0	2.0	3.0
c)	0.5	1.0	2.5
d)	1.0	2.0	5.0

- 10. Which statement best explains why iodine does not dissolve in water?
 - a) Iodine is a dense brown liquid
 - b) Iodine has a macromolecular structure
 - c) Iodine has low chemical reactivity
 - d) Iodine consists of non-polar molecules
- 11. Which one of the following gases would occupy 22.71 litres at 0°C and 100 kPa?
 - a) 60g of NO
 - b) $1 \text{g of } \text{H}_2$
 - c) 44g of CO₂
 - d) $48g \text{ of } C_4H_{10}$
- 12. Which one of the following statements about the Periodic Table is correct?
 - a) Electronegativity increases both across a period and down a group
 - b) Atomic radius increases as the atomic number increases
 - c) The trends in melting points for metals and non metals down a group are opposite to each other
 - d) The reactivity of an element is directly related to its electronegativity.

- 13. Joseph Gay-Lussac put forward the law combining volumes of gases. Which one of the following statements bests illustrates this law?
 - a) 200mL of hydrogen gas + 100mL of oxygen gas \rightarrow 200mL of steam
 - b) 100g of hydrogen gas + 100g of chlorine gas \rightarrow 200g of hydrogen chloride
 - c) The percentage of oxygen in water is always 89% by mass
 - d) 1 mole of hydrogen gas is formed when 65.38g of zinc is reacted with excess hydrochloric acid
- 14. A 4.44g mass of ice was pushed down so as to be fully submerged in a measuring cylinder containing water. The volume of water increased from 26.60mL to 31.43mL.

The density of the ice must be

- a) 4.44g/mL
- b) 1.00g/mL
- c) 0.98g/mL
- d) 0.92g/mL
- 15. A certain hydrocarbon has the molecular formula C_3H_6 .

This hydrocarbon belongs to the homologous series of

- a) alkanes
- b) alkenes
- c) alkynes
- d) alkanols

BAULKHAM HILLS HIGH SCHOOL

YEARLY EXAMINATION

2009

YEAR 11 CHEMISTRY

MULTIPLE CHOICE ANSWER SHEET

Select the most correct response, A,B,C or D and circle the corresponding letter below.

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D
11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D

PART B

Question 16 (6 marks)

60 marks Attempt all questions Write your answers in the spaces provided.

Marks

2

a) Construct *net ionic equations* for the dissolving of lead nitrate in water AND the precipitation of lead iodide when lead nitrate solution is added to sodium iodide solution.

b) Calculate the mass of sodium iodide present in 200mL of 0.50 mol L⁻¹ sodium iodide solution.

c) Predict the mass of lead iodide precipitate formed if the sodium iodide solution from b) 2 is added to 200mL of 0.50 mol L^{-1} lead nitrate solution.

Question 17 (4 marks)

Question 18 (5 marks)

Although aluminium is the most abundant metal in Earth's crust it was once more valuable than silver.

a)	Distinguish between a mineral and an ore.	2
b)	Assess the energy requirements for the extraction of aluminium.	2
c)	Justify the practice of recycling aluminium containers and construction materials.	1

Question 19 (6 marks)

a)	Compare the bonding within AND between water molecules in the liquid state.	3

Question 19 (continued)

b)	i)	Relate the bonding in water to its ability to dissolve a large range of substances.	2
	ii)	Account for the inability of water to dissolve hydrocarbons.	
Que	estion	20 (4 marks)	
Pho	otosyn	thesis is one of the most important chemical processes to the existence of life on Earth.	
a)	Writ	e a chemical equation to represent photosynthesis.	1
b)	 Outl	ine the role of photosynthesis to explain its importance to life on Earth.	3
	••••		

3

Question 21 (3 marks)

Heat energy is released when anhydrous calcium chloride is dissolved in water.

 $CaCl_{2(s)} \rightarrow CaCl_{2(aq)} + 83kJ$

Calculate the final temperature when 0.01 mol of calcium chloride is dissolved into 100 mL of water, initially at a temperature of 18.0°C.

.....

Question 22 (2 marks)

Solder is an alloy which is used to join two metal surfaces together. The solder is melted and on cooling, solidifies to make a join between the metallic surfaces.

Soft solder is one type of solder that contains varying amounts of lead and tin. It is commonly used in electrical circuitry.

