

| Student Number |  |
|----------------|--|
| Mark / 68      |  |

# Chemistry

# Preliminary Course Final Examination • 2002

#### **General Instructions**

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of this page

Total Marks - 68

#### Part A – 11 marks

- Attempt Questions 1 11
- Allow about 20 minutes for this part

#### Part B – 57 marks

- Attempt Questions 12 23
- Allow about 100 minutes for this part

#### Part A – 11 marks Attempt Questions 1–11 Allow about 20 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

| Sample:                    | 2 + 4 =                      | (A) 2                         | (B) 6                               | (C) 8                         | (D) 9                                                              |
|----------------------------|------------------------------|-------------------------------|-------------------------------------|-------------------------------|--------------------------------------------------------------------|
|                            |                              | A ()                          | в 🔴                                 | с 🔿                           | D 🔿                                                                |
| If you think<br>new answer | you have ma                  | ade a mistak                  | e, put a cros                       | ss through th                 | ne incorrect answer and fill in the                                |
|                            |                              | А 🌑                           | в 💓                                 | с 🔾                           | D 🔿                                                                |
| If you chang indicate the  | ge your mind<br>correct answ | and have cro<br>er by writing | ossed out wh<br>g the word <b>d</b> | nat you cons<br>correct and d | ider to be the correct answer, then<br>rawing an arrow as follows. |
|                            |                              |                               |                                     | correct                       |                                                                    |
|                            |                              | A 💓                           | в                                   | С 🔿                           | D ()                                                               |
|                            |                              |                               |                                     |                               |                                                                    |

#### Answer Box for Questions 1–11

| 1  | ΑΟ | BO | СО | DO |
|----|----|----|----|----|
| 2  | ΑO | BO | СO | DО |
| 3  | ΑO | BO | СO | DО |
| 4  | ΑO | BO | СO | DO |
| 5  | ΑO | BO | СO | DО |
| 6  | ΑO | BO | СO | DО |
| 7  | ΑΟ | BO | СО | DO |
| 8  | ΑO | BO | СO | DО |
| 9  | ΑO | BO | СO | DО |
| 10 | ΑO | BO | СO | DО |
| 11 | ΑΟ | BO | СO | DO |

1 What is the change in mass of 1.00 gram samples of Li and Ca metals when they react with an excess of oxygen  $(O_2)$ ?

|     | CHANGE IN | MASS (g) |
|-----|-----------|----------|
|     | Li        | Ca       |
| (A) | 1.000     | 1.000    |
| (B) | 2.153     | 1.399    |
| (C) | 1.153     | 0.399    |
| (D) | 0.576     | 0.799    |

2 Which of the following statements relates to a detrimental effect of thermal pollution in waterways?

- (A) Fish populations will increase to disproportionate levels in higher water temperature.
- (B) Increased water temperature will lead to less dissolved oxygen causing stress to aquatic organisms.
- (C) Metabolic rates in fish are decreased.
- (D) Higher water temperature results in the increased precipitation of heavy metals.
- **3** Which of the following ranks of coal has the highest carbon content?
  - (A) anthracite
  - (B) bituminous coal
  - (C) brown coal
  - (D) lignite
- 4 What is the mass of 2 moles of oxygen atoms?
  - (A) 8.0 grams
  - (B) 16 grams
  - (C) 32 grams
  - (D) 64 grams

5 The diagram shows a two section compartment filled with aqueous glucose solutions separated by a semi-permeable membrane.

|--|

Which statement describes what will happen with time?

- (A) Glucose molecules will move into the right side by diffusion.
- (B) Water molecules will move into the left side by diffusion.
- (C) Glucose molecules will move into the left side by osmosis.
- (D) Water molecules will move into the right side by osmosis.
- 6 Water, hydrogen sulfide and ammonia are compounds of O, S and N with hydrogen. Which of the following are correct Lewis electron dot structures, where X = N, O or S?

|     | WATER         | HYDROGEN SULFIDE | AMMONIA              |
|-----|---------------|------------------|----------------------|
| (A) | <br>н:х:н<br> | <br>н:х:н<br>    | :<br>н:х:н<br>:<br>н |
| (B) | <br>н:х:н<br> | н: х:н<br><br>   | н: х:н<br><br>н      |
| (C) | н:х:н         | н: х:н           | н: х:н<br><br>н      |
| (D) | <br>н:х:н<br> | <br>н:х:н        | <br>н:х:н<br><br>н   |

- 7 What is the whole number mass ratio of metal to non-metal (metal:non-metal) in barium chloride?
  - (A) 1:2
  - (B) 2:1
  - (C) 1:1
  - (D) 4:1
- 8 Which of the following binary compounds would have the greatest solubility in water?
  - (A) CH<sub>4</sub>
  - (B)  $CO_2$
  - (C) HCl
  - (D) HF
- 9 Which of the following equations shows the precipitation of copper(I) chloride?
  - $(A) \quad Cu_{(s)} \ + \ {}^{1\!\!/_2} Cl_{2 \ (g)} \ \ \rightarrow \ \ CuCl_{(s)}$
  - $(B) \quad Cu_{(s)} \ + \ Cl^{-}_{(aq)} \ \ \rightarrow \ \ CuCl_{(s)}$
  - $(C) \quad Cu^{+}_{(aq)} \ + \ Cl^{-}_{(aq)} \ \rightarrow \ CuCl_{(s)}$
  - (D)  $\operatorname{Cu}^{+}_{(\operatorname{aq})} + \frac{1}{2} \operatorname{Ch}_{(\operatorname{g})} \rightarrow \operatorname{Cu}\operatorname{Cl}_{(\operatorname{s})}$
- 10 0.10 mole of aluminium chromate,  $A_{b}(CrO_{4})_{3}$ , is dissolved in sufficient water to make 500 mL of solution. What are the concentrations of the resultant ions formed?

|     | CONCENTRATI      | ON (mol L <sup>-1</sup> )      |
|-----|------------------|--------------------------------|
|     | AI <sup>3+</sup> | CrO <sub>4</sub> <sup>2–</sup> |
| (A) | 0.050            | 0.033                          |
| (B) | 0.10             | 0.10                           |
| (C) | 0.20             | 0.20                           |
| (D) | 0.40             | 0.60                           |

