

2018

Yearly Examination

Preliminary Chemistry

General Instructions

Reading time – 5 minutes Working time – 2 hours

Write using blue or black pen, draw diagrams using pencil

Approved calculators may be used

Write your name on EACH PAGE of this booklet

Detach the Multiple Choice answer sheet and data sheets for your convenience

For questions in Section II, show all relevant working in questions involving calculations

Teacher-in-charge: T. Trotter

Task Weighting: 35%

Total marks 75

Section I - 20 marks (pages 3 - 9)

- Attempt questions 1-20.
- Allow about 35 minutes for this section.
- Answer on the multiple choice answer sheet at the back of the exam.

Section II – 55 marks (pages 10 - 21)

- Attempt questions 21 30
- Allow about 1 hour and 25 minutes for this section.
- Answer in the space provided.

Student Name: _____

) [Naray/Crichton (D) □	

Trotter (A) \Box	Naray (B) ⊔	Trotter (C) \Box	Naray/Crichton (D) L
Trotter (E) \square			

Section I – 20 marks

Attempt Questions 1-20

Allow about 35 minutes for this section

Use the multiple-choice answer sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$2 + 4 =$$

A

C

D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A

В

C

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

- 1. Which of the following is *not* conserved in a chemical reaction in a closed system?
 - (A) total mass
 - (B) total number of atoms
 - (C) total number of moles
 - (D) total charge
- **2.** When solid copper (II) chloride is placed into a non-luminous flame, the colour of the flame changes.

Which of the alternatives identifies the flame colour and the ion that causes the colour?

	Colour	Ion that causes the colour
(A)	red	Cu^{2+}
(B)	red	Cl ⁻
(C)	green	Cu^{2+}
(D)	green	Cl ⁻

3. When a piece of magnesium is placed into a blue Bunsen flame a bright white light is observed as the metal reacts with oxygen gas.

This reaction is:

- (A) endothermic with a low activation energy.
- (B) endothermic with a high activation energy.
- (C) exothermic with a low activation energy.
- (D) exothermic with a high activation energy.
- 4. In the current model of the atom, the number of electrons that can occupy an orbital is:
 - (A) 2, 8 or 18
 - (B) 2 or 8
 - (C) 2 only
 - (D) 8 only
- **5.** Which of the alternatives below identifies the electron configuration of the cation and anion present in the compound *aluminium chloride*?

	Cation	Anion
(A)	$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^1$	$1s^2 2s^2 2p^6 3s^2 3p^5$
(B)	$1s^2 2s^2 2p^6 3s^2 3p^5$	$1s^2 2s^2 2p^6 3s^2 3p^1$
(C)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1s² 2s² 2p ⁶
(D)	$1s^2 2s^2 2p^6$	$1s^2 2s^2 2p^6 3s^2 3p^6$

6. A radioisotope (X) undergoes α -decay to produce radioisotope Y.

Radioisotope Y undergoes β-decay to produce actinium-228.

Which of the following identifies radioisotope X?

- (A) radium-226
- (B) uranium-238
- (C) palladium-231
- (D) thorium-232

7. A section of the periodic table has had the symbols for 4 elements replaced by letters, as shown below.

Which alternative below correctly matches the elements' letters with the blocks to which they belong in the periodic table?

	L	M	N	K
(A)	S	d	p	S
(B)	S	p	d	S
(C)	d	S	p	p
(D)	d	S	p	p

8. The specific heat capacity of substances A and B are given in the table below.

substance	specific heat capacity (Jg ⁻¹ K ⁻¹)
A	2.121
В	1.433

From the data provided, if 100 kJ of heat energy was added to 1.0g samples of A and B, which of the following statements is true?

- (A) The temperature of substance B will increase more than that of A.
- (B) The density of substance A will increase more than that of B.
- (C) The boiling point of substance A will increase more than that of B.
- (D) Substance B will become more reactive than substance A.

- **9.** Which of the following pieces of equipment is always necessary for measuring the rate of a reaction?
 - (A) an electronic balance
 - (B) a thermometer
 - (C) a stopwatch
 - (D) a stirring rod
- 10. When a person dives into the ocean, the pressure of gas in their lungs changes from 100kPa to 160kPa.

If their lungs initially held 6.0 L of gas, what volume of gas will be present in the lungs at the increased pressure?

