\qquad

2018

Yearly Examination

Preliminary Chemistry

General Instructions

Reading time - 5 minutes
Working time -2 hours
Write using blue or black pen, draw diagrams using pencil Approved calculators may be used

Write your name on EACH PAGE of this booklet
Detach the Multiple Choice answer sheet and data sheets for your convenience

For questions in Section II, show all relevant working in questions involving calculations

Total marks
Section I-20 marks (pages 3-9)

- Attempt questions $1-20$.
- Allow about 35 minutes for this section.
- Answer on the multiple choice answer sheet at the back of the exam.

Section II - 55 marks (pages 10 - 21)

- Attempt questions 21-30
- Allow about 1 hour and 25 minutes for this section.
- Answer in the space provided.

Student Name:

\qquad

Trotter (A) $\square \quad$ Naray (B) $\square \quad$ Trotter (C) $\square \quad$ Naray/Crichton (D) \square Trotter (E)
\qquad

Section I - 20 marks

Attempt Questions 1-20

Allow about 35 minutes for this section
Use the multiple-choice answer sheet.
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A

B
C

D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
$A \rightarrow B$
B

C

D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A
 B

D

correct

1. Which of the following is not conserved in a chemical reaction in a closed system?
(A) total mass
(B) total number of atoms
(C) total number of moles
(D) total charge
2. When solid copper (II) chloride is placed into a non-luminous flame, the colour of the flame changes.

Which of the alternatives identifies the flame colour and the ion that causes the colour?
(A)
(B)
(C)
(D)

Colour	Ion that causes the colour
red	Cu^{2+}
red	Cl^{-}
green	Cu^{2+}
green	Cl^{-}

\qquad
3. When a piece of magnesium is placed into a blue Bunsen flame a bright white light is observed as the metal reacts with oxygen gas.

This reaction is:
(A) endothermic with a low activation energy.
(B) endothermic with a high activation energy.
(C) exothermic with a low activation energy.
(D) exothermic with a high activation energy.
4. In the current model of the atom, the number of electrons that can occupy an orbital is:
(A) 2,8 or 18
(B) 2 or 8
(C) 2 only
(D) 8 only
5. Which of the alternatives below identifies the electron configuration of the cation and anion present in the compound aluminium chloride?
(A)
(B)
(C)
(D)

Cation	Anion
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$	$1 s^{2} 2 s^{2} 2 p^{6}$
$1 s^{2} 2 s^{2} 2 p^{6}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

6. A radioisotope (X) undergoes α-decay to produce radioisotope Y .

Radioisotope Y undergoes β-decay to produce actinium-228.
Which of the following identifies radioisotope X ?
(A) radium- 226
(B) uranium- 238
(C) palladium-231
(D) thorium-232
\qquad
7. A section of the periodic table has had the symbols for 4 elements replaced by letters, as shown below.

Which alternative below correctly matches the elements' letters with the blocks to which they belong in the periodic table?
(A)
(B)
(C)
(D)

\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{K}
s	d	p	s
s	p	d	s
d	s	p	p
d	s	p	p

8. The specific heat capacity of substances A and B are given in the table below.

substance	specific heat capacity $\left(\mathbf{J g}^{-1} \mathbf{K}^{-1}\right)$
A	2.121
B	1.433

From the data provided, if 100 kJ of heat energy was added to 1.0 g samples of A and B , which of the following statements is true?
(A) The temperature of substance B will increase more than that of A .
(B) The density of substance A will increase more than that of B .
(C) The boiling point of substance A will increase more than that of B.
(D) Substance B will become more reactive than substance A.
\qquad
9. Which of the following pieces of equipment is always necessary for measuring the rate of a reaction?
(A) an electronic balance
(B) a thermometer
(C) a stopwatch
(D) a stirring rod
10. When a person dives into the ocean, the pressure of gas in their lungs changes from 100 kPa to 160 kPa .