- 11 Which of the following is the second hydrocarbon compound in the alkyne homologous series?
  - (A) butyne
  - (B) ethyne
  - (C) hexyne
  - (D) propyne

#### Part B – 57 marks Attempt Questions 12 – 23 Allow about 100 minutes for this part

#### Show all relevant working in questions involving calculations.

#### **Question 12** (4 marks)

The table lists the boiling points for the first eight members of the homologous series of alkanes.

| FORMULA                        | BOILING POINT (K) |
|--------------------------------|-------------------|
| CH <sub>4</sub>                | 112               |
| C <sub>2</sub> H <sub>6</sub>  | 184               |
| C <sub>3</sub> H <sub>8</sub>  | 231               |
| C <sub>4</sub> H <sub>10</sub> | 273               |
| C <sub>5</sub> H <sub>12</sub> | 309               |
| C <sub>6</sub> H <sub>14</sub> | 342               |
| C <sub>7</sub> H <sub>16</sub> | 371               |
| C <sub>8</sub> H <sub>18</sub> | 399               |

(a) Define the term, homologous series. (1 mark)

(b) Explain the trend in boiling point for the alkanes. (1 mark)

(c) List two hazards of working with hydrocarbons and the precautions taken to avoid these dangers. (2 marks)

#### Question 13 (6 marks)

(a) Compare one use of each carbon allotrope and relate this use to a physical property. (4 marks)

| ALLOTROPE | USE | PHYSICAL PROPERTY |
|-----------|-----|-------------------|
| graphite  |     |                   |
| diamond   |     |                   |

(b) Carbon exists in several allotropes and several isotopes.Differentiate between the terms, allotrope and isotope. (2 marks)

## Question 14 (3 marks)

A student experimentally determined the molar heat of solution of calcium chloride using a calorimeter.

(a) The student used the specific heat of water in the calculation of the result. Define the term, specific heat. (1 mark)

(b) The student found that when 5.3 grams of calcium chloride dissolved in 250 g of water the temperature rose by 3.4 C° in the calorimeter.
Calculate the molar heat of solution from this data. (2 marks)

#### Question 15 (7 marks)

The diagram shows a fractionating tower which is used in the processing of crude oil. Hydrocarbon fractions are removed from outlets on the right hand side of the tower. The approximate numbers of carbon atoms in molecules from each fraction are indicated.



- (a) From which fraction, (V, W, or X) is petrol made? (1 mark)
- (b) Why is it incorrect to write a chemical formula for petrol? (1 mark)
- (c) Identify one use for the fraction obtained at Y. (1 mark)
- (d) Identify the physical property of hydrocarbons which allows them to be separated by the fractionating tower. (1 mark)

**Question 15 continues on page 8** 

#### Question 15 (continued)

(e) Describe the geological processes resulting in a crude oil accumulation and the method by which it is extracted from the earth. Use a diagram to illustrate your answer. (3 marks)



### Question 16 (3 marks)

The table shows the boiling points of water, ammonia and hydrogen sulfide. Explain the differences in the relative boiling points of each of these substances.

| water  | ammonia | hydrogen sulfide |
|--------|---------|------------------|
| 100º C | – 33º C | – 62° C          |

#### Question 17 (6 marks)

Explain the implications of the following properties of water for plants and animals.

## Question 18 (3 marks)

(a) What is the empirical formula of a compound of bismuth and chlorine, which is 66% (w/w) bismuth. (2 marks)

(b) If a sample of this compound contained 2 g of bismuth, what would be the total mass of the sample? (1 mark)

#### **Question 19** (4 marks)

A 10.0 g sample of impure zinc metal, heavily corroded with zinc hydroxide on its surface, was chemically analysed to determine the amount of zinc metal present. The sample was 'dissolved' in excess 1.00 mol  $L^{-1}$  hydrochloric acid solution and 3.05 L of hydrogen gas was produced at 25°C and 101.3 kPa.

| 5                  | of zinc metal reacte | d to produce the hyd  | rogen gas? (1 | mark) |
|--------------------|----------------------|-----------------------|---------------|-------|
|                    |                      |                       |               |       |
|                    |                      |                       |               |       |
| Calculate the mass | percentage of zinc   | metal in the original | sample. (1 ma | ark)  |
|                    |                      |                       |               |       |
|                    |                      |                       |               |       |
|                    |                      |                       |               |       |

#### Question 20 (2 marks)

Briefly describe an experiment to identify the effect of mass of added salt to a fixed mass of water on the boiling point of water.



#### Question 21 (5 marks)

(a) A chemist requires an accurately prepared solution of barium chloride.

| Solution      | n specifications        |
|---------------|-------------------------|
| volume        | 500.0 mL                |
| concentration | 0.250 mol L $^{-1}$     |
| solute        | barium chloride-2-water |
| warning       | toxic                   |

Describe the steps involved in the preparation of this solution. Include calculations and mention any specialised apparatus used. (4 marks)



(b) Convert the molarity of the barium chloride solution into a percentage concentration (w/w). Assume the solution's density is  $1.00 \text{ g mL}^{-1}$ . (1 mark)

#### Question 22 (7 marks)

| (a)   | Commission the table of |                 | f handing trungs and | a avera a solubilities | $(5 - \alpha - \alpha - 1 - \alpha)$ |
|-------|-------------------------|-----------------|----------------------|------------------------|--------------------------------------|
| (2)   | Complete the lable sh   | wing examples o | n nonaing ivnes and  | adheons somblings      | (5 marks)                            |
| (u)   |                         |                 | i bonanis types and  |                        |                                      |
| < / < | 1                       | 0 1             | 0 1                  | 1                      |                                      |

| Bonding type       | Common example    | Aqueous solubility<br>(in general) |
|--------------------|-------------------|------------------------------------|
| metallic           | zinc              | insoluble                          |
|                    | cellulose         |                                    |
| covalent network   |                   |                                    |
|                    | hydrogen chloride |                                    |
| non-polar covalent |                   |                                    |
|                    | sodium sulfate    |                                    |

(b) The dissolving of oxygen in water can be correctly represented as...  $O_{2 (g)} \rightleftharpoons O_{2 (aq)}$ Identify two reasons why the dissolving of HCl in water cannot be represented as...