(Assume the temperature of the gas in the lungs remains constant.)

- (A) 3.0 L
- (B) 3.8 L
- (C) 4.5 L
- (D) 6.0 L
- 11. A chemistry student was provided with 250.0mL of 0.84M solution of barium hydroxide and asked to dilute the solution to form 100.0mL of 0.21M barium hydroxide.

Which of the following options concerning the procedure is correct?

	Volume of 0.84M solution required to make the diluted solution (mL)	Glassware required to make accurately known solution
(A)	25.0	volumetric flask, pipette
(B)	75.0	volumetric flask, pipette
(C)	25.0	volumetric flask, measuring cylinder
(D)	75.0	volumetric flask, measuring cylinder

12. Which of these equations represents the complete combustion of ethanol (C_2H_5OH)?

- (A) $C_2H_5OH(1) + O_2(g) \rightarrow 2C(s) + 3H_2O(1)$
- (B) $C_2H_5OH(1) + 2O_2(g) \rightarrow 2CO(g) + 3H_2O(1)$
- (C) $C_2H_5OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(1)$
- (D) $C_2H_5OH(1) + 2O_2(g) \rightarrow CO_2(g) C(s) + 3H_2O(1)$

13. As you move down the elements in group 7 of the periodic table, the first ionisation energy:

- (A) increases and the electronegativity increases.
- (B) decreases and the electronegativity increases.
- (C) increases and the electronegativity decreases.
- (D) decreases and the electronegativity decreases.

14. In the experiment shown below solid CuO, Cu(OH)₂ and CuCO₃ are added to HNO₃(aq) in three different test tubes.

In which test tube(s) will the solution turn pale blue?

- (A) 1
- (B) 1 and 2
- (C) 2 and 3

- (D) 1, 2 and 3
- 15. Given that $\Delta G = \Delta H T\Delta S$, identify the correct statement below.
 - (A) A reaction will always be spontaneous if ΔH is negative and ΔS is positive.
 - (B) A reaction will always be spontaneous if ΔH is negative and ΔS is negative.
 - (C) A reaction will always be spontaneous if ΔH is positive and ΔS is positive.
 - (D) A reaction will always be spontaneous if ΔH is positive and ΔS is negative.
- **16.** Identify the oxidation reaction from the options below.
 - (A) $2NO_2 \rightarrow N_2O_4$
 - (B) $CaO + H_2O \rightarrow Ca(OH)_2$
 - (C) $CaCO_3 \rightarrow CaO + CO_2$
 - (D) $C + O_2 \rightarrow CO_2$
- 17. A 1.00 kg sample of liquefied petroleum gas (LPG) contains 600.0 g of propane (C_3H_8) with the remainder being butane (C_4H_{10}) .

What mass of this sample of LPG is due to carbon?

- (A) 784 g
- (B) 792 g
- (C) 802 g
- (D) 822 g
- **18.** Nitrogen and hydrogen react to produce ammonia according to the equation:

$$3H_2(g) + N_2(g) \leftarrow \rightarrow 2NH_3(g) \Delta H = -93 \text{ kJ/mol}$$

Which of the following statements about this reaction is correct?

- (A) Breaking the bonds in the reactants releases more energy than is absorbed when the products are formed.
- (B) Breaking the bonds in the reactants absorbs more energy than is released when the products are formed.
- (C) Breaking the bonds in the reactants absorbs less energy than is released when the products are formed.
- (D) Breaking the bonds in the reactants releases less energy than is absorbed when the products are formed.

19. What is the enthalpy change for the reaction:

$$H_2O_2(aq) \rightarrow H_2(g) + O_2(g)$$

given the following reactions and their associated enthalpy changes?

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$
 $\Delta H = -200 \text{ kJ/mol}$

$$\Delta H = -200 \text{ kJ/mol}$$

$$2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$$
 $\Delta H = +600 \text{ kJ/mol}$

$$\Delta H = +600 \, kJ/mol$$

- +400 kJ/mol (A)
- +200 kJ/mol (B)
- (C) -200 kJ/mol
- (D) -400 kJ/mol
- 20. Concentrated sulfuric acid reacts with common sugar (C₁₂O₂₂H₁₁) in the presence of oxygen to produce a residue of pure carbon as shown below.

$$2C_{12}H_{22}O_{11}\left(s\right) + 2H_{2}SO_{4}\left(aq\right) + O_{2}\left(g\right) \Rightarrow 22C(s) + 2CO_{2}\left(g\right) + 24H_{2}O\left(l\right) + 2\ SO_{2}\left(g\right)$$

What mass of carbon could be produced from the reaction of 5.0g of sugar with excess sulfuric acid and oxygen?