If their lungs initially held 6.0 L of gas, what volume of gas will be present in the lungs at the increased pressure?
(Assume the temperature of the gas in the lungs remains constant.)
(A) 3.0 L
(B) 3.8 L
(C) 4.5 L
(D) $\quad 6.0 \mathrm{~L}$
11. A chemistry student was provided with 250.0 mL of 0.84 M solution of barium hydroxide and asked to dilute the solution to form 100.0 mL of 0.21 M barium hydroxide.

Which of the following options concerning the procedure is correct?
(A)
(B)
(C)
(D)

Volume of 0.84M solution required to make the diluted solution (mL)	Glassware required to make accurately known solution
25.0	volumetric flask, pipette
75.0	volumetric flask, pipette
25.0	volumetric flask, measuring cylinder
75.0	volumetric flask, measuring cylinder

\qquad
12. Which of these equations represents the complete combustion of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$?
(A) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
13. As you move down the elements in group 7 of the periodic table, the first ionisation energy:
(A) increases and the electronegativity increases.
(B) decreases and the electronegativity increases.
(C) increases and the electronegativity decreases.
(D) decreases and the electronegativity decreases.
14. In the experiment shown below solid $\mathrm{CuO}, \mathrm{Cu}(\mathrm{OH})_{2}$ and CuCO_{3} are added to $\mathrm{HNO}_{3}(\mathrm{aq})$ in three different test tubes.
CuO

1

2

3

In which test tube(s) will the solution turn pale blue?
(A) 1
(B) 1 and 2
(C) 2 and 3
\qquad
(D) 1,2 and 3
15. Given that $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$, identify the correct statement below.
(A) A reaction will always be spontaneous if $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive.
(B) A reaction will always be spontaneous if $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is negative.
(C) A reaction will always be spontaneous if $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is positive.
(D) A reaction will always be spontaneous if $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative.
16. Identify the oxidation reaction from the options below.
(A) $\quad 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
(B) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
(C) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(D) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
17. A 1.00 kg sample of liquefied petroleum gas (LPG) contains 600.0 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ with the remainder being butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$.

What mass of this sample of LPG is due to carbon?
(A) 784 g
(B) 792 g
(C) 802 g
(D) 822 g
18. Nitrogen and hydrogen react to produce ammonia according to the equation:

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-93 \mathrm{~kJ} / \mathrm{mol}
$$

Which of the following statements about this reaction is correct?
(A) Breaking the bonds in the reactants releases more energy than is absorbed when the products are formed.
(B) Breaking the bonds in the reactants absorbs more energy than is released when the products are formed.
(C) Breaking the bonds in the reactants absorbs less energy than is released when the products are formed.
(D) Breaking the bonds in the reactants releases less energy than is absorbed when the products are formed.
\qquad
19. What is the enthalpy change for the reaction:

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

given the following reactions and their associated enthalpy changes?

$$
\begin{array}{ll}
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta H=-200 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=+600 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

(A) $+400 \mathrm{~kJ} / \mathrm{mol}$
(B) $+200 \mathrm{~kJ} / \mathrm{mol}$
(C) $\quad-200 \mathrm{~kJ} / \mathrm{mol}$
(D) $\quad-400 \mathrm{~kJ} / \mathrm{mol}$
20. Concentrated sulfuric acid reacts with common sugar $\left(\mathrm{C}_{12} \mathrm{O}_{22} \mathrm{H}_{11}\right)$ in the presence of oxygen to produce a residue of pure carbon as shown below.
$2 \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 22 \mathrm{C}(\mathrm{s})+2 \mathrm{CO}_{2}(\mathrm{~g})+24 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})$
What mass of carbon could be produced from the reaction of 5.0 g of sugar with excess sulfuric acid and oxygen?
(A) 0.60 g
(B) 0.88 g
(C) 1.9 g
(D) 3.9 g
\qquad

Section II

55 marks

Attempt Questions 21 - 30
Answer the questions in the spaces provided. Show all relevant working in questions involving calculations.
Allow about 1 hour and 25 minutes for this part

Question 21 (11 marks)

The symbol for an isotope of phosphorus is:

$$
{ }_{15}^{31} P
$$

(a) How many protons, neutrons and electrons are present in a neutral atom of this isotope?
\qquad
\qquad
\square
(b) Explain why the relative mass of phosphorus is 30.97 and not 31.0 exactly.
\qquad
\qquad
\qquad
\qquad
\square
\qquad

Question 21 continues on page 10.