 $\text{HCl}_{(g)} \iff \text{HCl}_{(aq)}$ 

(2 marks)

#### Question 23 (7 marks)

Use the solubility table to answer the questions which follow.

| ANION -                                               | - CATION –                                                                                                                  |           |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|
| All                                                   | Group I metals                                                                                                              | soluble   |
| All                                                   | Ammonium, NH4 <sup>+</sup>                                                                                                  | soluble   |
| Nitrate, NO <sub>3</sub> <sup>-</sup>                 | All                                                                                                                         | soluble   |
| Acetate/ethanoate<br>CH <sub>3</sub> COO <sup>−</sup> | All except Ag <sup>+</sup>                                                                                                  | soluble   |
| Chloride, Cl <sup>-</sup>                             | Ag <sup>+</sup> , Pb <sup>2+</sup> , Hg <sub>2</sub> <sup>2+</sup> , Cu <sup>+</sup>                                        | insoluble |
| Iodide, I                                             | All others                                                                                                                  | soluble   |
| Sulfato SO 2-                                         | Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , Pb <sup>2+</sup> , Ag <sup>+</sup> , Hg <sub>2</sub> <sup>2+</sup> | insoluble |
| Sunate, 504                                           | All others                                                                                                                  | soluble   |
| Sulfido $S^{2-}$                                      | Group I and II metals, $NH_4^+$                                                                                             | soluble   |
| Sunde, S                                              | All others                                                                                                                  | insoluble |
| Hydroxido, OH -                                       | Group I metals, NH4 <sup>+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup>                                                      | soluble   |
| Tiydroxide, OTT                                       | All others                                                                                                                  | insoluble |
| Carbonate, $CO_3^{2-}$                                | Group I metals, $NH_4^+$                                                                                                    | soluble   |
| Sulfite, $SO_3^{2-}$                                  | All others                                                                                                                  | insoluble |

# SOLUBILITY TABLE

(a) Complete the table indicating the solubility of the salts. Use S for soluble and I for insoluble.
(3 marks)

|                               | CH₃COO <sup>−</sup> | CI <sup>–</sup> | CO3 <sup>2-</sup> | S <sup>2−</sup> |
|-------------------------------|---------------------|-----------------|-------------------|-----------------|
| Ag⁺                           | Ι                   | Ι               |                   |                 |
| Ca <sup>2+</sup>              | S                   |                 | Ι                 |                 |
| Hg <sub>2</sub> <sup>2+</sup> | S                   | Ι               |                   |                 |

Question 23 continues on page 14

(b) A solution of lead(II) nitrate is accidentally spilled into a pond. Identify a problem resulting from this spill. (1 mark)

(c) The lead(II) nitrate can be chemically removed by precipitation.Identify a compound which will react with lead(II) nitrate and form a precipitate. (1 mark)

(d) Write a balanced chemical equation for the precipitation reaction in (c). (1 mark)

(e) Write the net ionic equation for the precipitation reaction in (e). (1 mark)

- End of Examination -

# Chemistry

#### DATA SHEET

| Avogadro's constant, N <sub>A</sub>                     | $6.022 \times 10^{23} \text{ mol}^{-1}$             |
|---------------------------------------------------------|-----------------------------------------------------|
| Volume of 1 mole ideal gas: at 101.3 kPa (1.00 atm) and |                                                     |
| at 273 K (0°C)                                          | 22.41 L                                             |
| at 298 K (25°C)                                         | 24.47 L                                             |
| Ionisation constant for water at 298 K (25°C), $K_{w}$  | $1.0 \times 10^{-14}$                               |
| Specific heat capacity of water                         | $4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$ |