- (A) 0.60 g
- (B) 0.88 g
- (C) 1.9 g
- (D) 3.9 g

Section II 55 marks Attempt Questions 21 – 30 Answer the questions in the spaces provided. Show all relevant working in question involving calculations. Allow about 1 hour and 25 minutes for this part	18
Question 21 (11 marks)	Marks
The symbol for an isotope of phosphorus is:	
31 ₁₅ P	
(a) How many protons, neutrons and electrons are present in a neutral atom of this isotope?	1
	2
(b) Explain why the relative mass of phosphorus is 30.97 and not 31.0 exactly.	
·	
Question 21 continues on page 10.	

Year 11 Chemistry Yearly Examination 2018

Student Name: _____

Marks

Question 21 (continued)

(c) Phosphorus and nitrogen are in the same group of the periodic table. Both form chlorides.

Some data about their chlorides are shown in the table below.

Nitrogen NCl_3 71 PCl ₃ 76 Phosphorus PCl_6 167	Elen	ment	Chloride Formula	Boiling Point (°C)	
Phosphorus	Nitro	ogen	NCl_3	71	
1	DI	1	PCl_3	76	
	Pnosp	onorus	PCl_5	167	1
 (i) The reaction to form liquid PCl₃ involves heating solid phosphorus in the form of P₄ with chlorine gas. Write a balanced chemical equation for this reaction. 	the	form of P ₄ with o	chlorine gas.		3

(ii) Complete the table below.

Formula	Systematic name	Electron dot diagram	Molecular shape

PCl₃

1

(iii) Account for the higher boiling point of PCl₅ compared to PCl₃.

......

Year 11 Chemistry Yearly Examination 2018 Student N	ame:
	3
	••••
Question 21 continues on page 11.	
Question 21 (continued)	
(iv) Provide an explanation, considering the electron configuration of N and P and the concept of valency, for why both nitrogen and phosphorus can form NCl ₃ and PCl ₃ , but only phosphorus is able to form PCl ₅ .	
·	
······································	
	•••
·	
	••••
Question 22 (3 marks)	Marks
Calculate the concentration of nitrate ions present in an 800.0 mL aqueous solution containing 22.5 g of dissolved aluminium nitrate.	3

			Student Name
uestion 23 (4 mar			
u estion 23 (4 mar			
uestion 23 (4 mar	·ks)		
uestion 23 (4 man	ks) of Group 4 and 5 hydric	des are shown in t	he table below.
uestion 23 (4 mar	ks) of Group 4 and 5 hydric		
uestion 23 (4 man	Period Number	des are shown in t Hydride Formula CH4	he table below. Boiling Point (°C) -161
uestion 23 (4 man	Period Number 2 3	des are shown in t Hydride Formula CH ₄ SiH ₄	he table below. Boiling Point (°C) -161 -112
uestion 23 (4 man	Period Number 2 3 4	Hydride Formula CH ₄ SiH ₄ GeH ₄	Boiling Point (°C) -161 -112 -88
uestion 23 (4 man	Period Number 2 3 4 5	des are shown in to the second	Boiling Point (°C) -161 -112 -88 -52
uestion 23 (4 man	Period Number 2 3 4 5 2	Hydride Formula CH ₄ SiH ₄ GeH ₄ SnH ₄ NH ₃	Boiling Point (°C) -161 -112 -88 -52 -33
uestion 23 (4 man	Period Number 2 3 4 5	des are shown in to the second	Boiling Point (°C) -161 -112 -88 -52

Year 11 Chemistry Yearly Examination 2018	Student Name:
•	
•	
·	
·	
Question 24 (4 marks)	Marks
A chemist heats three substances; magnesium, copper (II) carbonate a (C ₂ H ₆) gas (one at a time) in a blue Bunsen flame.	and ethane
All three substances react, two of them with oxygen in the air.	
(a) Write a balanced chemical equation for each of the three reaction	ons. 3