\qquad

Question 21 (continued)
(c) Phosphorus and nitrogen are in the same group of the periodic table. Both form chlorides.

Some data about their chlorides are shown in the table below.

Element	Chloride Formula	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$
Nitrogen	NCl_{3}	71
Phosphorus	PCl_{3}	76
	PCl_{5}	167

(i) The reaction to form liquid PCl_{3} involves heating solid phosphorus in the form of P_{4} with chlorine gas.

Write a balanced chemical equation for this reaction.
(ii) Complete the table below.

Formula Systematic name Electron dot diagram
Molecular
shape
PCl_{3}
(iii) Account for the higher boiling point of PCl_{5} compared to PCl_{3}.
\qquad
\qquad
\qquad

Question 21 continues on page 11.

Question 21 (continued)
(iv) Provide an explanation, considering the electron configuration of N and P and the concept of valency, for why both nitrogen and phosphorus can form NCl_{3} and PCl_{3}, but only phosphorus is able to form PCl_{5}.
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\square
\qquad
\qquad
\qquad
\square
\qquad
\square
\qquad
\square Question 22 (3 marks)

Marks

Question 22 (3 marks)
Calculate the concentration of nitrate ions present in an 800.0 mL aqueous solution containing 22.5 g of dissolved aluminium nitrate.
\qquad
\square
\qquad
\qquad

Question 23 (4 marks)
The boiling points of Group 4 and 5 hydrides are shown in the table below.

Group Number	Period Number	Hydride Formula	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$
4	2	CH_{4}	-161
	3	SiH_{4}	-112
	4	GeH_{4}	-88
	5	SnH_{4}	-52
5	2	NH_{3}	-33
	3	PH_{3}	-88
	4	AsH_{3}	-62
	5	SbH_{3}	-17

Compare the trends in the boiling points of the Group 4 hydrides to those of the Group 5 hydrides as the Period number increases in each group, and explain any differences.
\qquad
\qquad
\qquad
\qquad
\qquad
.
\qquad
\square
\qquad
\qquad
\qquad
\qquad

Question 24 (4 marks)
A chemist heats three substances; magnesium, copper (II) carbonate and ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ gas (one at a time) in a blue Bunsen flame.

All three substances react, two of them with oxygen in the air.
(a) Write a balanced chemical equation for each of the three reactions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Only the reaction of copper (II) carbonate is endothermic.

Use the appropriate chemical terminology to identify why the heat of the Bunsen flame is required for the other two reactions.
\qquad
\qquad
\qquad

Question 25 (7 marks)
The equation for the combustion of methane is:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{c}}=-890 \mathrm{~kJ} / \mathrm{mol}
$$

(a) (i) Write the equation for the reaction that corresponds to the standard enthalpy of formation of methane.
\qquad
(ii) The standard enthalpy of formation of methane cannot be measured experimentally, so it must be calculated using Hess's Law.

Use the information above, and the information in the table below to calculate the standard enthalpy of formation of methane.

Reaction

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Standard enthalpy of formation ($\left.\Delta \mathbf{H}_{\mathrm{i}}{ }^{\mathbf{0}}\right)(\mathbf{k J} / \mathrm{mol})$
 -395

$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad-286$-286
\qquad

A student used the following apparatus to decompose a small sample of an oxide of copper. The purpose of the natural gas from the outlet is to prevent any copper that forms from oxidising back into a copper ion.

The products of the decomposition are metallic copper and oxygen.

The data from the experiment are shown below.