#### Some useful formulae

 $pH = -log_{10} [H^+]$ 

 $\Delta H = -m C \Delta T$ 

#### Some standard potentials

|                                                                                                |                                     | -                                                  |         |
|------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|---------|
| $K^{+} + e^{-}$                                                                                | <del>~``</del>                      | K(s)                                               | -2.94 V |
| $Ba^{2+} + 2e^{-}$                                                                             | <del>~`</del>                       | Ba(s)                                              | –2.91 V |
| $Ca^{2+} + 2e^{-}$                                                                             | <del>~``</del>                      | Ca(s)                                              | –2.87 V |
| $Na^+ + e^-$                                                                                   | $\neq$                              | Na(s)                                              | –2.71 V |
| $Mg^{2+} + 2e^{-}$                                                                             | <del>~~``</del>                     | Mg(s)                                              | –2.36 V |
| $Al^{3+} + 3e^{-}$                                                                             | $\leftarrow$                        | Al(s)                                              | -1.68 V |
| $Mn^{2+} + 2e^{-}$                                                                             | $\rightarrow$                       | Mn(s)                                              | -1.18 V |
| $H_2O + e^-$                                                                                   | <del>~``</del>                      | $\frac{1}{2}$ H <sub>2</sub> (g) + OH <sup>-</sup> | -0.83 V |
| $Zn^{2+} + 2e^{-}$                                                                             | $\stackrel{\leftarrow}{\leftarrow}$ | Zn(s)                                              | -0.76 V |
| $Fe^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                | Fe(s)                                              | 0.44 V  |
| $Ni^{2+} + 2e^{-}$                                                                             | <del>~`</del>                       | Ni(s)                                              | -0.24 V |
| $Sn^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                | Sn(s)                                              | -0.14 V |
| $Pb^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                | Pb(s)                                              | -0.13 V |
| $H^{+} + e^{-}$                                                                                | $\neq$                              | $\frac{1}{2}H_2(g)$                                | 0.00 V  |
| $SO_4^{2-} + 4H^+ + 2e^-$                                                                      | <del>~`</del>                       | $SO_2(aq) + 2H_2O$                                 | 0.16 V  |
| $Cu^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                | Cu(s)                                              | 0.34 V  |
| $\frac{1}{2}O_2(g) + H_2O + 2e^-$                                                              | <del>~`</del>                       | 20H <sup>-</sup>                                   | 0.40 V  |
| $Cu^+ + e^-$                                                                                   | $\rightleftharpoons$                | Cu(s)                                              | 0.52 V  |
| $\frac{1}{2}I_2(s) + e^-$                                                                      | $\rightleftharpoons$                | I-                                                 | 0.54 V  |
| $\frac{1}{2}I_2(aq) + e^-$                                                                     | $\rightleftharpoons$                | I_                                                 | 0.62 V  |
| $Fe^{3+} + e^{-}$                                                                              | $\rightleftharpoons$                | Fe <sup>2+</sup>                                   | 0.77 V  |
| $Ag^+ + e^-$                                                                                   | <del>~``</del>                      | Ag(s)                                              | 0.80 V  |
| $\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$                                                   | <del>~``</del>                      | Br <sup>-</sup>                                    | 1.08 V  |
| $\frac{1}{2}$ Br <sub>2</sub> (aq) + e <sup>-</sup>                                            | $\rightleftharpoons$                | Br <sup>-</sup>                                    | 1.10 V  |
| $\frac{1}{2}O_2(g) + 2H^+ + 2e^-$                                                              | $\overline{}$                       | H <sub>2</sub> O                                   | 1.23 V  |
| $\frac{1}{2}\mathrm{Cl}_2(g) + \mathrm{e}^-$                                                   | $\rightleftharpoons$                | Cl⁻                                                | 1.36 V  |
| $\frac{1}{2}$ Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 7H <sup>+</sup> + 3e <sup>-</sup> | $\stackrel{\frown}{\rightarrow}$    | $Cr^{3+} + \frac{7}{2}H_2O$                        | 1.36 V  |
| $\frac{1}{2}$ Cl <sub>2</sub> ( <i>aq</i> ) + e <sup>-</sup>                                   | <del>~``</del>                      | Cl⁻                                                | 1.40 V  |
| $MnO_4^{-} + 8H^+ + 5e^-$                                                                      | <del>~`</del>                       | $Mn^{2+} + 4H_2O$                                  | 1.51 V  |
| $\frac{1}{2}F_2(g) + e^-$                                                                      | $\leftarrow$                        | $\mathbf{F}^{-}$                                   | 2.89 V  |

Aylward and Findlay, SI Chemical Data (4th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