Describe two properties which this type of solder has, to allow it to be used in this manner. 2

.....

2

Question 23 (6 marks)

	Molar Mass		Melting Point	Boiling Point
Molecule	[gmol ⁻¹]	Shape	(°C)	(°C)
hydrogen sulfide	34.1	bent	-86	-60
ammonia	17.0	trigonal pyramid	-78	-33

The table below gives information about two covalent molecular substances.

a) Draw a Lewis electron dot diagram of each molecule.

i)	Hydrogen sulphide	ii)	ammonia

b)	Explain why ammonia has a higher boiling point than hydrogen sulfide.	2
c)	Which one of these two molecules would you expect to dissolve to a greater extent in water.	2
	Explain your answer.	

.....

1

Question 24 (3 marks)

During a practical session at school, a student was asked to design an experiment to determine which metal was more reactive – aluminium or zinc.

She placed equal amounts of the same hydrochloric acid solution into two test tubes. She took a five gram sample of each metal from a jar and placed one into each test tube.

She summarised her results in the following table.

Metal Used	Initial Appearance	Reaction in Acid
zinc	shiny, silvery colour	immediate, vigorous effervescence
aluminium	dull, off white colour	did not react straight away; slight effervescence

a) Based on these results, propose a suitable conclusion for the experiment.

b) Write two half equations to represent the electron transfer reaction occurring when zinc 2 reacts with the acid.

.....

Question 25 (6 marks)

a) A hydrocarbon has the following percentage composition by weight

molecular mass is 180.16.

	Carbon 40.0%	Hydrogen 6.6%	Oxygen 53.3%	
i)	Calculate the empirical	formula of this compound.		2
ii)	What is the molecular for	ormula of this compound i	n (i) above, given that its	1

b) In your course you carried out a first hand investigation on the combustion of wood and a candle. Compare the ease of burning of wood and candle. Account for any differences.

2

Question 26 (5 marks)

Consider the following processes:

- I Boiling of water
- II Melting of table salt
- **III** Electrolysis of water
- a) For each of the above processes, state the types of bonds or forces being broken and the 3 types of particles (molecules, atoms, ion) being separated.

b) Describe the difference between a chemical change and a physical change.

Include an example of a chemical change and an example of a physical change in your answer.

Question 27 (4 marks)

To measure the enthalpy change of combustion of a fuel, a student used the set-up shown in the diagram below.

Masses and temperatures were measured accurately and the results obtained from the experiment were as follows:

Mass of Water	= 500 g
Initial Temperature of Water	$= 25^{\circ}C$
Final Temperature of Water	$=95^{\circ}C$
Initial Mass of Fuel	= 12.6g
Final Mass of Fuel	= 10.6g

a) Calculate the heat absorbed by the water (specific heat capacity of water, 4.18 J kg⁻¹ K⁻¹) 2

b) Assuming that all the heat from the burning fuel was absorbed by the water, what was the energy change per gram of fuel burnt?

Question 28 (3 marks)

The diagram shows the energy profile of the complete combustion of 43 g of hexane.

a) On the above diagram, label the activation energy

1

Question 29 (3 marks)

Calculate the heat energy released from the complete combustion of 500g of propane, given 3 the following bond energies.

BOND	BOND ENERGY (kJ mol ⁻¹)
C - C	346
C – H	414
H – H	436
O – H	463
0 = 0	498
C = 0	803

End of Paper

Baulko Yearly 2009: MC: 1C 2C 3C 4B 5D 6C 7D 8B 9D 10D 11C 12C 13A 14D 15B

016a

criteria	marks
$Pb(NO_3)_2 \longrightarrow Pb^{2+}(aq) + 2NO_3 (aq)$	2
$Pb^{2+}(aq) + 2I^{-}(aq)> PbI_{2}(s)$	
One of the above equations	1
	marks
/ criteria	marks
- Moles of sodium iodide $0.5 \ge 0.2 = 0.1$ - 0.1 ≥ 14.99 g sodium iodide	2

с

criteria	marks
- 0.05 moles of lead iodide	2
$-0.05 \times 461.00 = 23.05 \text{g}$ of lead loade.	
One of the above.	1