(a) Use the data provided to determine the empirical formula of the oxide decomposed in the investigation.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Suggest a reason for measuring the mass of the test tube and residue after each minute of heating.
\qquad
\qquad

Question 27 (7 marks)
Consider the following redox pairs and their reduction potentials (E^{θ} values):

$\mathrm{Zr}^{4+} / \mathrm{Zr}$	-1.53 V
$\mathrm{Ga}^{3+} / \mathrm{Ga}$	-0.53 V
$\mathrm{Au}^{+} / \mathrm{Au}$	+1.68 V
$\mathrm{~V}^{2+} / \mathrm{V}$	-1.18 V
$\mathrm{Pt}^{2+} / \mathrm{Pt}$	+1.20 V

(a) Identify the species which is the:
(i) strongest oxidant \qquad
(ii) strongest reductant \qquad
(b) A chemist wants to determine the cell voltage of a Galvanic cell involving the $\mathrm{Ni}^{2+} / \mathrm{Ni}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ redox pairs.

Draw a labelled diagram of a galvanic cell that could be constructed to achieve this.
(c) Use the standard half-cell potentials on the Data Sheet to calculate the voltage produced by the cell.

Show all working and include the overall net ionic equation for the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 28 (4 marks)
Energy is transferred when a substance dissolves in water.
Write a safe method that could be used to determine the enthalpy of solution of an ionic compound, specifying the data to be collected and any necessary calculations.
\qquad
\square
\qquad
\square
\qquad
\qquad
\qquad
Marks

Question 29 (5 marks)

Nitrogen gas can be prepared by passing ammonia gas over solid copper (II) oxide at high temperatures. The reaction also forms solid copper and water vapour.

In an experiment, 39.40 g of NH_{3} is placed in a container with 192.50 g of copper (II) oxide at high temperature.

What volume of nitrogen gas (collected at $25^{\circ} \mathrm{C}$ and 100 kPa) will actually be formed if the process is only 70% efficient?

Show all working, including a relevant balanced chemical equation with your answer.
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad

Question 30 (6 marks)

A student carried out four experiments involving magnesium and hydrochloric acid under various reaction conditions, shown in the table below.

The results they obtained in THREE of these experiments are represented by the three lines shown in the graph below.

Reaction conditions	Form of $\mathbf{M g}(\mathbf{s})$	Acid concentration (\mathbf{M})	Temperature $\left({ }^{\circ} \mathbf{C}\right)$
1	$4 \times 1 \mathrm{~cm}$ strips	5	25

\qquad

2	$2 \times 1 \mathrm{~cm}$ strips	1	50
3	powdered	1	25
4	$2 \times 1 \mathrm{~cm}$ strips	1	25

Question 30 continues on page 20

Add a line for reaction conditions 4 to the graph, and explain the trends shown by the results of the experiment using collision theory.
\qquad

Chemistry

FORMULAE SHEET

$n=\frac{m}{M M}$
$c=\frac{n}{V}$
$P V=n R T$
$q=m c \Delta T$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
$p K_{a}=-\log _{10}\left[K_{a}\right]$
$A=\varepsilon l c=\log _{10} \frac{I_{o}}{I}$
Avogadro constant, N_{A}
$6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and
at $0^{\circ} \mathrm{C}(273.15 \mathrm{~K}) \ldots \ldots22 .71 \mathrm{~L}$
at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K})$.................... 24.79 L
Gas constant
$8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Ionisation constant for water at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K}), K_{w} \ldots \ldots \ldots \ldots \ldots \ldots10^{-14}$
Specific heat capacity of water $4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

DATA SHEET

Solubility constants at $\mathbf{2 5}^{\circ} \mathrm{C}$

Compound	$K_{s p}$	Compound	$K_{s p}$
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36×10^{-9}	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93×10^{-5}	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.
\qquad