|                                             |           |                       |                      |            |                          |                |            |                     |               |            |         |           |           |       |                  |            |       |          |               |              |                |          |       | _           |  |
|---------------------------------------------|-----------|-----------------------|----------------------|------------|--------------------------|----------------|------------|---------------------|---------------|------------|---------|-----------|-----------|-------|------------------|------------|-------|----------|---------------|--------------|----------------|----------|-------|-------------|--|
|                                             |           |                       |                      |            | [223.0]<br>Francium      | 77<br>17<br>21 | 78         | 132.9<br>Caesium    | S X           | Rubidium   | 85.47   | 37<br>Rb  | Potassium | 39.10 | 19<br>K          | Sodium     | 22.99 | Na<br>Na | Lithium       | 6.941        | <u>1</u> .3    | Hydrogen | H H   | -           |  |
|                                             |           |                       |                      |            | Radium                   | Ra             | 88         | 137.3<br>Barium     | 56<br>Ba      | Strontium  | 87.62   | 38<br>Sr  | Calcium   | 40.08 | 20<br>Ca         | Magnesium  | 24.31 | 12<br>Mg | Beryllium     | 9.012        | <b>R</b> 4     |          |       |             |  |
| 89<br>Ac<br>[227.0]<br>Actinium             | Actinides | 138.9<br>Lanthanum    | 57<br>La             | Lanthanide | Actinides                | 07 102         | 80_1N3     | Lanthanides         | 57–71         | Yttrium    | 88.91   | А<br>6£   | Scandium  | 44.96 | 21<br>Sc         |            |       |          |               |              |                |          |       |             |  |
| 90<br>Th<br>232.0<br>Thorium                |           | 140.1<br>Cerium       | د<br>دو<br>28        | S          | [201.1]<br>Rutherfordium | Rf             | 104        | 178.5<br>Hafnium    | Hf            | Zirconium  | 91.22   | 40<br>Zr  | Titanium  | 47.87 | 122<br>Ti        |            |       |          |               |              |                |          |       |             |  |
| 91<br>Pa<br>231.0<br>Protactinium           |           | 140.9<br>Praseodymium | Pr<br>Pr             |            | [202.1]<br>Dubnium       | р<br>Б         | 105        | 180.9<br>Tantalum   | 73<br>Ta      | Niobium    | 92.91   | 41<br>Nb  | Vanadium  | 50.94 | 23<br>V          |            |       |          |               |              |                |          |       |             |  |
| 92<br>U<br>238.0<br><sup>Uranium</sup>      |           | 144.2<br>Neodymium    | Na<br>Na<br>Na<br>Na |            | [203.1]<br>Seaborgium    | Sg             | ٦<br>آرونا | 183.8<br>Tungsten   | 74<br>W       | Molybdenum | 95.94   | 42<br>Mo  | Chromium  | 52.00 | Ω24              |            |       |          |               |              |                |          |       |             |  |
| 93<br>Np<br>[237.0]<br><sup>Neptunium</sup> |           | [146.9]<br>Promethium | 61<br>Pm             |            | [204.1]<br>Bohrium       | Bh             | 107        | 186.2               | 75<br>Re      | Technetium | [98.91] | 43<br>Tc  | Manganese | 54.94 | 25<br>Mn         |            |       |          |               | Þ            | At             |          |       | PERIO       |  |
| 94<br>Pu<br>[239.1]<br>Plutonium            |           | 150.4<br>Samarium     | 62<br>Sm             |            | [200.1]<br>Hassium       | Hs             | 108        | 190.2<br>Osmium     | 0s<br>0s      | Ruthenium  | 101.1   | R 4       | Iron      | 55.85 | 26<br>Fe         |            |       |          |               | tomic Weight | omic Number    |          |       | AL DIG      |  |
| 95<br>Am<br>[241.1]<br>Americium            |           | 152.0<br>Europium     | 53<br>Eu             |            | [∠∪o]<br>Meitnerium      | Mt             | 109        | 192.2<br>Iridium    | 77<br>Ir      | Rhodium    | 102.9   | Rh<br>8   | Cobalt    | 58.93 | C0               |            |       |          | Gold          | 197.0        | 79<br>An       | KEY      |       | BLE O       |  |
| 96<br>Cm<br>[244.1]<br><sup>Curium</sup>    |           | 157.5<br>Gadolinium   | 292<br>292           |            | Ununnilium               | Úun            | 110        | 195.1<br>Platinum   | 78<br>Pt      | Palladium  | 106.4   | P46       | Nickel    | 58.69 | 28<br>N:         |            |       |          | Name of eleme |              | Symbol of eler |          |       | H THE       |  |
| 97<br>Bk<br>[249.1]<br>Berkelium            |           | 158.9<br>Terbium      | 160                  |            | Unununium                | Ũuu            | 111        | 197.0<br>Gold       | 79<br>Au      | Silver     | 107.9   | 47<br>Ag  | Copper    | 63.55 | C <sub>2</sub> 9 |            |       |          | int           |              | nent           |          |       | ELENI       |  |
| 98<br>Cf<br>[252.1]<br>Californium          |           | 102.3<br>Dysprosium   | Dy 66                |            | Ununbium                 | Úub            | 112        | 200.6<br>Mercury    | Hg<br>Hg      | Cadmium    | 112.4   | G48       | Zinc      | 65.39 | Zn<br>30         |            |       |          | _             |              |                |          |       | <b>SULS</b> |  |
| 99<br>Es<br>[252.1]<br>Einsteinium          |           | 104.9<br>Holmium      | 67<br>Ho             |            |                          |                | 113        | 204.4<br>Thallium   | 11<br>11      | Indium     | 114.8   | 149<br>In | Gallium   | 69.72 | 31<br>Ga         | Aluminium  | 26.98 | A13      | Boron         | 10.81        | B S            |          |       |             |  |
| 100<br>Fm<br>[257.1]<br><sup>Fermium</sup>  |           | 107.3<br>Erbium       | 단<br>68              |            | Ununquadium              | Ûuq            | 114        | 207.2<br>Lead       | Pb            | Tin        | 118.7   | Sn 50     | Germanium | 72.61 | Ge<br>32         | Silicon    | 28.09 | Si 14    | Carbon        | 12.01        | تع             |          |       |             |  |
| 101<br>Md<br>[258.1]<br>Mendelevium         |           | 108.9<br>Thulium      | Tm<br>Tm             |            |                          |                | 115        | 209.0<br>Bismuth    | <b>B</b> :    | Antimony   | 121.8   | 51<br>Sb  | Arsenic   | 74.92 | As<br>As         | Phosphorus | 30.97 | 15<br>P  | Nitrogen      | 14.01        | Z 7            |          |       |             |  |
| 102<br>No<br>[259.1]<br>Nobelium            |           | I / 3.U<br>Ytterbium  | 1770<br>Yb           |            | Ununhexium               | Ũuh            | 116        | [210.0]<br>Polonium | Po            | Tellurium  | 127.6   | 52<br>Te  | Selenium  | 78.96 | Se 34            | Sulfur     | 32.07 | S 16     | Oxygen        | 16.00        | ⊃∞             |          |       |             |  |
| 103<br>Lr<br>[262.1]<br>Lawrencium          |           | 1 / J.U<br>Lutetium   | 172 A                |            |                          |                | 117        | [210.0]<br>Astatine | At 85         | Iodine     | 126.9   | 53<br>I   | Bromine   | 79.90 | Br<br>35         | Chlorine   | 35.45 | Ω17      | Fluorine      | 19.00        | <b>ч</b> о     |          |       |             |  |
|                                             |           |                       |                      |            | Ununoctium               | Uuo            | 118        | [222.0]<br>Radon    | <b>R</b> n 86 | Xenon      | 131.3   | 54<br>Xe  | Krypton   | 83.80 | <b>K</b> 36      | Argon      | 39.95 | Ar<br>18 | Neon          | 20.18        | No             | Helium   | 4 003 | 2           |  |

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes <sup>237</sup>Np and <sup>99</sup>Tc.



MARKING SCHEME and OUTCOMES MAP

# Chemistry

Preliminary Course Final Examination • 2002

# **Outcomes Map**

| QUESTION | OUTCOMES        |
|----------|-----------------|
| 1        | P10             |
| 2        | P3              |
| 3        | P9              |
| 4        | P10             |
| 5        | P2              |
| 6        | P6, P13         |
| 7        | P10             |
| 8        | P6, P8          |
| 9        | P8, P10         |
| 10       | P10             |
| 11       | P9              |
| 12       | P4, P6          |
| 13       | P9              |
| 14       | P7, P10, P14    |
| 15       | P4, P9          |
| 16       | P6              |
| 17       | P4, P6          |
| 18       | P10             |
| 19       | P10             |
| 20       | P13             |
| 21       | P10, P13        |
| 22       | P6, P8          |
| 23       | P4, P6, P8, P10 |

Answer Box for Questions 1–11

| 1  | ΑO  | во  | C 🔘 | DO  |
|----|-----|-----|-----|-----|
| 2  | ΑO  | B © | со  | DO  |
| 3  | A © | BO  | со  | DO  |
| 4  | ΑO  | BO  | C 🔘 | DО  |
| 5  | ΑO  | BO  | СО  | D 🕲 |
| 6  | A © | BO  | СO  | DО  |
| 7  | ΑO  | B©  | СО  | DО  |
| 8  | ΑO  | BO  | СО  | D 🕲 |
| 9  | ΑO  | BO  | C 🔘 | DО  |
| 10 | ΑΟ  | BO  | СO  | D © |
| 11 | ΑO  | BO  | со  | D 💿 |