17a

criteria	marks
- diamond - three dimensional network of carbon atoms. Each carbon atom forms four covalent bonds with each of its neighbours.	2
- graphite - the carbon atoms are arranged in flat parallel layers. Within each layer each carbon atom is covalently bonded to three other carbon atoms	Panel
forming a hexagonal arrangement. There are weak dispersion forces	
One of the above.	1

b

0	
criteria	marks
 diamond - e.g. class cutting because it is a very hard substance. graphite - e.g. lubricant as the bonding between the layers is only weak dispersion forces allowing the layers to slide past each other. 	2
One of the above	1 ,

18a

criteria	marks
-a mineral is a naturally occurring substance, usually a compound with a definite composition.	2
- an ore is a mineral where it is economically viable to extract the metal.	
One of the above.	1

b

0	
criteria	marks
- energy requirements for the extraction of aluminium from aluminium oxide large.	2
- aluminium is an active metal and forms strong bonds with oxygen which require a lot of energy to break.	
One of the above	1

 Criteria
 Uses electron dot structures to represent covalent bonding in the water molecules OR discusses sharing of electrons Discusses covalent bonding as a sharing of electrons Illustrates the formation of H-bonding between two water molecules Recognises that H-bonding occurs between H and an atom of high electronegativity AND/OR
Recognises that H- bonding is a strong dipole-dipole force
 Discusses covalent bonding Discusses covalent bonding Illustrates the formation of H-bonding between two water molecules Recognises that H-bonding occurs between H and an atom of high electronegativity AND/OR
 Recognises that H- bonding is a strong dipole-dipole force
 Discusses covalent bonding OR Discusses H-bonding occurring between H and O atoms in water molecules

(b).i.

-	Criteria
	 Recognises that water can dissolve ionic and polar substances (and smaller non-polar molecules that can occupy space between water molecules) States that water is a polar molecule Understands that water is attracted to polar molecules Understands that water forms hydration shells with positive and
	negative ions
	 Relates that waters ability to dissolve a wide range of submitting depends on its polar character

(b).ii

Criteria	
States that water is polar and that hydrocarbons are non-polar	
Recognises that there are no dipole-dipole forces of attraction betw water and hydrocarbons which would allow them to dissolve	ree
DR Recognises that dispersion forces between polar and non-polar substances are too weak for dissolving to occur	
OR Recognises that water molecules through H-bonding bond more str with each other than with non-polar molecules that have weak	or

dispersion forces

Criteria	Marks
tes a correctly balanced equation to summarise the photosynthetic cess (subscripts are not required)	1
Critoria	Marks
that photosynthesis is an important process in the carbon cycle	3
ognises that photosynthesis is an important process in the curson office	
rgy in chemical bonds (produces biomass)	
tes that photosynthesis is an endothermic process	
derstands that the stored chemical energy in carbohydrates is	
ilable for animals (through cellular respiration)	
ntifies oxygen is a product of photo synthesis and is needed for piration in animals	
tes that photosynthesis is an endothermic process and produces	2
derstands that the stored chemical energy in carbohydrates is	
ilable for animals (through cellular respiration)	
ntifies oxygen is a product of photo synthesis and is needed for prize p	- 12
tes that photosynthesis requires sunlight to make carbohydrates -	1
cose, starch and oxygen	

Criteria	Marks
Correctly calculates enthalpy change for 0.01 mol CaCl ₂ dissolved	3
Correctly calculates final temperature- answer must have units	
(not marked on sig. figures)	
Correctly calculates enthalpy change for 0.01 mol CaCl ₂ dissolved	2
Substitutes correctly into equation- but incorrect calculation	
OR	
Correct calculation but no units supplied	
Correctly calculates enthalpy change for 0.01 mol CaCl ₂ dissolved	1
OR	
Uses correct equation but substitutes incorrect values	
$H = -mC(T_{f'}T_i)$	
-0.83kJ = -100 x 4.18 Jg ⁻¹ K ⁻¹ x (T _f -18)	
-830 J = -100 x 4.18 Jg ⁻¹ K ⁻¹ x (T _f -18)	
$T_f = 1.99 + 18 = 20^{\circ}C$	

	Criteria
•	Recognises that solder has metallic bonding accounting for its electrica conductivity, adhesion, malleability, ductility AND
•	Solder has a low melting point/malleable/ductile OR
	Solder forms metallic bonds with other metals
	Relates any one property of solder