Student Name: _____

ear/	11 Ch	nemistry Yearly Examination 2018	Student Name	e:
••••	• • • • • • •			1
(b)	Onl	y the reaction of copper (II) carbonate i	s endothermic.	
		the appropriate chemical terminology asen flame is required for the other two		
•••	• • • • • •			
)ue	stion	25 (7 marks)		Marks
		ion for the combustion of methane is:		
	CH	$H_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$	$\Delta H_c = -890 \text{ kJ/mol}$	
a)	(i)	Write the equation for the reaction that enthalpy of formation of methane.	at corresponds to the standard	1

(ii)	The standard enthalpy of formation of methane cannot be measured
	experimentally, so it must be calculated using Hess's Law.

3

Use the information above, and the information in the table below to calculate the standard enthalpy of formation of methane.

Standard enthalpy of Reaction formation (ΔH_f^0) (kJ/mol) $C(s) + O_2(g) \rightarrow CO_2(g)$ -395 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$ -286 The value of the entropy change for the combustion of methane is (b) -242 JK⁻¹mol⁻¹. Explain why a negative entropy change is consistent with the equation for

1

2

the combustion reaction.

Use the Gibbs free energy equation to determine whether the combustion (c) of methane will be spontaneous at 300 K.

.....

Marks

Question 26 (4 marks)

Year 11 Chemistry Yearly Examination 2018	Student Name:	
• •		

A student used the following apparatus to decompose a small sample of an oxide of copper. The purpose of the natural gas from the outlet is to prevent any copper that forms from oxidising back into a copper ion.

The products of the decomposition are metallic copper and oxygen.

The data from the experiment are shown below.

Ma	ss of empty test tube (g)	30.43	
Ma	ss of test tube and copper oxide powder before heating (g)	32.73	
	ss of test tube and residue after heating for 1 minute (g)	32.58	
	ss of test tube and residue after heating for 2 minute (g)	32.34	
	ss of test tube and residue after heating for 3 minute (g)	32.23	
	ss of test tube and residue after heating for 4 minute (g)	32.23	
(a)	Use the data provided to determine the empirical formula of decomposed in the investigation.	f the oxide	3
• • • • •			
•			
			4
			1
• • • • •			
•			
(b)	Suggest a reason for measuring the mass of the test tube and each minute of heating.	d residue after	

Year	11 Chemistry Yearly Examination 2018	Student Name	:
Que	estion 27 (7 marks)		Marks
Con	sider the following redox pairs and the	ir reduction potentials (E^{θ} values):	
	Zr^{4+}/Zr Ga^{3+}/Ga Au^{+}/Au V^{2+}/V Pt^{2+}/Pt	- 0.53 V + 1.68 V - 1.18 V	
(a)	Identify the species which is the:		2
	(i) strongest oxidant		
	(ii) strongest reductant		
(b)	A chemist wants to determine the celthe Ni ²⁺ /Ni and Ag ⁺ /Ag redox pairs.	ll voltage of a Galvanic cell involving	
	Draw a labelled diagram of a galvan achieve this.	ic cell that could be constructed to	3
	achieve this.		
(c)	Use the standard half-cell potentials ovoltage produced by the cell.	on the Data Sheet to calculate the	2
	Show all working and include the overeaction.	erall net ionic equation for the	

Year 11 Chemistry Yearly Examination 2018	Student Name:
Question 28 (4 marks)	Marks
Energy is transferred when a substance dissolves in water.	
Write a safe method that could be used to determine the enthat an ionic compound, specifying the data to be collected and ar calculations.	
· · · · · · · · · · · · · · · · · · ·	

Year 11 Chemistry Yearly Examination 2018	Student Name: _	
•		
	1	Marks
Question 29 (5 marks)		
Nitrogen gas can be prepared by passing ammonia gas over solid co oxide at high temperatures. The reaction also forms solid copper and vapour.		
In an experiment, 39.40 g of NH ₃ is placed in a container with 192.5 (II) oxide at high temperature.	0 g of copper	
What volume of nitrogen gas (collected at 25°C and 100kPa) will acformed if the process is only 70% efficient?	tually be	5
Show all working, including a relevant balanced chemical equation answer.	with your	
•		

Tear 11 Chemistry Tearly Examination 2016	Student Name:
	•••••
	•••••
	•••••
•	
	•••••
•	
	•••••
	•••••
•	

Question 30 (6 marks)

A student carried out four experiments involving magnesium and hydrochloric acid under various reaction conditions, shown in the table below.