1 What is the change in mass of 1.00 gram samples of Li and Ca metals when they react with an excess of oxygen  $(O_2)$ ?

|     | CHANGE IN | MASS (g) |
|-----|-----------|----------|
|     | Li        | Ca       |
| (A) | 1.000     | 1.000    |
| (B) | 2.153     | 1.399    |
| (C) | 1.153     | 0.399    |
| (D) | 0.576     | 0.799    |

- 2 Which of the following statements relates to a detrimental effect of thermal pollution in waterways?
  - (A) Fish populations will increase to disproportionate levels in higher water temperature.
  - (B) Increased water temperature will lead to less dissolved oxygen causing stress to aquatic organisms.
  - (C) Metabolic rates in fish are decreased.
  - (D) Higher water temperature results in the increased precipitation of heavy metals.
- **3** Which of the following ranks of coal has the highest carbon content?
  - (A) anthracite
  - (B) bituminous coal
  - (C) brown coal
  - (D) lignite
- 4 What is the mass of 2 moles of oxygen atoms?
  - (A) 8.0 grams
  - (B) 16 grams
  - (C) 32 grams
  - (D) 64 grams

5 The diagram shows a two section compartment filled with aqueous glucose solutions separated by a semi-permeable membrane.

|--|

Which statement describes what will happen?

- (A) Glucose molecules will move into the right side by diffusion.
- (B) Water molecules will move into the left side by diffusion.
- (C) Glucose molecules will move into the left side by osmosis.
- (D) Water molecules will move into the right side by osmosis.
- 6 Water, hydrogen sulfide and ammonia are compounds of O, S and N with hydrogen. Which of the following are correct Lewis electron dot structures, where X = N, O or S?

|     | WATER         | HYDROGEN SULFIDE | AMMONIA            |
|-----|---------------|------------------|--------------------|
| (A) | <br>н:х:н<br> | <br>н:х:н<br>    | :<br>н:х:н<br>н    |
| (B) | <br>н:х:н<br> | н: х:н<br>:<br>: | н: х:н<br><br>н    |
| (C) | н:х:н         | н: х:н           | н: х:н<br><br>н    |
| (D) | <br>н:х:н<br> | <br>н:х:н        | <br>н:х:н<br><br>н |

- 7 What is the whole number mass ratio of metal to non-metal (metal:non-metal) in barium chloride?
  - (A) 1:2
  - (B) 2:1
  - (C) 1:1
  - (D) 4:1
- 8 Which of the following binary compounds would have the greatest solubility in water?
  - (A) CH<sub>4</sub>
  - (B)  $CO_2$
  - (C) HCl
  - (D) HF
- 9 Which of the following equations shows the precipitation of copper(I) chloride?
  - $(A) \quad Cu_{(s)} \ + \ {}^{1\!\!/_2} Cl_{2 \ (g)} \ \ \rightarrow \ \ CuCl_{(s)}$
  - (B)  $\operatorname{Cu}_{(s)} + \operatorname{Cl}_{(aq)} \rightarrow \operatorname{CuCl}_{(s)}$
  - $(C) \quad Cu^{+}_{(aq)} \ + \ Cl^{-}_{(aq)} \ \ \rightarrow \ \ CuCl_{(s)}$
  - (D)  $\operatorname{Cu}^{+}_{(aq)} + \frac{1}{2} \operatorname{Ch}_{2(g)} \rightarrow \operatorname{Cu}\operatorname{Ch}_{(s)}$
- 10 0.10 mole of aluminium chromate,  $A_{b}(CrO_{4})_{3}$ , is dissolved in sufficient water to make 500 mL of solution. What are the concentrations of the resultant ions formed?

|     | CONCENTRATION (mol L $^{-1}$ )                  |       |  |  |
|-----|-------------------------------------------------|-------|--|--|
|     | Al <sup>3+</sup> CrO <sub>4</sub> <sup>2-</sup> |       |  |  |
| (A) | 0.050                                           | 0.033 |  |  |
| (B) | 0.10                                            | 0.10  |  |  |
| (C) | 0.20                                            | 0.20  |  |  |
| (D) | 0.40                                            | 0.60  |  |  |

- 11 Which of the following is the second hydrocarbon compound in the alkyne homologous series?
  - (A) butyne
  - (B) ethyne
  - (C) hexyne
  - (D) propyne

#### Question 12 (4 marks)

The table lists the boiling points for the first eight members of the homologous series of alkanes.

| FORMULA                        | Boiling Point (K) |  |  |
|--------------------------------|-------------------|--|--|
| CH <sub>4</sub>                | 112               |  |  |
| $C_2H_6$                       | 184               |  |  |
| C <sub>3</sub> H <sub>8</sub>  | 231               |  |  |
| $C_4H_{10}$                    | 273               |  |  |
| $C_{5}H_{12}$                  | 309               |  |  |
| $C_6H_{14}$                    | 342               |  |  |
| C <sub>7</sub> H <sub>16</sub> | 371               |  |  |
| C <sub>8</sub> H <sub>18</sub> | 399               |  |  |

(a) Define the term, homologous series. (1 mark)

A family of compounds which can be represented by one general formula is called an homologous series (each successive member of the series differs by a set increment, e.g. alkanes differ successively by CH<sub>2</sub>

(b) Explain the trend in boiling point for the alkanes. (1 mark)

Boiling point increases with increasing mass because dispersion forces increase as the molecules get bigger.

(c) List two hazards of working with hydrocarbons and the precautions taken to avoid these dangers.
(2 marks)

<u>Hazards</u>: *Extremely flammable, extremely volatile, some are toxic.* 

Precautions :

Store only in approved containers/well maintained cylinders. Keep away from naked flames/sparks. Handle in well ventilated areas. Minimise stored quantities. Use narrow necked containers. In the lab, use under a fume cupboard.