Infrared absorption data	
Bond	Wavenumber/ cm^{-1}
$\begin{aligned} & \mathrm{N}-\mathrm{H} \\ & \text { (amines) } \end{aligned}$	3300-3500
$\begin{aligned} & \mathrm{O}-\mathrm{H} \\ & \text { (alcohols) } \end{aligned}$	$\begin{gathered} 3230-3550 \\ \text { (broad) } \end{gathered}$
$\mathrm{C}-\mathrm{H}$	2850-3300
$\underset{\text { (acids) }}{\mathrm{O}-\mathrm{H}}$	$2500-3000$ (very broad)
$\mathrm{C} \equiv \mathrm{N}$	2220-2260
$\mathrm{C}=\mathrm{O}$	1680-1750
$\mathrm{C}=\mathrm{C}$	1620-1680
$\mathrm{C}-\mathrm{O}$	1000-1300
$\mathrm{C}-\mathrm{C}$	750-1100

${ }^{13} \mathrm{C}$ NMR chemical shift data

Type of carbon	8/ppm
	5-40
	10-70
	20-50
	25-60
\mid -C C $\mathrm{O}-$alcohols, ethers or esters	50-90
	90-150
$\mathrm{R}-\mathrm{C} \equiv \mathrm{N}$	110-125
	110-160
	160-185
	190-220

UV absorption
(This is not a definitive list and is approximate.)

Chromophore	$\lambda_{\max }(\mathrm{nm})$
$\mathrm{C}-\mathrm{H}$	122
$\mathrm{C}-\mathrm{C}$	135
$\mathrm{C}=\mathrm{C}$	162

Chromophore	$\lambda_{\max }(\mathrm{nm})$	
$\mathrm{C} \equiv \mathrm{C}$	173 178 196 222	
$\mathrm{C}-\mathrm{Cl}$	173	
$\mathrm{C}-\mathrm{Br}$	208	

\qquad

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{K}(\mathrm{s})$	-2.94 V
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}(\mathrm{s})$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	-2.87 V
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(\mathrm{s})$	$-2.71 \mathrm{~V}$
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Al}(\mathrm{s})$	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Fe}(\mathrm{s})$	-0.44 V
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ni}(\mathrm{s})$	-0.24 V
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}(\mathrm{s})$	-0.14V
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Pb}(\mathrm{s})$	-0.13 V
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{I}_{2}(s)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.54 V
$\frac{1}{2} \mathrm{I}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}(\mathrm{s})$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}(l)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{aq})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	F^{-}	2.89 V

\qquad

\qquad

Section I - Answer Sheet

Use of the multiple-choice answer sheet.
Select the alternative A, B, C or D that best answers the question and fill in the response oval completely.
Sample $\quad 2+4=(\mathrm{A}) 2$ (B) 6 (C) 8 (D) 9
(A)
(B)
(C)
(D)

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
(A)
(B)
(C)
(D)

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

	(A)	(B)	-	(C)		(D)
1.	(A)	(B)	\bigcirc	(C)	\bigcirc	(D)
2.	(A)	(B)	0	(C)		(D)
3.	(A)	(B)	0	(C)		(D)
4.	(A)	(B)	0	(C)		(D)
5.	(A)	(B)	0	(C)		(D)
6.	(A)	(B)	0	(C)		(D)
7.	(A)	(B)	0	(C)		(D)
8.	(A)	(B)	0	(C)		(D)
9.	(A)	(B)	0	(C)		(D)
10.	(A)	(B)	0	(C)		(D)
11.	(A)	(B)	\bigcirc	(C)		(D)
12.	(A)	(B)	0	(C)		(D)
13.	(A)	(B)	0	(C)		(D)
14.	(A)	(B)	0	(C)		(D)
15.	(A)	(B)	0	(C)	\bigcirc	(D)
16.	(A)	(B)	0	(C)		(D)
17.	(A)	(B)	0	(C)		(D)
18.	(A)	(B)	\bigcirc	(C)	\bigcirc	(D)
19.	(A)	(B)	0	(C)		(D)
20.	(A)	(B)	0	(C)	\bigcirc	(D)