The results they obtained in THREE of these experiments are represented by the three lines shown in the graph below.

Reaction conditions	Form of Mg(s)	Acid concentration (M)	Temperature (°C)
1	4 x 1cm strips	5	25

Year 11 Chemistry Yearly Examination 2018		Student Name:		
2	2 x 1cm strips	1	50	
3	powdered	1	25	
4	2 x 1cm strips	1	25	

Question 30 continues on page 20

Question 30 (continued)	Mark s
Add a line for reaction conditions 4 to the graph, and explain the trends shown by	5
the results of the experiment using collision theory.	6

Year 11 Chemistry Yearly Examination 2018	Student Name:	

Chemistry

FORMULAE SHEET

$n = \frac{m}{MM}$	$c = \frac{n}{V}$	PV = nRT
$q = mc\Delta T$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$\mathrm{pH} = -\mathrm{log}_{10} \big[\mathrm{H}^+\big]$
$pK_a = -\mathrm{log}_{10}\big[K_a\big]$	$A = \varepsilon lc = \log_{10} \frac{I_o}{I}$	
Avogadro constant, N _A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
	at 0°C (273.15 K)	. 22.71 L
	at 25°C (298.15 K)	. 24.79 L
Gas constant		. 8.314 J mol ⁻¹ K ⁻¹
Ionisation constant for water a	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		. $4.18 \times 10^{3} \mathrm{J kg^{-1} K^{-1}}$

DATA SHEET

Solubility constants at 25°C

Compound	K_{sp}	Compound	K_{sp}
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36×10^{-9}	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93 × 10 ⁻⁵	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

Infrared absorption data

Bond	Wavenumber/cm ⁻¹
N—H (amines)	3300–3500
O—H (alcohols)	3230–3550 (broad)
С—Н	2850–3300
O—H (acids)	2500–3000 (very broad)
C≡N	2220–2260
c=o	1680–1750
с=с	1620–1680
с—о	1000–1300
с—с	750–1100

¹³C NMR chemical shift data

Type of carbon		δ/ppm
-c-c-		5-40
R - C - C1	or Br	10-70
R - C - C - O	-	20-50
R - C - N		25–60
-c-o-	alcohols, ethers or esters	50–90
c = c		90–150
$R-C \equiv N$		110-125
		110-160
R — C — O	esters or acids	160–185
R — C — 	aldehydes or ketones	190–220

UV absorption

(This is not a definitive list and is approximate.)

Chromophore	λ_{\max} (nm)
С—Н	122
с—с	135
c=c	162

Chromophore	λ_{\max} (nm)
C≡C	173 178 196 222
C—Cl	173
С—Вг	208

Some standard potentials

K ⁺ + e ⁻	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	−2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	−2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	−2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$A1^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
H ₂ O + e	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g) + OH	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	- 0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	- 0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	- 0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	- 0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	- 0.13 V
H ⁺ + e ⁻	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
Cu ²⁺ + 2e	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^{-}$	\rightleftharpoons	2OH	0.40 V
Cu ⁺ + e ⁻	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
Ag ⁺ + e ⁻	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}$ Br ₂ (l) + e	\rightleftharpoons	Br-	1.08 V
$\frac{1}{2}$ Br ₂ (aq) + e	\rightleftharpoons	Br-	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^{-}$	\rightleftharpoons	CI	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	CI	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^{-}$	\rightleftharpoons	F-	2.89 V