#### **Question 13** (6 marks)

(a) Compare one use of each carbon allotrope and relate this use to a physical property. (4 marks)

| ALLOTROPE | USE                                         | PHYSICAL PROPERTY                                               |
|-----------|---------------------------------------------|-----------------------------------------------------------------|
| graphite  | electrodes<br>dry lubricant<br>lead pencils | electrical conductivity<br>layers slip off each other<br>easily |
| diamond   | jewellery<br>drill, cutting tools           | sparkle<br>hardness                                             |

(b) Carbon exists in several allotropes and several isotopes.Differentiate between the terms, allotrope and isotope. (2 marks)

Allotropes are different forms of the same element that have different chemical properties and different physical properties, e.g. diamond and graphite.

Isotopes are different atoms of the same element that have different numbers of neutrons, e.g. C-12, C-13.

#### Question 14 (3 marks)

A student experimentally determined the molar heat of solution of calcium chloride using a calorimeter.

(a) The student used the specific heat of water in the calculation of the result.Define the term, specific heat. (1 mark)

The specific heat of a substance is the energy required to raise the temperature of 1 gram by  $1C^{\bullet}$ .

(b) The student found that when 5.3 grams of calcium chloride dissolved in 250 g of water the temperature rose by 3.4 C° in the calorimeter.
Calculate the molar heat of solution from this data. (2 marks)

 $?H = -mC?T = -(250 g) (4.18) (3.4 C^{\circ}) = -3553 J$  (1 mark)

Molar mass  $CaCl_2 = 111 g$  (or 1 mark)

*Molar* ?  $H_{soln} = (111 \text{ g}) (-3553 \text{ J}) \div 5.5 \text{ g} = -74412 = -\underline{74000 \text{ J}}$  (1 mark)

#### Question 15 (7 marks)

The diagram shows a fractionating tower which is used in the processing of crude oil. Hydrocarbon fractions are removed from outlets on the right hand side of the tower. The approximate numbers of carbon atoms in molecules from each fraction are indicated.



(a) From which fraction, (V, W, or X) is petrol made? (1 mark)

#### W

(b) Why is it incorrect to write a chemical formula for petrol? (1 mark)

#### Petrol is a mixture.

(c) Identify one use for the fraction obtained at Y. (1 mark)

#### Heating oil or diesel or lubricating oil

(d) Identify the physical property of hydrocarbons which allows them to be separated by the fractionating tower. (1 mark)

#### Different boiling points

#### Question 15 (continued)

(e) Describe the geological processes resulting in a crude oil accumulation and the method by which it is extracted from the earth. Use a diagram to illustrate your answer. (3 marks)



Oil producing sediments are compacted under pressure. They are overlain by other sediments. Through decomposition, oil is produced and it migrates up through permeable layers until it hits a cap rock. The oil pools under domed structures and cap rock and can be extracted by drilling. The oil initially gushes through the pipe under pressure.

<u>Description</u>: 1 mark <u>Extraction Method (drilling)</u>: 1 mark <u>Diagram</u>: 1 mark

#### Question 16 (3 marks)

The table shows the boiling points of water, ammonia and hydrogen sulfide. Explain the differences in the relative boiling points of each of these substances.

| water  | ammonia | hydrogen sulfide |
|--------|---------|------------------|
| 100º C | – 33º C | – 62º C          |

#### Question 17 (6 marks)

Explain the implications of the following properties of water for plants and animals.

| The low density of ice. | (2 marks) |  |
|-------------------------|-----------|--|
|                         |           |  |
|                         |           |  |
|                         |           |  |
|                         |           |  |
| Adhesion and cohesion.  | (2 marks) |  |
|                         |           |  |
|                         |           |  |
|                         |           |  |
|                         |           |  |
|                         |           |  |
| Surface tension. (2 ma  | rks)      |  |
|                         |           |  |
|                         |           |  |
|                         |           |  |
|                         |           |  |

## Question 18 (3 marks)

(a) What is the empirical formula of a compound of bismuth and chlorine, which is 66% (w/w) bismuth. (2 marks)

Assume 100 g sample of compound...  $\land$  (66 g Bi ÷ 209.0 g/mol) = 0.3158 mol Bi  $\land$  (34 g Cl ÷ 35.45 g/mol) = 0.9590 mol Cl  $\land$  empirical formula = <u>BiCl</u><sub>3</sub>

(b) If a sample of this compound contained 2 g of bismuth, what would be the total mass of the sample? (1 mark)

0.66x = 2g\ x = 3.03 = 3g

#### **Question 19** (4 marks)

A 10.0 g sample of impure zinc metal, heavily corroded with zinc hydroxide on its surface, was chemically analysed to determine the amount of zinc metal present. The sample was 'dissolved' in excess 1.00 mol  $L^{-1}$  hydrochloric acid solution and 3.05 L of hydrogen gas was produced at 25°C and 101.3 kPa.

(a) Write a balanced chemical equation for the reaction producing hydrogen gas. (1 mark)

$$Zn_{(s)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}$$

(b) How many moles of zinc metal reacted to produce the hydrogen gas? (1 mark)

Moles  $Zn = Moles H_2 = 3.05 L \div 24.47 L mol^{-1} = 0.1246 = 0.125 mol$ 

(c) Calculate the mass percentage of zinc metal in the original sample. (1 mark)

 $(0.1246 \ mol \ Zn) \ (65.39 \ g/mol) = 8.1476 \ g \ Zn$ 

 $(8.1476 g Zn) \div (10.0 g sample) = 81.476\% = 81.5\% Zn$ 

(d) Calculate the volume of acid which reacted with the whole sample. (1 mark)

grams  $Zn(OH)_2 = 10.0$  g sample - 8.15 g Zn = 1.85 g mole  $Zn(OH)_2 = 1.85$  g  $\div 99.406$  g/mol = 0.0186 mol mole  $HCl = 2(mol Zn) + 2[mol Zn(OH)_2] = 2(0.125) + 2(0.01860) = 0.2872$  mol volume HCl = 0.2872 mole  $HCl \div 1.00$  mol  $L^{-1} = 0.287L$ 

#### Question 20 (2 marks)

Briefly describe an experiment to identify the effect of mass of added salt to a fixed mass of water on the boiling point of water.