Question 23

22.

a) (i)

criteria

• Correctly draws the TWO Lewis dot diagrams

Correctly draws only one Lewis dot diagram

b) _,

criteria Mentions that ammonia is a more polar molecule than hydrogen sulfide AND

Hydrogen bonding is stronger than the dispersion forces in hydrogen sulfide, AND

Hydrogen bonding is stronger than dispersion forces

Mentions that ammonia is a more polar molecule that hydrogen sulfide Ammonia has hydrogen bonding OR

Hydrogen sulfide does not have hydrogen bonding

-			
 0			
۰.	/ .		

criteria

Ammonia, AND

Ammonia is able to replace the hydrogen bonds broken between water molecules with hydrogen bonds formed between water and ammonia Ammonia

Question 24

b)

a)

criteria

• zinc is more reactive metal than aluminium

criteria

Only one correct half equation

Question 25

a) (i)				
criteria	14 - 12 - 10 - 14 - 14 - 14 - 14 - 14 - 14 - 14	m	ark	
СН	0			
40.0/12.01 6.6/1.0	008 53.3/16.00			
3.33 6.55	3.33			
3.33/3.33 6.55/	3.33 3.33/3.33	2		
1 1.9	7 1			
1 2	1			
-				
CH-O				
0.120				
10.0/12.01	14 000 53 3/45 00			
40.0/12.01 6.66	/1.008 53.3/16.00	1		
a((ii)				
olecular mass of CH ₂ C	= 30			
30/30 = 6				
0,00				
$(H_2O) X 6 = C_2H_{12}O$).			
	~0			
iteria		an arrest the state of the	Image	
and is harder to ignite	than a condia AND		mark	
ood is narder to ignite	than a candle, AND			
andle has a wick, AND			3	
e activation energy to	ignite wood is higher than to i	ignite a candle		
ood is harder to ignite	than a candle, AND		2	
candle has a wick OR	there is a difference in activati	ion energy		
ood is harder to ignite	than a candle, OR			
candle has a wick, OR			1	
e activation energy for	the combustion in wood is di	fferent to that of a		
ndle	- southing better and the layer			
Q 26a)				
Criteria		marks		
All 6 of the following	g pieces of info:	3		
I. H bonds b	roken, molecules separated		The second second	
II. Ionic bond	is broken, ions separated	Second with a		
III. Covalent	bonds broken, atoms separated			
4 or 5 of the above		2		
2 or 3 of the above		1		
You had to say H bor	You had to say H bonds ionic bonds etc (not intra/intermolecular forces)			
26b)				
criteria		marks		
Correct physical char	ige description + example, and			
Correct chemical char	nge description + example	2		
Either of the above, o	r			
Two correct descripti	ons, or	1		
Two correct examples	S			
		the second s		
Q27a)				
criteria		mark		
Correct working				
0				

criteria	marl
Show 2 g of fuel burnt	2
Correct answer with unit	
Show 2 g of fuel burnt	1

Q28a) Activation energy must be shown as the difference between r and the highest point of curve.

28b) New bonds being formed when energy is released, ie, on negat graph.

28c) must have minus sign and unit, -1900kJ +/- 100kJ approx.

criteri	a	ma
:	equation energy absorbed by reactants, and energy released by products calculation of energy released for 500g propane (using 11.3 mol	3
2 of a	bove	2
One o	f the above	1

 $\begin{array}{c} C_{3}H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_{2} \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H + H \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 + 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 \qquad 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 \qquad 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 \qquad 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 \qquad 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 \qquad 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 3 \times 0 = c = 0 \qquad 4 \times \\ H - C - C - C - H + 5 \times 0 = 0 \qquad 4 \times 0 \qquad$ H H H Reactant Bonds to be broken (endothermuc 8×C-H: 8×414 2×C-C: 2×346 5×0=0 : 5×+98 Total: 6494 KJmol absorbed Product Bonds formed (exothermic) 6×C=0 : 6×803 8×0-H 8×463 Total : 8522 KJ. mol' released. $\Delta H = 232 (6494 - 8522) \text{ KJ. mol}'$ = - 2028 KJ. mol' moles $C_3H_3 = 500g$ (3×12.01+8×1.008) g/mol = 11.34 mol.

Energy released when 500, Calls burns