ELEMENTS	4,003 Helium	0 8 6	N. O.	12.01 14.01 16.00 19.00	Carbon Nitrogen Oxygen Fluorine	14 15 16 17	Si P S CI	26.98 28.09 30.97 32.07 35.45 39.95	Aluminium Silicon Phosphorus Sulfur Chlorine	30 31 32 33 34 35	Zn Ga Ge As Se Br	65.38 69.72 72.64 74.92 78.96 79.90	Zinc Gallium Germanium Arsenic Selenium Bromine	48 49 50 51 52 53	Cd In Sn Sb Te I	112.4 114.8 118.7 121.8 127.6 126.9	Cadmium Indium Tin Antimony Tellurium Iodine	80 81 82 83 84 85	Hg TI Pb Bi Po At	207.2 209.0	Mercury Thallium Lend	7. III III III III III III III III	Cn INn Fi MIC LV IS	Darmstadtium Roemgenium Copernicium Nihonium Flerovium Moscovium Livermorium Teanessine Oganesson		
		6	, II,	19.00	Fluorine	17	บี	35.45	Chlorine	32	Br	79.90	Bromine	23	Т	126.9	Iodine	82	At		Astatine 117	ÈÉ	IS			
		×	0	16.00	Oxygen	16	S	32.07	Sulfur	34	Se	78.96	Selenium	52	<u>P</u>	127.6	Tellurium	84	Po		Polonium 116	017	ŗ			
		7	Z	14.01	Nitrogen	15	Ь	30.97	Phosphorus	33	As	74.92	Arsenic	51	S	121.8	Antimony	83	Bi	209.0	Bismuth 115	CIT.	MIC	Moscovium		
		9	Ö	12.01	Carbon	14	Si	28.09	Silicon	32	ge	72.64	Germanium	90	Sn	118.7	Tin	82	P	207.2	11.4	<u>†</u> 5	Z	Flerovium		
		v	В	10.81	Boron	13	Ψ	26.98	Aluminium	31	ğ	69.72	Gallium	49	In	114.8	Indiam	81	Ι	204.4	Thallium 112	CIT.	INI	Nihonium		
IENTS									0	30	Zu	65.38	Zinc	48	ਲ	112.4	Cadmium	80	Hg	200.6	Mercury 113	72	5	Copernicium		
ELEN									0	53	ű	63.55	Copper	47	Ag	107.9	Silver	79	An	197.0	111	Į,	20	Roentgenium		
OF THE									00	78	ž	58.69	Nickel	46	Pd	106.4	Palladium	78	¥	195.1	Platinum	2	S	Darmstadtium]		
TABLE 0	KEY	70	Au	197.0	Gold					27	ပိ	58.93	Cobalt	45	Rh	102.9	Rhodium	77	ŀ	192.2	100	102	IVI	Meitnerium		
DIC TA		Atomic Number	Symbol	nic Weight	Name				ì	56	e	55.85	Iron	44	Ru	101.1	Ruthenium	9/	ő	190.2	Osminim	001	SE	Hassium		
PERIODIC		Atom		Standard Atomic Weight						25	Mn	54.94	Manganese	43	L)		Technetium	75	Re	186.2	Khenium 107	25	Du	Bohrium		
				63																183.9				Seaborgium		
									г								\neg			180.9	\neg			Dubnium	1	
									6	22	Ξ	47.87	Titanium	40	Zr	91.22	Zirconium	72	H	178.5	Hafmunn 10.4	1 4	Z	Rutherfordium		ds
									\perp				\dashv	_		88.91	\dashv				Canthanoids			Actinoids R	1	anthanoids
		4	Be	9.012	Beryllium	12	Щ	24.31	Magnesium	20	ca	40.08	Calcium	38	Š	19.78	Strontium	99	Ba		+		Ka	Radium		Ţ
- 1	1.008 Hydrogen	\vdash			\dashv	_			+				\dashv				\dashv				+			Francium		
		_							\perp																1	

89	06	91	92	93	94	95	96	26	86	66	100	101	102	103
Ac	T	Pa	n	ď	Pu	Am	Cm	ğ	ŭ	Es	Fm	Md	ž	Ľ
	232.0	231.0	238.0	•										
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version).

The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.

ear 11 Chemistry Yearly Examination 2018	Student Name:
DA CW OF MAY TYPE C CWOOL AND	UPD OWNER
BACK OF MULTIPLE CHOICE ANSV	VER SHEET

Section I - Answer Sheet

Use of the multiple-choice answer sheet.

Select the alternative A, B, C or D that best answers the question and fill in the response oval completely.

Sample

$$2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9$$

(A)

(B)	

(C)

D)	
$\boldsymbol{\nu}$	

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

(A)

(B) ×

"	11	
"	١.	

(D)

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

		correct	\circ	
	(A)	(B)	(C)	(D)
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	(A) (A) (A) ((B)		
20.	(A)	(B) \bigcirc	(C)	(D)