#### Question 21 (5 marks)

(a) A chemist requires an accurately prepared solution of barium chloride.

| Solution specifications |                           |  |  |
|-------------------------|---------------------------|--|--|
| volume                  | 500.0 mL                  |  |  |
| concentration           | 0.250 mol L <sup>-1</sup> |  |  |
| solute                  | barium chloride-2-water   |  |  |
| warning                 | toxic                     |  |  |

Describe the steps involved in the preparation of this solution. Include calculations and mention any specialised apparatus used. **(4 marks)** 

<u>Calculation</u>: grams solute = (0.250 M) (0.500 L) (244.232) = 30.529 g (1 mark)

#### Technique:

Weigh out 30.53 g of solute into a 500 mL beaker. Add about 250 mL of distilled water. Stir and dissolve. Transfer and rinse the solution into a 500 mL volumetric flask. (1 mark for mentioning volumetric flask)

Add distilled water until the solution's meniscus matches the graduation line on the flask. (1 mark for proper filling)

Safety: (1 mark)

Wear safety goggles, gloves; label solution toxic; wash hands afterwards.

(b) Convert the molarity of the barium chloride solution into a percentage concentration (w/w). Assume the solution's density is  $1.00 \text{ g mL}^{-1}$ . (1 mark)

Trick Question!

grams  $BaCl_2 = (0.250 M) (0.500 L) (208.2) = 26.025 g$ N.B. formula mass of anyhydrous salt!

26.025 g/500mL = 5.205 g/100g = 5.205% = 5.21%

#### Question 22 (7 marks)

(a) Complete the table showing examples of bonding types and aqueous solubilities. (5 marks)

| Bonding type       | Common example    | Aqueous solubility<br>(in general) |  |
|--------------------|-------------------|------------------------------------|--|
| metallic           | zinc              | insoluble                          |  |
| macro-molecule     | cellulose         | insoluble                          |  |
| covalent network   | silicon dioxide   | insoluble                          |  |
| polar covalent     | hydrogen chloride | soluble                            |  |
| non-polar covalent | methane           | insoluble                          |  |
| ionic              | sodium sulfate    | soluble                            |  |

Marking: 10 @ 1/2 mark

(b) The dissolving of oxygen in water can be correctly represented as...  $O_{2 (g)} \rightleftharpoons O_{2 (aq)}$ Identify two reasons why the dissolving of HCl in water cannot be represented as...

$$HCl_{(g)} \iff HCl_{(aq)}$$
 (2 marks)

- 1. HCl reacts with water and ionises; it does not remain molecular. (1 mark)
- 2. The reaction it not an equilibrium reaction. (1 mark)

# Question 23 (7 marks)

Use the solubility table to answer the questions which follow.

| ANION + CATION $\rightarrow$ COMPOUND |                                                                                                                             |           |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| All                                   | Group I metals                                                                                                              | soluble   |  |  |
| All                                   | Ammonium, NH₄ <sup>+</sup>                                                                                                  | soluble   |  |  |
| Nitrate, NO <sub>3</sub> <sup>-</sup> | All                                                                                                                         | soluble   |  |  |
| Acetate/ethanoate $CH_3COO^-$         | All except Ag <sup>+</sup>                                                                                                  | soluble   |  |  |
| Chloride, Cl <sup>-</sup>             | Ag <sup>+</sup> , Pb <sup>2+</sup> , Hg <sub>2</sub> <sup>2+</sup> , Cu <sup>+</sup>                                        | insoluble |  |  |
| lodide, I                             | All others                                                                                                                  | soluble   |  |  |
| Sulfato SO 2-                         | Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , Pb <sup>2+</sup> , Ag <sup>+</sup> , Hg <sub>2</sub> <sup>2+</sup> | insoluble |  |  |
|                                       | All others                                                                                                                  | soluble   |  |  |
| Sulfido $S^{2-}$                      | Group I and II metals, $NH_4^+$                                                                                             | soluble   |  |  |
| Sunde, S                              | All others                                                                                                                  | insoluble |  |  |
| Hydroxido, OH -                       | Group I metals, NH4 <sup>+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup>                                                      | soluble   |  |  |
| Tiydroxide, OTT                       | All others                                                                                                                  | insoluble |  |  |
| Carbonate, $CO_3^{2-}$                | Group I metals, $NH_4^+$                                                                                                    | soluble   |  |  |
| Sulfite, $SO_3^{2-}$                  | All others                                                                                                                  | insoluble |  |  |

# SOLUBILITY TABLE

(a) Complete the table indicating the solubility of the salts. Use S for soluble and I for insoluble.
(3 marks)

|                               | CH₃COO <sup>−</sup> | CI <sup>–</sup> | CO3 <sup>2-</sup> | S <sup>2−</sup> |
|-------------------------------|---------------------|-----------------|-------------------|-----------------|
| Ag⁺                           | Ι                   | Ι               | Ι                 | Ι               |
| Ca <sup>2+</sup>              | S                   | S               | Ι                 | S               |
| Hg <sub>2</sub> <sup>2+</sup> | S                   | Ι               | Ι                 | Ι               |



Question 23 (continued)

(b) A solution of lead(II) nitrate is accidentally spilled into a pond. Identify a problem resulting from this spill. (1 mark)

#### Lead is a heavy metal and its solutions are toxic. This spill could result in death to aquatic organisms in the pond.

(c) The lead(II) nitrate can be chemically removed by precipitation.Identify a compound which will react with lead(II) nitrate and form a precipitate. (1 mark)

Sodium sulfate (many other possibilities, but must be soluble, e.g. CaSO<sub>4</sub> is incorrect)

(d) Write a balanced chemical equation for the precipitation reaction in (c). (1 mark)

 $Pb(NO_3)_2 + Na_2SO_4 \rightarrow PbSO_{4(s)} + 2NaNO_3$  (many other possibilities)

(e) Write the net ionic equation for the precipitation reaction in (e). (1 mark)

 $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4_{(s)}$  (Must have  $_{(s)}$  included)